
HAL Id: hal-03089217
https://hal.science/hal-03089217

Submitted on 28 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An individual-based model for the eco-evolutionary
emergence of bipartite interaction networks

Odile Maliet, Nicolas Loeuille, Hélène Morlon

To cite this version:
Odile Maliet, Nicolas Loeuille, Hélène Morlon. An individual-based model for the eco-evolutionary
emergence of bipartite interaction networks. Ecology Letters, 2020, 23 (11), pp.1623-1634.
�10.1111/ele.13592�. �hal-03089217�

https://hal.science/hal-03089217
https://hal.archives-ouvertes.fr


An individual based model for the eco-evolutionary emergence of1

bipartite interaction networks2

3

November 2, 20204

Odile Malieta,*, Nicolas Loeuilleb, Hélène Morlona
5

a Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL6

Research University, 75005 Paris, France7
b Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et des Sciences de l’Environnement, IEES,8

F-75005 Paris, France9

* Corresponding author. email: odile.maliet@orange.fr10

Authors contribution11

OM, NL & HM conceived the study. OM wrote the simulation code and performed the analysis.12

OM, NL & HM wrote the manuscript.13

1 Data availability statement14

Data sharing not applicable to this article as no new data were generated during the current15

study. The functions for running the simulations are available in the Rpackage RPANDA (Morlon16

et al., 2016).17

2 Short running title18

Emergence of bipartite interaction networks19

3 Keywords20

ecological networks ; mutualism ; antagonism ; nestedness ; coevolution21

4 Count22

Main text : 5468 words23

Abstract : 148 words24

Figures : 425

Tables : 026

Cited references : 8027

1



Abstract28

How ecological interaction networks emerge on evolutionary time scales remains unclear. Here29

we build an individual-based eco-evolutionary model for the emergence of mutualistic, antagonis-30

tic and neutral bipartite interaction networks. Exploring networks evolved under these scenarios,31

we find three main results. First, antagonistic interactions tend to foster species and trait diver-32

sity, while mutualistic interactions reduce diversity. Second, antagonistic interactors evolve higher33

specialization, which results in networks that are often more modular than neutral ones; resource34

species in these networks often display phylogenetic conservatism in interaction partners. Third,35

mutualistic interactions lead to networks that are more nested than neutral ones, with low phylo-36

genetic conservatism in interaction partners. These results tend to match overall empirical trends,37

demonstrating that structures of empirical networks that have most often been explained by eco-38

logical processes can result from an evolutionary emergence. Our model contributes to the ongoing39

effort of better integrating ecological interactions and macroevolution.40

Introduction41

Species in ecological communities engage in a diverse set of antagonistic and mutualistic interac-42

tions such as predation, parasitism, pollination and seed dispersal. These interactions are thought43

to have important consequences for species and trait diversity (Ehrlich and Raven, 1964; Van Valen,44

1973; Hembry et al., 2014), as well as the structure of ecological networks (Bascompte and Jordano,45

2007; Thébault and Fontaine, 2010; Suweis et al., 2013; Dormann et al., 2017). In terms of diversity,46

empirical examples of very diverse communities seem more numerous in antagonistic (e.g. plant de-47

fense strategies, Futuyma and Agrawal, 2009) than mutualistic interactions (Hembry et al., 2014;48

Chomicki et al., 2019). Eco-evolutionary models have indeed found that antagonistic interactions49

foster, while mutualistic interactions impede, trait diversity (Yoder and Nuismer, 2010). If and how50

antagonistic and mutualistic interactions affect the generation and maintenance of species diversity51

is less clear (Weber et al., 2017).52

In terms of the structure of ecological networks, empirical studies have repeatedly shown that53
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this structure is highly non-random (Fontaine et al., 2011). Two main patterns have been reported:54

modularity, with subsets of species interacting more strongly among each other than with the rest of55

the community (May, 1972; Krause et al., 2003), and nestedness, with specialist species preferentially56

interacting with generalists (Bascompte et al., 2003; Jordano et al., 2003; Lewinsohn et al., 2006;57

Bascompte and Jordano, 2007; Thébault and Fontaine, 2010; Rohr et al., 2014). While several58

factors play a role in explaining network structure, including intimacy (i.e. the degree of physical59

proximity or integration of partner taxa, (Fontaine et al., 2011)) and phylogenetic scale (Beckett60

and Williams, 2013), the nature of the interaction seems particularly important. In a comparison61

of 95 networks, Fontaine et al. (2011) showed that non-intimate antagonistic networks are often62

modular, while mutualistic networks are often nested, although there are clearly deviations from63

this general pattern (Olesen et al., 2007; Pilosof et al., 2014). Many studies have sought to explain64

the processes driving these non-random structures without reaching consensus.65

One of the main hypotheses put forward for explaining non-random network structures is the66

stability hypothesis. Species rich communities are not stable when species interact at random67

(May, 1972; Krause et al., 2003; Jordano et al., 2003; Montoya et al., 2006); this instability is68

counteracted by nonrandom network structures that depend on the type of interaction (Fontaine69

et al., 2011). In particular, stable species coexistence is reached in modular networks in the case of70

antagonistic interactions, and in nested networks in the case of mutualistic interactions (Thébault71

and Fontaine, 2010). Nestedness reduces effective interspecific competition (Bastolla et al., 2009)72

and broadens the range of ecological conditions under which mutualistic species can coexist (Rohr73

et al., 2014; Saavedra et al., 2016; Grilli et al., 2017), especially in the presence of adaptive foraging74

(Valdovinos et al., 2016). Anti-modularity has a destabilizing effect in most ecological communities75

(Grilli et al., 2016). Nestedness in mutualist networks and modularity in antagonist networks also76

limit co-extinction cascades (May, 1972; Krause et al., 2003; Memmott et al., 2004; Stouffer and77

Bascompte, 2011).78

A second family of hypotheses to explain nonrandom, interaction-dependent structures, relies on79

trait-dependent interactions. For example, Santamaría and Rodríguez-Gironés (2007) and Rezende80

et al. (2007a) showed that interactions determined by either phenotypic difference or phenotypic81
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similarity can generate nested networks, in particular when several traits are involved and when82

there is a phylogenetic signal in trait values. de Andreazzi et al. (2019) also recently showed83

that a strong effect of species trait values on the probability for two species to interact helps in84

explaining network structure, and in particular that trait matching fosters trait coevolution and85

helps in explaining the structure of antagonistic networks. Related to the trait-based hypothesis is86

the observation that the non-random structure of networks can emerge without being selected for87

when interaction strength is inherited from the parent species (the “network spandrel” hypothesis88

Maynard et al., 2018; Valverde et al., 2018).89

Finally, differences in abundances across species can on their own generate non-random struc-90

tures. In a neutral world where individuals encounter and interact at random with one another,91

individuals from rare specialist species are more likely to interact with individuals from abundant92

generalists. As species abundance distributions are generally imbalanced, with many rare species93

and a few abundant ones, this leads to nested networks (Vázquez, 2005; Vázquez et al., 2009; San-94

tamaría and Rodríguez-Gironés, 2007; Krishna et al., 2008; Staniczenko et al., 2013; Coelho and95

Rangel, 2018). Hence, while the often-observed modularity of antagonistic networks cannot be ex-96

plained by neutral processes alone, the frequent nestedness of mutualistic networks can be a pure97

result of neutral encounters.98

Studies seeking to explain the non-random structure of species interaction networks have rarely99

focused on their emergence over evolutionary time scales, despite empirical evidence that there are100

evolutionary (phylogenetic) constraints to who interacts with whom (Rezende et al., 2007b; Elias101

et al., 2013). They have instead often fixed the ecological context, for example by assuming an initial102

network is subject to local extinctions (Thébault and Fontaine, 2010), or fixing the number of species103

and either the species abundance distribution (Nuismer et al., 2013) or the species trait distribution104

(Santamaría and Rodríguez-Gironés, 2007). There are notable exceptions though. Minoarivelo and105

Hui (2016) used an adaptive dynamics framework to show that coevolution can lead to both nested106

and modular networks for mutualistic interactions. In de Andreazzi et al. (2019), the authors107

investigated the effect of trait coevolution on network structure, but with the number of both108

species and interactions fixed according to empirical networks. In Poisot and Stouffer (2016), the109
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authors fitted to empirical networks a macroevolutionary model formalizing the evolution of species110

interactions, and surprisingly did not detect major differences between antagonistic and mutualistic111

networks. A recent study showed that neutral networks can evolve nested structures, probably as a112

result of asymmetric abundances, but did not investigate the effect of mutualistic and antagonistic113

interactions (Coelho and Rangel, 2018). Finally, Maynard et al. (2018) and Valverde et al. (2018)114

showed that nestedness and modularity may emerge from speciation divergence dynamics within115

antagonistic networks. The lack of a unified model mimicking the evolutionary emergence of species116

interaction networks as species diversify clearly limits our understanding of the macroevolutionary117

dynamics and consequences of inter-species interactions (Weber et al., 2017; Harmon et al., 2019).118

Here we investigate the emergence of ecological networks as species coevolve, when individu-119

als engage into mutualistic, antagonistic or neutral interactions. We develop an individual-based,120

stochastic eco-evolutionary model (BipartiteEvol) that allows us to assess the effect of interaction121

type on species and trait diversity, network structure, and phylogenetic signal in interaction part-122

ners. We discuss results obtained when simulating the model in light of previous literature and123

empirical observations.124

Methods125

An individual-based model for the eco-evolutionary emergence of bipartite in-126

teraction networks127

We develop an individual-based, stochastic model, with discrete time steps and fixed population128

size, described in detail in our Supplementary Information. This model can be seen as an extension,129

in two main directions, of the spatially explicit neutral model of biodiversity where dynamics are130

modeled on a grid of N cells (Chave and Leigh Jr, 2002). As in the metacommunity version131

of this model, our model best represents evolutionary outcomes in a closed community without132

immigration. The first extension is that here each cell is occupied by two individuals, one from each133

of two interaction guilds (guild A and B), and this co-occurrence determines interaction (Canard134

et al., 2014). The second extension is that each individual is characterized by its (potentially135
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multidimensional) trait value, and has fitness determined by both its trait value and that of the136

individual from the other guild occupying the cell. Offspring experience mutations that induce137

genetic differentiation and small trait deviations from their parents (Loeuille and Leibold, 2014).138

Genetic differentiation eventually leads to speciation (Manceau et al., 2015; Rosindell et al., 2015).139

The nature of the interactions can affect evolutionary outcomes in an eco-evolutionary feedback140

loop between who interacts with whom, the resulting adaptive pressures, and the gain or loss of141

interactions linked to adaptations to these pressures. At each time step, we track the trait values142

of each individual, their genealogical relationship, whether they experienced a mutation, and who143

they interact with. At the end of the simulations, we construct the resulting species phylogenies144

and species interaction networks.145

Eco-evolutionary dynamics We start the simulations with a monomorphic population in each146

guild, all descending from a unique parent. At each time step we update the grid as follows:147

• We select one individual from guild A at random and kill this individual. We record the trait148

value xB of the individual of guild B present on this cell.149

• We compute the fitness of all individuals of guild A present in the grid, should it interact with150

an individual of trait xB.151

• We select an individual from guild A to be the parent of the individual that replaces the killed152

one with probabilities proportional to each individual fitness. Hence, the filiation of the new153

individual depends on trait values and chance. We do not introduce dispersal limitation here,154

but this could be done in future work by selecting the parent with a probability proportional155

to its fitness times a dispersion kernel.156

• The new individual from guild A has a probability µA to experience a mutation, in which157

case its new trait is drawn independently in each dimension in a normal distribution centered158

on the parental trait with standard deviation σ. If no mutation occurs, the new individual159

inherits the trait value of its parent.160

• We repeat the four previous steps for guild B.161

6



• We record the genealogy obtained in each of the two guilds, as well as the mutations that162

occurred on this genealogy.163

Modeling the effect of trait-specific interactions on fitness Each individual is characterized by164

its trait value x, which can have any dimension d. The distance in trait space of two interacting165

individuals determines the effect of the interaction on their fitness. Classical traits with fitness166

effects include proboscis and floral tube length, color preferences, and organism sizes or phenology167

in mutualist partners such as plants and their pollinators, or the presence of metabolic compounds168

and the ability to metabolize these compounds in antagonist partners such as plants and their169

herbivores. For example, a mismatch in phenology between a plant and its pollinator would induce170

a cost in reproductive success for the plant and in the ability to feed for the pollinator. We use a171

classical trait matching expression given by a Gaussian function, with maximal fitness effect when172

the traits of two interacting individuals are similar (Fig. S1, Loeuille and Loreau (2005); Yoder173

and Nuismer (2010)). The fitness function is parametrized by α, which measures the specificity of174

the trait matching: high α values correspond to scenarios where fitness effects are preponderant in175

interactors with very similar trait values (i.e. highly specialized interactions), while low α values176

correspond to more neutral scenarios. Thereafter for simplicity we refer to 1
α as “niche width”. The177

fitness function is further parametrized by a parameter r, the ratio between the maximum and178

minimum fitness, that measures the overall effect of trait differences.179

In mutualistic interactions, individuals from both guilds have higher fitness (WA and WB) when180

they have similar trait values:181

WA(xA, xB) =
1

rA − 1
+ e−‖xA−xB‖

2×(α2
A/2)

WB(xA, xB) =
1

rB − 1
+ e−‖xA−xB‖

2×(α2
B/2)

(1)

In antagonistic interactions, individuals from the consumer clade (B) have higher, and those182

from the resource clade (A) lower, fitness when they have similar trait values, so the fitness differs183

from the mutualistic scenarios only for clade A:184

7



WA(xA, xB) =
1

rA − 1
+ 1− e−‖xA−xB‖2×(α2

A/2)

WB(xA, xB) =
1

rB − 1
+ e−‖xA−xB‖

2×(α2
B/2)

(2)

We obtained the neutral case by taking α = 0 in the expression for mutualistic fitness (taking185

α = 0 in the antagonistic version would yield identical simulations).186

Defining species and phylogenies Based on the resulting genealogies with mutations, we define187

species following the model of Speciation by Genetic Differentiation (Manceau et al., 2015), except188

that we allow s, the number of mutations needed to belong to different species, to vary (similarly189

to what is done in Rosindell et al. (2015)). Species are thus the smallest monophyletic group of190

individuals from the genealogy such that two individuals separated by less than s mutations belong191

to the same species. This is a protracted mode of speciation, and the time needed for speciation192

to complete increases with parameter s. This species definition allows for polymorphic species.193

We compute the resulting species-level phylogenies from the genealogy with mutation positions194

(Manceau et al., 2015). Speciation occurs as the result of accumulating mutations, whatever their195

effect on the phenotype. It can thus merely result from drift, and we expect species diversity to196

build up under neutral dynamics. However, if trait diversity is favored – as would be the case if the197

presence of predators generates disruptive selection – we expect to see an increased species diversity198

as more mutations are likely to get fixed.199

From individuals’ interaction to species interaction networks The interaction network is defined200

at the scale of the entire grid and is based on individuals’ co-occurrence: we consider that two201

individuals interact if they co-occur in the same cell. Next, at the species level, we consider both202

a quantitative and a binary network. For the quantitative network, we take the strength of the203

interaction between two species to be the number of pairs of individuals of these species interacting204

together. For the binary network, we consider that two species interact if at least one pair of205

individuals of these species interact (that is if their interaction strength in the quantitative network206

is nonzero). While interactions in our networks are constructed based on only co-occurrence, they207

depend on trait values through the effect of traits on invasion probabilities. An interaction network208
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in our model thus results from the cumulative effects of smaller scale interaction events (as for209

example in Pillai et al., 2011).210

We provide codes for running simulations of BipartiteEvol in RPANDA (Morlon et al., 2016,211

function sim.BipartiteEvol).212

Analyzing emerging patterns213

In order to explore emerging patterns, we performed a series of simulations under neutral,214

mutualistic and antagonistic scenarios. We followed the evolution of a (closed) community made of215

N = 4000 individuals in each guild during 8e7 death events. This simulation duration was enough216

for most of the simulations to have reached stationary state, at least for the summary statistics we217

followed (Fig. S2-S3). We ran most of our simulations with a trait dimension d = 3, as ecological218

networks are thought to be best described by traits with several yet few dimensions (Eklöf et al.,219

2013). To check the robustness of our result to trait dimensionality, we also ran simulations for220

d = 1 and d = 10 for a selected parameter set (Fig S28-S34). We chose initial trait values 2 and 0221

for guild A and B in all trait dimensions. We also chose a standard deviation σ = 1; considering a222

different σ would be equivalent to dividing αA and αB by σ. We held the mutation probabilities µA223

and µB constant at 0.05. We fixed rA at 10 and rB at +∞. In the case of mutualistic interactions,224

this renders species from guild B obligate mutualists (their fitness is zero if they do not interact225

with species from guild A, e.g. pollinators that entirely depend on a specific clade of plants) while226

species from guild A are facultative mutualists (e.g. plants that can be pollinated by pollinators not227

represented in B). In the case of antagonistic interactions, rB = +∞ means that consumer species228

entirely depend on interaction with their resources. Besides the neutral case (αA = αB = 0), we229

simulated all the combinations of αA and αB in 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 10 for both mutualistic230

and antagonistic interactions. We performed 10 simulations for each scenario and each parameter231

set (20 in the neutral case).232

At the end of each simulation, we built the resulting phylogenies and interaction networks using233

three different species definition thresholds s (s = 1, 10 and 50). We computed species richness, as234

well as trait diversity on each trait dimension as the variance in trait values across all individuals. In235
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addition, in order to investigate under which conditions trait coevolution between species on the two236

sides of the network occurs, we measured the correlation in trait values of co-occurring individuals.237

We computed nestedness and modularity using the R-package bipartite (Almeida-Neto and Ulrich,238

2011; Dormann et al., 2008)). Nestedness was measured with the NODF metric using the func-239

tion nested, with method = “weighted NODF” for quantitative networks and method = “NODF2”240

for binary networks. Modularity was computed for quantitative networks only, using the function241

computeModules (the corresponding quanBiMo algorithm is not adapted to binary networks (Dor-242

mann and Strauss, 2014)). We compared the binary nestedness values to the distribution of values243

obtained for two null models. In the first, thereafter called NM1, the network connectance is kept244

constant (method “shuffle.web” in the function nullModel). In the second, thereafter called NM2,245

row and column sums of the interaction matrix are kept constant (method “r2d”). This is equivalent246

to randomly reassigning a position on the grid for all individuals regardless of their trait values,247

which is also how we generate interactions in our neutral simulations and provides a way to cor-248

rect for species abundances. We also compared the quantitative nestedness and modularity values249

to the distribution of values obtained for NM2 (NM1 is applicable to only binary networks). We250

computed Z-scores, defined as x−µ
σ , where for a given metric x is the value outputted by our simu-251

lation and µ and σ are the mean and standard deviation of the values under the null model. While252

Z-scores are not appropriate for comparing nestedness values between networks of different sizes253

(Song et al., 2017), they are a good way of assessing the significance of nestdedness values against254

a null model. Finally, we computed the phylogenetic signal of interaction partners using a Mantel255

test that assesses the significance of the correlation between the phylogenetic distance of two species256

and the dissimilarity of their interaction partners. In order to limit the effect of species definition257

on our results, we used a phylogenetic metric to quantify this dissimilarity. We used the (weighted)258

fraction of unshared phylogenetic branch length between the two sets of interaction partners (com-259

puted using quantitative uniFrac (Lozupone et al., 2007), “d_1” in the function GUniFrac from260

the R package GUniFrac (Chen, 2012)). We also performed the analyses with a non-phylogenetic261

metric, the Jaccard dissimilarity index – computed with the function cluster_similarity from262

the R-package clusteval – for comparison.263
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Results264

Figure 1 shows two typical simulations, one mutualistic and the other antagonistic, that illustrate265

general results concerning the evolution of trait values and species interaction networks. Other266

figures in the main text show emergent properties of mutualistic, antagonistic and neutral networks267

when the niche width of species from guild A (i.e. resources in antagonistic networks and facultative268

mutualists in mutualistic networks) varies and that of guild B (i.e. consumers in antagonistic269

networks and obligate mutualists in mutualistic networks) is fixed, and for three-dimensional traits.270

Figures in the Supplementary Material report results for other parameter sets, including results271

when the niche width of species from guild B varies and that of guild A is fixed, and for trait272

dimension d = 1 and d = 10. Results for these trait dimensions were qualitatively similar (Fig273

S28-S34).274

Trait diversity275

In mutualistic scenarios, trait values stay fairly constant through time (Fig. 1A) and trait276

diversity is lower than in neutral scenarios (Fig. 2A & Fig. S4). Trait matching in mutualistic277

networks results in stabilizing selection that constrains trait evolution on both sides of the network.278

Trait diversity within a guild is generally constrained by niche width in this guild, but not by niche279

width in the interacting guild, even if exceptions occur in extreme cases when niche width in one of280

the two guilds is smaller than, or comparable to, the effect size of mutations (here fixed to σ = 1,281

Fig. 2A & Fig. S4). The correlation between the traits of interacting individuals is slightly positive282

but stays very low (Fig. 2B & Fig. S5).283

Patterns are strikingly different in antagonistic scenarios, where clusters of traits progressively284

emerge from co-evolutionary dynamics (Fig. 1B). Disrupting selection acting on resource species285

typically increases trait diversity compared to neutral scenarios for both consumers and resources,286

with similar levels of diversity in the two guilds (Fig. 2A & Fig. S4). Trait diversity increases287

with the niche widths of both resource and consumer species, but collapses when consumers have a288

larger niche than resources (Fig. 2A & Fig. S4). The traits of interacting individuals are positively289

correlated, suggesting strong trait coevolution (Fig. 2B & Fig. S5).290
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Species richness291

Consistent with temporal dynamics of trait diversity, species diversification is lower in mutu-292

alistic than antagonistic networks (Fig. 1A versus B). Species richness is systematically larger in293

antagonistic than in mutualistic networks, regardless of niche width and species definition (Fig.294

2C,D & Fig. S6-S9).295

In mutualistic scenarios, species richness tends to be lower than in neutral scenarios (Fig. 2C,D296

& Fig. S6-S9). Species richness is comparable to what is obtained in the neutral case when species’297

niches are so large that individuals have approximately the same fitness regardless of who they298

interact with. But for narrower niches, trait matching is more influential and stabilizing selection299

inhibits speciation. Species richness within a guild thus decreases when niches in that guild become300

narrower (Fig. 2C,D & Fig. S6-S9).301

In antagonistic scenarios, species richness is in general higher for resource than for consumer302

species (Fig. 2C,D & S7-S9). The effect of niche width on species richness depends on the species303

definition threshold s. For a low s, resource species richness is similar to what is obtained in neutral304

simulations and unaffected by niche width of either resource or consumer species (Fig. 2C & S7).305

Consumer species richness tends to be lower than in neutral simulations (Fig. 2C & S7). It is not306

affected by the niche width of resource species (Fig. 2C) but decreases when the niches of consumer307

species become narrower, as long as it remains larger than the effect size of mutations. For a higher308

s (around 50, Fig. 2D & S9), species richness is affected by niche width in a similar way for resource309

and consumer species, and can be either higher or lower than in neutral simulations. Cases when310

species richness is higher than in neutral simulations correspond to scenarios with intermediate311

resource niche width, and narrower niche widths for consumer than resource species (Fig. 2D, S9).312

Network structure313

Mutualistic interactions typically lead to the progressive emergence of nested networks (Figure314

1A), while antagonistic interactions lead to modular networks (Figure 1B). When we look at network315

metrics without any comparison to a null model, most networks that have higher nestedness values316

than those in the neutral case were generated in mutualistic scenarios, while most of those that have317
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higher modularity values than those in the neutral case were generated in antagonistic scenarios318

(Fig. 3A, Fig S10 & S15).319

When compared to the null model that corrects for only connectance (NM1), all networks show320

up as significantly nested, including neutral ones (Fig. 3B, S12-S13 & S17-S18). Z-values are very321

high and mostly depend on the diversity of the community, with higher Z-values obtained for more322

diverse communities (Fig. S14).323

When compared to the null model that corrects for abundance (NM2), neutral models are neither324

nested nor anti-nested, and they are not modular either (Fig. 3C,D & Fig. S19-S20, S22-S23).325

Mutualistic networks are similar to neutral ones. The only deviation occurs when the facultative326

mutualists have an intermediate niche width that is larger than that of the obligate mutualists;327

in this case, mutualistic networks are slightly anti-nested and modular (Fig. S19-S20, S22-S23).328

Antagonistic networks deviate sharply from neutral ones; they most often exhibit a modular, anti-329

nested structure that peaks at intermediate resource niche width (Fig. 3C,D) and small consumer330

niche width (Fig. S19, S22). The results stay qualitatively similar for s = 10 (Fig. S20, S23).331

Phylogenetic signal332

While modules in antagonistic networks seem strongly constrained by phylogenetic history (Fig.333

1B), interactions in mutualistic networks seem rather independent from this history (Fig. 1A).334

Indeed, the Mantel correlation between phylogenetic distance and similarity in interaction partners335

is generally weak and non-significant on both sides of mutualistic networks, comparable to what is336

found for neutral networks (Fig. 4A & B). The correlation is stronger in antagonistic networks, and337

significant in many simulations (Fig. 4A,B). This phylogenetic signal is often stronger for resource338

than for consumer species and higher for an intermediate consumer niche width and/or wider re-339

source niche width (Fig. 4B, Fig. S26). Results are qualitatively similar across species definition340

thresholds and dissimilarity metrics, although fewer networks display significant correlation values341

for s = 1 than for s = 10 and for the Jaccard than for the Unifrac metric (Fig. S24-S27).342
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Discussion343

Our model allows a direct comparison of the effect of antagonistic, mutualistic, and neutral344

interactions on the dynamics of trait and species diversity as well as on the structure of the interac-345

tion network. We find that antagonistic interactions enhance both trait and species diversity, and346

result in modular interaction networks with phylogenetic signal in interaction partners. Mutualistic347

interactions instead limit trait and species diversity, and result in interaction networks that oth-348

erwise resemble neutral networks, with a tendency for nestedness rather than modularity, and low349

phylogenetic signal in interacting partners.350

We discuss these results in light of empirical observations, keeping in mind that our model351

best mimics eco-evolutionary dynamics in a closed metacommunity, where diversity is the result352

of speciation-extinction dynamics, while most empirical networks are built at the community level,353

where diversity can also be introduced through immigration, which can change qualitative patterns354

(as in Maynard et al., 2018). Similar to what has been done in developments of the neutral bio-355

diversity model, our model could be developed to include dispersal limitation and to sample local356

communities at different spatial scales, or as a continent-island model, where the local community357

receives immigrants from the metacommunity. This would also help understand how local networks358

assemble from ‘meta-networks’ (Gravel et al., 2011; Morlon et al., 2014). Other limitations of our359

model include the ‘zero-sum’ assumption that total population size remains constant, not account-360

ing for sexual reproduction, and not varying the degree of intimacy, which can all affect network361

structure.362

Our result that antagonistic interactions tend to enhance, while mutualistic ones impede, trait363

and species diversity, is generally consistent with previous empirical and theoretical studies (Ehrlich364

and Raven, 1964; Yoder and Nuismer, 2010; Janz, 2011; Hembry et al., 2014). For example, previous365

studies suggest that investment in defense traits results in higher diversification rates in North366

American milkweeds (Agrawal et al., 2009), while specialized pollination in Yucca-moth interactions367

does not increase Yucca diversification (Smith et al., 2008). Consistently, Armbruster and Muchhala368

(2009) showed that in several groups of angiosperms, diversity promotes floral specialization –369

through character displacement – rather than the reverse. Still, we do not exclude the possibility370
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that in some systems mutualism has a positive impact on diversification, as has been suggested by371

other studies, such as in the case of fig-wasp interactions (Cruaud et al., 2012). Indeed our model372

may output different results regarding the effect of mutualism if we allowed total population sizes373

to vary and/or if we accounted for dispersal limitation and/or sexual reproduction. Mutualistic374

interactions may indeed increase the density of individuals a community can sustain, either through375

more efficient feeding and reproduction or by opening new adaptive zones. This could in turn allow376

the maintenance of more diverse communities (Rosenzweig et al., 1995; Emerson and Kolm, 2005;377

Joy, 2013). It has also been proposed that geographical isolation is necessary for mutualism to378

promote speciation, and our non-spatial model cannot account for this potential effect (Thompson379

and Cunningham, 2002; Kay and Sargent, 2009). In the case of pollination, mutualistic interactions380

can also facilitate reproductive isolation, which cannot be modeled by our asexual model (van der381

Niet and Johnson, 2012). Our results suggest that mutualism on its own, in the absence of such382

mechanisms, is unlikely to promote diversity.383

Our model generates clear structural differences between antagonistic and mutualistic com-384

munities. We find that antagonist interactions generate modular networks, regardless of whether385

modularity values are corrected for abundance or not. This modularity emerges as a response to386

reciprocal specialization and coevolution between resources and consumers, as demonstrated by the387

positive correlation between the traits of interacting partners. Our results regarding nestedness are388

much more contingent on whether or not nestedness values are corrected for connectance and/or389

abundance. Raw nestedness values are higher in mutualistic than neutral (and antagonistic) com-390

munities, as observed in empirical networks (Thébault and Fontaine, 2010; Fontaine et al., 2011).391

When we do not correct for species abundances, all the networks, including neutral and antagonis-392

tic networks, are significantly nested. Finally, when we correct for species abundances, nestedness393

values are non-significant for neutral communities, and either non-significant or significantly lower394

than those obtained for the null model for antagonist (and a few mutualist) communities. These395

results are consistent with the literature, as most empirical or theoretical studies that found signif-396

icant nestedness in bipartite networks did not use a null model correcting for species abundances397

(Thébault and Fontaine, 2010; Lewinsohn et al., 2006; Bascompte et al., 2003), while those that398
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corrected for abundances did not find a clear nested pattern (Vázquez, 2005; Staniczenko et al.,399

2013; Canard et al., 2014). The nestedness signal observed in bipartite networks may thus well400

be linked to uneven species abundance distributions, in agreement with the neutral hypothesis401

(Vázquez, 2005; Vázquez et al., 2009; Santamaría and Rodríguez-Gironés, 2007; Krishna et al.,402

2008; Staniczenko et al., 2013; Coelho and Rangel, 2018). In this case, understanding differences in403

raw nestedness values between mutualist, neutral, and antagonist communities boils down to under-404

standing why communities are increasingly asymmetrical in abundances as we move from antagonist405

to neutral and finally mutualist communities. Under our model, the relatively low asymmetry of406

species abundances in antagonist networks could be linked to the coexistence of several abundant407

species facilitated by modular structures. The strong asymmetry of species abundances in mutualist408

networks could be linked to the transient nature of many rare species; we indeed often observed a409

single adaptive optimum in our simulated mutualist networks, suggesting that mutants could fre-410

quently be maladapted. In addition to this dominating effect of abundance, trait-based preferential411

interactions reduce nestedness in antagonist communities, while this effect is generally insignificant412

in mutualist communities in which trait values are quite constrained. The differences in network413

structure between antagonistic and mutualistic communities generated by our model are consis-414

tent with the classical dichotomy between antagonistic and mutualistic structures (Thébault and415

Fontaine, 2010; Fontaine et al., 2011). While many empirical examples show that this dichotomy is416

not as general as once thought (Pilosof et al., 2014; Olesen et al., 2007), our model shows that it can417

emerge from simple evolutionary rules at the individual level. Relaxing simplifying hypotheses of418

our model could provide a more nuanced view. For example, sexual reproduction, spatial structure,419

fluctuation in population sizes and intimacy could generate modular mutualistic communities, as is420

sometimes observed in empirical data (Olesen et al., 2007), by allowing trait diversification and the421

creation of clusters in trait space.422

Our results regarding phylogenetic signal, which measures evolutionary conservatism in inter-423

action partners, are also consistent with empirical observations for antagonistic communities, in424

which resource species generally show a stronger phylogenetic signal than consumer species, once425

again in accordance to empirical observations (Krasnov et al., 2012; Elias et al., 2013; Fontaine and426
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Thébault, 2015). In plant-herbivore systems, the stronger conservatism in interaction partners seen427

in plants has sometimes been interpreted as the combination of factors acting on both sides of the428

network. Chemical defenses in plants are difficult and therefore slow to evolve and thus display a429

high phylogenetic conservatism. In herbivores on the contrary, resource shifts among close relatives430

to avoid enemies and/or reproductive interference are frequent, reducing phylogenetic conservatism431

(Fontaine and Thébault, 2015). However, in our simulations trait evolutionary rates, which are432

controlled by the mutation probability and the effect size of mutations, were symmetrical between433

resource and consumer species. We did not include enemies or reproductive interference either. We434

instead suggest that the difference in phylogenetic signal between resource and consumer species435

is linked to a difference in the nature of the selection pressure they experience. Resource species436

experience a selection pressure to avoid consumption, and they can evolve in almost any direction to437

escape consumers (only the few directions in trait space favorable to consumers must be avoided).438

Consumers instead experience a selection pressure to evolve specific traits adapted to consuming439

the existing resource species, and it is thus not uncommon to see resource shifts and convergence440

in traits, even between rather phylogenetically distant species, which weakens phylogenetic signal.441

In mutualistic communities, our model generally does not display a significant phylogenetic signal.442

While a tendency towards lower phylogenetic signal in mutualist compared to antagonistic commu-443

nities has been observed in empirical communities (Fontaine and Thébault, 2015), it is significant444

(Rezende et al., 2007b). This disconnect between our model and empirical networks is likely linked445

to the restricted evolved trait range produced by our mutualistic model, and the result could change446

if sexual reproduction, spatial structure and/or variable population size were accounted for.447

The general qualitative patterns discussed above hold for a large range of parameter space with448

a noticeable effect of niche width – which in our model is closely related to selection pressures449

– on the values of the different metrics we measured. In antagonistic communities, we found the450

strongest patterns – for all observed metrics, including diversity, network structure and phylogenetic451

signal – when niche width is larger for resources than for consumers. This situation corresponds452

to the case when selection pressures promote the evolution of specialization to specific resources in453

consumers. As detailed above, this specialization leads to modular structures, and imposes a strong454
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disruptive selection pressure on resources that enhances diversity and strengthens phylogenetic signal455

by preventing trait convergence. In mutualistic scenarios, niche width in one guild impacts mostly456

trait and species diversity in that guild, but not in the interacting guild; small niche width indeed457

results in stronger stabilizing selection that constrains diversity, but does not affect the strength458

of stabilizing selection in the interacting guild. The only cases when niche width impacts network459

structure in mutualist networks occur when there is a very high asymmetry in niche width between460

the two guilds, in which case species from the small niche guild will evolve specialization in response461

to the high trait variability in the large niche guild, leading to the emergence of modular networks462

that resemble these seen in antagonistic scenarios, or some empirical mutualistic networks Olesen463

et al. (2007). The patterns were robust to trait dimensionality, which we did not expect considering464

previous literature (Gilman et al., 2012; Ispolatov et al., 2016). Future work could investigate this465

aspect more thoroughly, along with adding limits to the trait space and/or a correlation between466

the traits. Trait correlations could produce interesting emerging behaviors, especially if they are467

asymmetrical between the two guilds.468

Our eco-evolutionary model allowed us to study the effect of different types of interactions469

on the emergence of ecological networks as species and traits diversify. Despite the simplicity of470

the processes involved, the model generated clear differences between mutualistic and antagonistic471

communities that are broadly consistent with empirical observations. There is a lot of room for472

future developments, such as accounting for geographical processes (Thompson, 2005), dispersal473

from meta- to local communities, and the simultaneous effects of different interaction types (Fontaine474

et al., 2011; Montesinos-Navarro et al., 2017). Developing an inference tool associated to this model475

would also be an important step to quantify, for example, the actual effect of trait matching or trait476

differences on selection pressures and trait coevolution from empirical data (Manceau et al., 2017)477

. Such efforts are required if we want to better understand the macroevolutionary consequences of478

species interactions (Weber et al., 2017; Harmon et al., 2019).479
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Figure 1: Example outputs of the eco-evolutionary model for mutualistic (panel A) and
antagonistic (panel B) interactions. In each panel the upper row shows the evolution of trait
values (in a three-dimensional trait space, point color representing the third trait dimension). The
lower row shows the evolution of interaction networks and associated phylogenies. Darker links in
the network correspond to interactions of higher strength; branches in the phylogenies are colored
according to the value of the trait’s third dimension so that it matches the colors of the corresponding
dots in the upper row. Round dots correspond to species from guild A, square ones to species from
guild B.
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Figure 2: Effect of interaction type on the emergence of trait and species diversity. A :
Logarithm of the variance of the first dimension of the species trait as a function of niche width for
guild A (green boxplots) and B (white boxplots). The blue area shows values obtained for neutral
simulations (range of values, quartiles and median). Antagonistic interactions commonly lead to
higher, and mutualistic scenarios lower, trait diversity than in neutral simulations. Results for the
other two trait dimensions are similar (results not shown). B : Correlation of the first dimension of
the traits of the interacting individuals. Traits are consistently positively correlated in antagonistic
scenarios, and correlation values stay pretty low in mutualistic ones. Results were similar for the
other two trait dimensions (results not shown). C : Species richness in each guild for a species
definition threshold s = 1. Diversity is higher in antagonistic scenarios than in mutualistic ones
but always stays bellow that obtained for neutral scenarios. D : Species number in each guild for a
species definition threshold s = 50. Diversity is higher in antagonistic scenarios than in mutualistic
ones, and a few antagonistic scenarios display a diversity that is higher than in neutral simulations.
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Figure 3: Effect of interaction type on nestedness and modularity A : Each point shows
quantitative modularity and nestedness values for a single simulated network. The networks that
have high nestedness values are mostly mutualistic ones (in green), while those with high modularity
values are mostly antagonistic ones (in red). Blue points show the results for neutral simulations.
B : Z-values for the binary NODF metric corrected by null model NM1 as a function of niche
width. The blue area shows values obtained for neutral simulations (range of values, quartiles and
median). All networks show up as significantly nested. C : Z-values for the quantitative NODF
corrected by null model NM2. Mutualistic and neutral networks have similar levels of nestedness
and are neither significantly nested nor anti-nested. A large proportion of antagonistic networks are
significantly anti-nested. D : Z-values for the quantitative modularity metric corrected by null model
NM2. Mutualistic and neutral networks have similar levels of modularity and are not significantly
modular. Most of the antagonistic networks are significantly modular. Results are shown for a
species definition threshold s = 1.
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Figure 4: Effect of interaction type on phylogenetic signal in interaction partners. A
: Each point shows, for a single simulation, the Mantel correlation between phylogenetic distance
and dissimilarity in interaction partners on both side of the network. The correlation is higher
for antagonistic (in red) than for mutualistic (in green) or neutral (in blue) networks. B : Mantel
p-value as a function of niche width. The blue area shows values obtained for neutral simulations
(range of values, quartiles and median). White boxplots show results for guild A and green boxplots
for guild B. Results are shown for the Unifrac dissimilarity metric and a species definition threshold
s = 1.
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