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Abstract 

Summary: Proteins containing tandem repeats (TRs) are abundant, frequently fold in elongated non-

globular structures and perform vital functions. A number of computational tools have been developed 

to detect TRs in protein sequences.  A blurred boundary between imperfect TR motifs and non-repetitive 

sequences gave rise to necessity to validate the detected TRs. Tally-2.0 is a scoring tool based on a 

machine learning approach, which allows to validate the results of TR detection. It was upgraded by using 

improved training datasets and additional machine learning features. Tally-2.0 performs at a level of 93% 

sensitivity, 83% specificity and an Area Under the Receiver Operating Characteristic Curve of 95%. 

 

Availability and implementation: Tally-2.0 software is available, as a free web tool and as a standalone 

application published under Apache License 2.0, on the URL: 

https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=27.  It is supported on Linux.  Source code is 

available upon request.  

Contact: andrey.kajava@crbm.cnrs.fr 

Supplementary information: Supplementary data are available at Bioinformatics online. 
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1. Introduction 

 

Numerous studies demonstrate the fundamental functional importance of protein regions containing 

periodic sequences representing arrays of similar motifs that are directly adjacent to each other. The 

majority of proteins with these tandem repeats (TRs) in sequences have repetitive non-globular 

arrangements in their 3D structures (Kajava, 2012; Fraser and MacRae, 1973).  Functions of these protein 

regions also frequently differ from the protein domains having aperiodic sequences folded in the globular 

structures. The TRs containing proteins predominantly serve as structural blocks (e.g. collagen, silk, 

keratin, proteins of epithelial tissues), as large hub proteins involved in protein–protein interactions (LRR 

or HEAT proteins), as core elements of multi-protein machineries and as proteins used like multivalent 

binders of ligands with periodic structures ( Fraser and MacRae, 1973; Kobe and Kajava, 2001; Andrade 

and Bork, 1995)  

The structural and functional differences of proteins with aperiodic and periodic sequences, points to the 

importance of bioinformatics tools that are able to distinguish between these two types of sequences. 

Most of the existing methods (Jorda and Kajava, 2009; Szklarczyk and Heringa, 2004; Biegert and Söding, 

2008)  can detect perfect TRs; however, in many cases, TRs are imperfect, contain a number of mutations 

accumulated during evolution and cannot be easily identified. In this situation, the 3D structure of 

proteins can be used as a benchmarking criterion for TR detection in sequences. The majority of proteins 

having TRs are built of repetitive 3D structural blocks and, the evolution cannot completely erase the 

repetitive patterns because some residues located in the equivalent positions of the repeats are critical 

for maintenance of the stable and functional structure. Previously, we developed a scoring tool called 

“Tally”, which is based on a machine learning (ML) approach and trained and evaluated on curated 

datasets of the ‘true’ TRs found both in sequence and in structure(TR-SS) and ‘false’ TRs only found in 

sequence but not in the structure (TR-SNS) (Richard et al., 2016). Tally achieved a better separation 

between sequences with structural TRs and sequences of aperiodic structures, than the other existing 

scoring procedures. In this work, we significantly improved this scoring tool by using additional ML 

features and enlargement of the curated benchmarking datasets. The dataset of “true” TRs was enriched 

in nearly perfect TRs allowing us to extend Tally application to the TRs of the natively unfolded regions. 
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2. Materials and methods 

Datasets 

Previously, we built a positive set of 441 “true” TRs found both in sequence and in structure and 141 ‘false’ 

TRs only found in sequence but not in the structure (Richard et al., 2016). Here, we improved these 

datasets by (1) increasing and equalizing numbers of TRs in the positive and negative datasets (553 and 

525, correspondingly), (2) verifying and decreasing TR sequence redundancy in both datasets and (3) 

choosing TRs that allow a more equal representation in terms of their perfection, length and number of 

repeats. The TR of a given region is presented as multiple sequence alignment (MSA) of its repeats. For 

the TR identification and generation of MSAs, T-REKS (Jorda and Kajava, 2009), TRUST (Szklarczyk and 

Heringa, 2004) and HHrepID (Biegert and Söding, 2008) programs were used.  

 

Machine learning algorithm and features  

Previously, we generated 40 MSAs based ML feature (Richard et al., 2016). In this work, we added 3 new 

features related to the number of gap openings in the MSA, and also a new family of 112 features, which 

are based on Fourier Transform and physico-chemical characteristics of amino acids. These spectral 

features are developed based on Informational Spectrum Method (ISM) (Veljkovic et al., 2007) and are 

comprising of 4 groups: (1) two features based on amplitude values of first peaks in spectral 

representations of MSA, (2) eight features, which represent sum of signal/noise values on spectral peaks, 

(3) one noise based feature, and (4) three entropy based features, across 8 amino acid characteristics 

from AAIndex database (Nakai et al., 1988) (see Supplementary data). In feature engineering process we 

have selected 55 from total of 155 original attributes for final model using sequential backward 

elimination  (Saeys et al., 2007) as a feature selection algorithm (see Supplementary data). The backward 

feature elimination was done by using H2O.ai platform (2018) and custom implementation in R language. 

The H2O.ai platform (2018) was used for cross validation process. The Tally-2.0 classifier was generated 

using Random Forest  (Breiman, 2001)  classification ML algorithm, as a method with the best prediction 

efficacy (see the comparison in Supplementary data).  

 

3. Results 

Tally-2.0 classifier was implemented in JAVA language using ML platform H2O.ai (2018). As an input, Tally-

2.0 uses the list of TR regions presented as MSAs of their repeats.  The calculation of MSA based features 
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is implemented in Python and of Spectral features in JAVA. The output lists Tally-2.0 score and several 

other known TR scores (Psim, entropy, p-value-phylo and parsimony (Richard and Kajava, 2015) allowing 

the users to validate the quality of the examined TRs. Tally-2.0 just like Tally (Richard et al., 2016) has the 

best performance when we use Random Forest classifier (see Supplementary data), which indicates that 

the better results of the upgraded tool is due to the improved training datasets and additional ML 

features. 

The evaluation of Tally-2.0, carried out on 10-fold cross-validation, showed 0.95 of Area Under the 

Receiver Operating Characteristic Curve (AUC) (Figure 1a). At a threshold of 0.45, established based on 

the maximization of F-score, Tally-2.0 performs at the level of 0.88 accuracy, 0.89 F-score, 83% specificity, 

while achieving a high value 93% of sensitivity. In addition, we compared Tally-2.0 to existing scoring 

methods as follows: Tally-2.0 scores was obtained with 10-fold cross-validation on the positive and 

negative training set, while the performance of the other scoring methods was evaluated by the direct 

calculation of the  scores  of the complete training set. Our comparative analysis showed that Tally-2.0 

evaluates the separation between sequences with and without TRs better than the other scoring 

procedures (Figure 1). 

Initially, Tally was developed to distinguish between protein structures with repetitive and non-repetitive 

architectures and, therefore, its dataset was enriched in MSAs that were close to the boundary between 

these two classes of proteins.  As a result, Tally did not score well the MSAs which were far apart from 

this boundary (e.g. almost perfect repeats or MSAs from aperiodic random sequences) (Richard et al., 

2016). The updated dataset of “true” TRs used to build Tally-2.0 was enriched, on the one hand, in the 

perfect and almost perfect TRs and, on the other hand, in the random aperiodic sequences.  It is also 

important to note that Tally input requires only sequence information.  All this allowed us to cover the 

whole spectrum of MSAs and to extend application of Tally to the TRs of the natively unfolded (or 

intrinsically disordered) regions. Now, Tally 2.0 can be used in the large scale analyses as a uniform 

validator of TR detection. It is one of the most important application of our tool as at present each of TR 

detection programs use their own scoring measure. As a result, in the previous large scale surveys, the 

number of TR containing proteins in the proteomes varied significantly (between 14 to 30 %) (Marcotte 

et al., 1999; Pellegrini, 2015) and  the question about the total number of TRs in proteomes still stand 

unanswered.  
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Thus, the standalone version of Tally-2.0 is suitable for the validation of the large-scale analysis of TRs. In 

addition, web-based version of Tally-2.0 allows the users to validate imperfect TRs identified by them in 

the protein of their interest.   

 

 

 

 

         

 

Figure 1 

Comparative analysis of TR validators. For Tally-2.0, ROC curve has been obtained on the training set with 

10-fold cross-validation, whereas for the other existing scoring methods we used the Tally-2.0 training 

dataset. Values of AUC in decreasing order are 0.95, 0.89, 0.83, 0.77, 0.73 and 0.67, respectively, for 

Tally2.0, Parsimony, Tally, p-value-phylo, Psim and Entropy scores.  
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Supplementary Data 

Tally-2.0: upgraded validator of tandem repeat detection in protein sequences 

Vladimir Perovic, Jeremy Leclercq, Neven Sumonja, Francois D. Richard, Nevena Veljkovic and 

Andrey V. Kajava 

 

Features used for the classifier 
 
In total, 155 original features were used for the classification. They consist of 40 Multiple 
Sequence Alignment (MSA) based features which were described in our paper on the previous 
version of Tally [Richard, Alves and Kajava, 2016], 3 new gap-related features (Table 1) and 112 
new spectral features (Table 2).  

Table 1. Gap-opening features related to the number of gap openings in the MSA of tandem repeats. 
Name  Short name 
Gap-open block measure gapopen 
Relative gap-open measure rel_gapopen 
Gap-open measure per amino acid gapopen_peraa 

 

Spectral features are developed based on Informational Spectrum Method [Veljkovic et al., 2007] 
where the amino acid sequence is first encoded into series of real numbers encoding each amino 
acid using its specific physico-chemical characteristic. This vector is in the second step 
transformed into Informational Spectrum (IS) using Fourier Transform. Family of 112 spectral 
features is generated using 14 measures defined on IS (Table 2) across 8 amino acid characteristics 
listed in Table 3.  

Table 2. Measures used for calculation of spectral features. 

Name  Short name Family 
Amplitude value of the first peak AMP_1 First peak 
Signal-to-noise ratio of the first peak SN_1 First peak 
Sum of signal/noise values of first two peaks SPSN_2 Sum of signal/noise 
Sum of signal/noise values of first three peaks SPSN_3 Sum of signal/noise 
Sum of signal/noise values of first four peaks SPSN_4 Sum of signal/noise 
Sum of signal/noise values of first five peaks SPSN_5 Sum of signal/noise 
Sum of signal/noise values of first six peaks SPSN_6 Sum of signal/noise 
Sum of signal/noise values of first seven peaks SPSN_7 Sum of signal/noise 
Sum of signal/noise values of first eight peaks SPSN_8 Sum of signal/noise 
Sum of signal/noise values of all peaks SPSN_all Sum of signal/noise 
Average of amplitude values in IS Noise Noise 
Entropy calculated on all amplitude values of the IS  Entropy Entropy 
Entropy calculated on amplitudes of all peaks in IS All_peaks_entropy Entropy 
Entropy calculated on signal/noise values in IS SN_entropy Entropy 

 

Table 3. List of physico-chemical characteristics of amino acids used to calculate Spectral based features. 
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Name  Short name Reference 
Electron-ion interaction potential eiip [Veljkovic et al., 2007] 
B-values bval [Vihinen et al., 1994] 
DisProt disp [Campen et al., 2008] 
FoldUnfold fu [Galzitskaya et al., 2006] 
Hydrophobicity hph [Glisic et al., 2016] 
TOP-IDP idp [Campen et al., 2008] 
Side-chain mass mass [Huang and Chen, 2013] 
Net charge netc [Klein et al., 1984] 

 

 

Importance of features (Figure 1) was calculated based on Random Forest (RF) model. The 
variable importance is determined calculating the relative influence of each feature: whereas the 
variable is selected for splitting and how much the squared error improved as a result during the 
tree building process. 

 

Figure 1.  
Feature importance obtained when considering the 55 features of total 155 ones in the RF approach.  

 

Machine learning algorithms comparison 

Comparison of classifiers generated using different machine learning algorithms, Random Forest 
(RF) [Geurts et al., 2006], Gradient boosting machine (GBM) [Friedman and Jerome, 2001], 
Generalized linear model (GLM) [Breslow, 1996] and Deep learning (DEEPL) [Candel et al., 
2015] was carried out using 10-fold cross-validation of the training set. Predictive performances 
were estimated by calculating accuracy (ACC), area under the ROC (receiver operating 
characteristic) curve (AUC), area under recall–precision plots (AUPRC), specificity, sensitivity, 
F1 score, precision and Matthews correlation coefficient (MCC) (Table 4). 

 

Table 4. Comparison of the classifiers 
 

DRF GBM GLM DEEPL 
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AUROC 0.950881 0.945248 0.927781 0.929534 
AUPR 0.9506 0.948577 0.929398 0.92664 
ACC 0.883117 0.87384 0.844156 0.845083 
F1 score 0.891379 0.881119 0.856655 0.859546 
Precision 0.853135 0.854237 0.812298 0.804724 
Specificity 0.830153 0.835878 0.778626 0.763359 
Recall 0.933213 0.909747 0.906137 0.922383 
MCC 0.769035 0.748695 0.691971 0.696614 

 
 

 

Runtime benchmark of Tally-2.0  

Used dataset size: 202 065 MSAs. 
 
Dataset statistics  

 

Mean of repeat numbers in MSAs (n) : 4.43 

Minimum repeat number (n_min) : 2 

Maximum repeat number (n_max) : 100 

Mean of repeat lengths in MSAs (l) : 78.52 

Minimum repeat length (l_min) : 7 

Maximum repeat length (l_max) : 1809 

 
Computation time with 8 threads: 
11 537 seconds (3,2047222 h) 
Computer configuration: 
Hard Disk Drive 7200 RPM 
16 GO RAM – DDR3 - 1600MHz 
Intel core I7-4770 – 3.40GHz – Cache 8192 KB 
Linux Mint 19.2 "Tina" - Cinnamon (64-bit) 

 
 
 
 

 
References 
 
Richard, F. D., Alves, R. and Kajava, A. V. (2016). Tally: a scoring tool for boundary 
determination between repetitive and non-repetitive protein sequences, Bioinformatics, 32(13), pp. 
1952–1958. doi: 10.1093/bioinformatics/btw118. 



10 
 

Veljkovic V, Veljkovic N, Este JA, Huther A, Dietrich U. Application of the EIIP/ISM 
bioinformatics concept in development of new drugs. Current medicinal chemistry. 
2007;14(4):441-53. 

Campen, A. et al. TOP-IDP-Scale: A New Amino Acid Scale Measuring Propensity for Intrinsic 
Disorder. Protein Pept. Lett. 15, 956–963 (2008). 

Vihinen, M., Torkkila, E. & Riikonen, P. Accuracy of protein flexibility predictions. Proteins 
Struct. Funct. Bioinforma. 19, 141–149 (1994). 

Galzitskaya, O. V., Garbuzynskiy, S. O. & Lobanov, M. Y. FoldUnfold: Web server for the 
prediction of disordered regions in protein chain. Bioinformatics 22, 2948–2949 (2006). 

Glisic S, Cavanaugh DP, Chittur KK, Sencanski M, Perovic V, Bojic T. Common molecular 
mechanism of the hepatic lesion and the cardiac parasympathetic regulation in chronic hepatitis C 
infection: a critical role for the muscarinic receptor type 3. BMC bioinformatics. 2016;17(1):139. 

Huang YF, Chen SY. Extracting physicochemical features to predict protein secondary structure. 
The Scientific World Journal. 2013; 2013. 

Klein, P., Kanehisa, M. & DeLisi, C. Prediction of protein function from sequence properties. 
Discriminant analysis of a data base. Biochim. Biophys. Acta 787, 221–6 (1984). 

Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine learning. 2006 Apr 
1;63(1):3-42. 

Friedman, Jerome H. “Greedy Function Approximation: A Gradient Boosting Machine.” Annals 
of Statistics (2001): 1189-1232. 

Breslow NE. “Generalized Linear Models: Checking Assumptions and Strengthening 
Conclusions.” Statistica Applicata 8 (1996): 23-41. 

Candel, Arno and Parmar, Viraj. “Deep Learning with H2O.” H2O.ai, Inc. (2015). 

 

 

 


