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Introduction

Numerous studies demonstrate the fundamental functional importance of protein regions containing periodic sequences representing arrays of similar motifs that are directly adjacent to each other. The majority of proteins with these tandem repeats (TRs) in sequences have repetitive non-globular arrangements in their 3D structures [START_REF] Kajava | Tandem repeats in proteins: From sequence to structure[END_REF][START_REF] Fraser | Conformation in Fibrous Proteins and Related Synthetic Polypeptides[END_REF]. Functions of these protein regions also frequently differ from the protein domains having aperiodic sequences folded in the globular structures. The TRs containing proteins predominantly serve as structural blocks (e.g. collagen, silk, keratin, proteins of epithelial tissues), as large hub proteins involved in protein-protein interactions (LRR or HEAT proteins), as core elements of multi-protein machineries and as proteins used like multivalent binders of ligands with periodic structures [START_REF] Fraser | Conformation in Fibrous Proteins and Related Synthetic Polypeptides[END_REF][START_REF] Kobe | The leucine-rich repeat as a protein recognition motif[END_REF][START_REF] Andrade | HEAT repeats in the Huntington's disease protein[END_REF] The structural and functional differences of proteins with aperiodic and periodic sequences, points to the importance of bioinformatics tools that are able to distinguish between these two types of sequences.

Most of the existing methods [START_REF] Jorda | T-REKS: Identification of Tandem REpeats in sequences with a K-meanS based algorithm[END_REF][START_REF] Szklarczyk | Tracking repeats using significance and transitivity[END_REF][START_REF] Biegert | De novo identification of highly diverged protein repeats by probabilistic consistency[END_REF]) can detect perfect TRs; however, in many cases, TRs are imperfect, contain a number of mutations accumulated during evolution and cannot be easily identified. In this situation, the 3D structure of proteins can be used as a benchmarking criterion for TR detection in sequences. The majority of proteins having TRs are built of repetitive 3D structural blocks and, the evolution cannot completely erase the repetitive patterns because some residues located in the equivalent positions of the repeats are critical for maintenance of the stable and functional structure. Previously, we developed a scoring tool called "Tally", which is based on a machine learning (ML) approach and trained and evaluated on curated datasets of the 'true' TRs found both in sequence and in structure(TR-SS) and 'false' TRs only found in sequence but not in the structure (TR-SNS) [START_REF] Richard | Tally: a scoring tool for boundary determination between repetitive and non-repetitive protein sequences[END_REF]. Tally achieved a better separation between sequences with structural TRs and sequences of aperiodic structures, than the other existing scoring procedures. In this work, we significantly improved this scoring tool by using additional ML features and enlargement of the curated benchmarking datasets. The dataset of "true" TRs was enriched in nearly perfect TRs allowing us to extend Tally application to the TRs of the natively unfolded regions.

Materials and methods

Datasets

Previously, we built a positive set of 441 "true" TRs found both in sequence and in structure and 141 'false' TRs only found in sequence but not in the structure [START_REF] Richard | Tally: a scoring tool for boundary determination between repetitive and non-repetitive protein sequences[END_REF]. Here, we improved these datasets by (1) increasing and equalizing numbers of TRs in the positive and negative datasets ( 553 and525, correspondingly), (2) verifying anddecreasing TR sequence redundancy in both datasets and(3) choosing TRs that allow a more equal representation in terms of their perfection, length and number of repeats. The TR of a given region is presented as multiple sequence alignment (MSA) of its repeats. For the TR identification and generation of MSAs, T-REKS [START_REF] Jorda | T-REKS: Identification of Tandem REpeats in sequences with a K-meanS based algorithm[END_REF], TRUST [START_REF] Szklarczyk | Tracking repeats using significance and transitivity[END_REF] and HHrepID [START_REF] Biegert | De novo identification of highly diverged protein repeats by probabilistic consistency[END_REF] programs were used.

Machine learning algorithm and features

Previously, we generated 40 MSAs based ML feature [START_REF] Richard | Tally: a scoring tool for boundary determination between repetitive and non-repetitive protein sequences[END_REF]. In this work, we added 3 new features related to the number of gap openings in the MSA, and also a new family of 112 features, which are based on Fourier Transform and physico-chemical characteristics of amino acids. These spectral features are developed based on Informational Spectrum Method (ISM) [START_REF] Veljkovic | Application of the EIIP/ISM bioinformatics concept in development of new drugs[END_REF] and are comprising of 4 groups: (1) two features based on amplitude values of first peaks in spectral representations of MSA, (2) eight features, which represent sum of signal/noise values on spectral peaks,

(3) one noise based feature, and (4) three entropy based features, across 8 amino acid characteristics from AAIndex database [START_REF] Nakai | Cluster analysis of amino acid indices for prediction of protein structure and function[END_REF] (see Supplementary data). In feature engineering process we have selected 55 from total of 155 original attributes for final model using sequential backward elimination [START_REF] Saeys | A review of feature selection techniques in bioinformatics[END_REF] as a feature selection algorithm (see Supplementary data). The backward feature elimination was done by using H2O.ai platform (2018) and custom implementation in R language.

The H2O.ai platform (2018) was used for cross validation process. The Tally-2.0 classifier was generated using Random Forest [START_REF] Breiman | Random forest[END_REF] classification ML algorithm, as a method with the best prediction efficacy (see the comparison in Supplementary data).

Results

Tally-2.0 classifier was implemented in JAVA language using ML platform H2O.ai (2018). As an input, Tally-2.0 uses the list of TR regions presented as MSAs of their repeats. The calculation of MSA based features is implemented in Python and of Spectral features in JAVA. The output lists Tally-2.0 score and several other known TR scores (Psim, entropy, p-value-phylo and parsimony [START_REF] Richard | In search of the boundary between repetitive and non-repetitive protein sequences[END_REF] allowing the users to validate the quality of the examined TRs. Tally-2.0 just like Tally [START_REF] Richard | Tally: a scoring tool for boundary determination between repetitive and non-repetitive protein sequences[END_REF] has the best performance when we use Random Forest classifier (see Supplementary data), which indicates that the better results of the upgraded tool is due to the improved training datasets and additional ML features.

The evaluation of Tally-2.0, carried out on 10-fold cross-validation, showed 0.95 of Area Under the Receiver Operating Characteristic Curve (AUC) (Figure 1a). At a threshold of 0.45, established based on the maximization of F-score, Tally-2.0 performs at the level of 0.88 accuracy, 0.89 F-score, 83% specificity, while achieving a high value 93% of sensitivity. In addition, we compared Tally-2.0 to existing scoring methods as follows: Tally-2.0 scores was obtained with 10-fold cross-validation on the positive and negative training set, while the performance of the other scoring methods was evaluated by the direct calculation of the scores of the complete training set. Our comparative analysis showed that Tally-2.0 evaluates the separation between sequences with and without TRs better than the other scoring procedures (Figure 1).

Initially, Tally was developed to distinguish between protein structures with repetitive and non-repetitive architectures and, therefore, its dataset was enriched in MSAs that were close to the boundary between these two classes of proteins. As a result, Tally did not score well the MSAs which were far apart from this boundary (e.g. almost perfect repeats or MSAs from aperiodic random sequences) [START_REF] Richard | Tally: a scoring tool for boundary determination between repetitive and non-repetitive protein sequences[END_REF]. The updated dataset of "true" TRs used to build Tally-2.0 was enriched, on the one hand, in the perfect and almost perfect TRs and, on the other hand, in the random aperiodic sequences. It is also important to note that Tally input requires only sequence information. All this allowed us to cover the whole spectrum of MSAs and to extend application of Tally to the TRs of the natively unfolded (or intrinsically disordered) regions. Now, Tally 2.0 can be used in the large scale analyses as a uniform validator of TR detection. It is one of the most important application of our tool as at present each of TR detection programs use their own scoring measure. As a result, in the previous large scale surveys, the number of TR containing proteins in the proteomes varied significantly (between 14 to 30 %) [START_REF] Marcotte | A census of protein repeats[END_REF][START_REF] Pellegrini | Tandem Repeats in Proteins: Prediction Algorithms and Biological Role[END_REF] and the question about the total number of TRs in proteomes still stand unanswered.

Thus, the standalone version of Tally-2.0 is suitable for the validation of the large-scale analysis of TRs. In addition, web-based version of Tally-2.0 allows the users to validate imperfect TRs identified by them in the protein of their interest.

Figure 1

Comparative analysis of TR validators. For Tally-2.0, ROC curve has been obtained on the training set with 10-fold cross-validation, whereas for the other existing scoring methods we used the Tally-2.0 training dataset. Values of AUC in decreasing order are 0.95, 0.89, 0.83, 0.77, 0.73 and 0.67, respectively, for Tally2.0, Parsimony, Tally, p-value-phylo, Psim Entropy scores.

Name

Short name Reference Electron-ion interaction potential eiip [START_REF] Veljkovic | Application of the EIIP/ISM bioinformatics concept in development of new drugs[END_REF]] B-values bval [START_REF] Vihinen | Accuracy of protein flexibility predictions[END_REF]] DisProt disp [START_REF] Campen | TOP-IDP-Scale: A New Amino Acid Scale Measuring Propensity for Intrinsic Disorder[END_REF]] FoldUnfold fu [START_REF] Galzitskaya | Web server for the prediction of disordered regions in protein chain[END_REF]] Hydrophobicity hph [START_REF] Glisic | Common molecular mechanism of the hepatic lesion and the cardiac parasympathetic regulation in chronic hepatitis C infection: a critical role for the muscarinic receptor type 3[END_REF]] TOP-IDP idp [START_REF] Campen | TOP-IDP-Scale: A New Amino Acid Scale Measuring Propensity for Intrinsic Disorder[END_REF]] Side-chain mass mass [START_REF] Huang | Extracting physicochemical features to predict protein secondary structure[END_REF]] Net charge netc [START_REF] Klein | Prediction of protein function from sequence properties. Discriminant analysis of a data base[END_REF] Importance of features (Figure 1) was calculated based on Random Forest (RF) model. The variable importance is determined calculating the relative influence of each feature: whereas the variable is selected for splitting and how much the squared error improved as a result during the tree building process.

Figure 1.

Feature importance obtained when considering the 55 features of total 155 ones in the RF approach.

Machine learning algorithms comparison

Comparison of classifiers generated using different machine learning algorithms, Random Forest (RF) [START_REF] Geurts | Extremely randomized trees[END_REF], Gradient boosting machine (GBM) [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF], Generalized linear model (GLM) [START_REF] Breslow | Generalized Linear Models: Checking Assumptions and Strengthening Conclusions[END_REF] and Deep learning (DEEPL) [START_REF] Candel | Deep Learning with H2O[END_REF] was carried out using 10-fold cross-validation of the training set. Predictive performances were estimated by calculating accuracy (ACC), area under the ROC (receiver operating characteristic) curve (AUC), area under recall-precision plots (AUPRC), specificity, sensitivity, F1 score, precision and Matthews correlation coefficient (MCC) (Table 4). 

Table 4 .

 4 Comparison of the classifiers
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Tally-2.0: upgraded validator of tandem repeat detection in protein sequences Vladimir Perovic, Jeremy Leclercq, Neven Sumonja, Francois D. Richard, Nevena Veljkovic and Andrey V. Kajava Features used for the classifier In total, 155 original features were used for the classification. They consist of 40 Multiple Sequence Alignment (MSA) based features which were described in our paper on the previous version of Tally [START_REF] Richard | Tally: a scoring tool for boundary determination between repetitive and non-repetitive protein sequences[END_REF], 3 new gap-related features (Table 1) and 112 new spectral features (Table 2). [START_REF] Veljkovic | Application of the EIIP/ISM bioinformatics concept in development of new drugs[END_REF] where the amino acid sequence is first encoded into series of real numbers encoding each amino acid using its specific physico-chemical characteristic. This vector is in the second step transformed into Informational Spectrum (IS) using Fourier Transform. Family of 112 spectral features is generated using 14 measures defined on IS (Table 2) across 8 amino acid characteristics listed in Table 3.