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Abstract

As genome sequencing efforts are unveiling the genetic diversity of the biosphere with an unprecedented speed, there is a 
need to accurately describe the structural and functional properties of groups of extant species whose genomes have been 
sequenced, as well as their inferred ancestors, at any given taxonomic level of their phylogeny. Elaborate approaches for the 
reconstruction of ancestral states at the sequence level have been developed, subsequently augmented by methods based on 
gene content. While these approaches of sequence or gene-content reconstruction have been successfully deployed, there has 
been less progress on the explicit inference of functional properties of ancestral genomes, in terms of metabolic pathways 
and other cellular processes. Herein, we describe PathTrace, an efficient algorithm for parsimony-based reconstructions of 
the evolutionary history of individual metabolic pathways, pivotal representations of key functional modules of cellular func-
tion. The algorithm is implemented as a five-step process through which pathways are represented as fuzzy vectors, where 
each enzyme is associated with a taxonomic conservation value derived from the phylogenetic profile of its protein sequence. 
The method is evaluated with a selected benchmark set of pathways against collections of genome sequences from key data 
resources. By deploying a pangenome-driven approach for pathway sets, we demonstrate that the inferred patterns are largely 
insensitive to noise, as opposed to gene-content reconstruction methods. In addition, the resulting reconstructions are closely 
correlated with the evolutionary distance of the taxa under study, suggesting that a diligent selection of target pangenomes 
is essential for maintaining cohesiveness of the method and consistency of the inference, serving as an internal control for 
an arbitrary selection of queries. The PathTrace method is a first step towards the large-scale analysis of metabolic pathway 
evolution and our deeper understanding of functional relationships reflected in emerging pangenome collections.

DATA SUMMARY

We provide the entire PathTrace module written in Perl 

and Java, and appropriately documented along with sample 

input data for experimentation by the community through 

the GitHub repository at https://​github.​com/​CGU-​CERTH/​

PathTrace under an MIT license. Query enzyme sequences, 

target pangenome ensembles and similarity search results are 

available on Figshare (https://​figshare.​com/); specific links 

are provided at the GitHub directory listed above.

INTRODUCTION
The investigation of evolutionary histories of characters in 
terms of structure and function lies at the heart of biological 
research [1]. With the advent of genomic revolution, much 
of this work was performed at the genomic sequence or even 
at the protein-sequence level, focusing on specific patterns of 
phylogeny or protein function [2, 3], all the way to practical 
applications for synthetic biology [4].

Earlier approaches are mainly based on gene content or 
protein-sequence reconstructions [5–8]. Phylogenetic profiles 
and their various incarnations coupled with sophisticated 
simulation experiments have been extensively used, due to 
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their inherent ability to summarize evolutionary patterns in 
an elegant, efficient and succinct fashion [9, 10]. Among the 
available algorithms, GeneTrace [11] represents one of 
the first scalable approaches that performed genome-wide 
ancestral gene-content inference on a large scale [12]. In this 
wider, collective effort, a recurring theme has always been the 
identification and further validation of lateral gene transfers 
[13–15], which present significant challenges to the under-
lying evolutionary models [16, 17].

Shifting away from the structural interpretation of genes, 
proteins and protein families – typically captured by simple 
profiles of gene content, it is desirable to formulate addi-
tional models that address the presence, emergence, loss or 
transfer of entire cellular processes, represented by enzyme 
groups in their corresponding metabolic pathways. Work 
along these lines has addressed the parsimonious inference 
of pathways in (meta)/genomes [18] or changes in protein 
interaction networks [19], while other studies have aimed at 
the estimation of gene gain and loss using Bayesian models 
[20]. With respect to metabolic pathways, one of the earliest, 
most prominent advances on the subject has explored the 
varying degree of pathway evolution, with abrupt patterns 
of gain and loss – facilitated by massive lateral gene transfers 
[21, 22]. Other directions that have been explored – not 
directly comparable with the inference of ancestral states 
per se – are represented by CLIME, which attempts to 
expand the initial pathway query and discover additional 
links based on phylogenetic profiles [23], MinPath, which 
detects pathway overpredictions in genomic and metagen-
omic datasets [18] and CoReCo, which estimates ‘extant’ 
(present) and ‘extinct’ (ancestral, i.e. inferred) genome-scale 
metabolic models [24].

Here we describe a robust, efficient and scalable algorithm, 
named PathTrace, that addresses the issue of pathway 
inference across multiple ancestral genomes on a phylogeny 
for arbitrarily chosen target datasets. Our results indicate that 
pangenomes form the basis upon which an elaborate query 
scheme can yield meaningful insights, with high accuracy. In 
addition, visualization of ancestral inference results can be 
facilitated by BioPAXViz, a Cytoscape plugin [25] that 
allows the browsing of single pathway histories or comparison 
of multiple pathways [26].

METHODS
In order to infer the evolutionary history of a metabolic 
pathway, it is essential to project the enzyme sequences 
involved in that pathway onto a species phylogeny, 
including all ancestral nodes. We present a method 
called PathTrace that allows the inference of the most 
parsimonious evolutionary scenario that might have led 
to the most likely, observed present-day instance of a 
metabolic pathway. The PathTrace input consists of 
a metabolic pathway entry and an evolutionary tree that 
covers all organisms under consideration. Inner nodes of 
the tree represent ancestral organisms. Conversion from 

Newick phylogenetic tree format is provided by the utility ​
newick2nodes.​pl in the GeneTrace directory of the 
distribution.

The process is shown in Fig. 1, and is described in more detail 
below, in five distinct, sequential steps.

► Step 1: extract protein sequences from BioPAX files.

The metabolic pathway under study is represented by 
a BioPAX file [27]. However, the content of any given 
BioPAX file may vary significantly. This step addresses the 
issue of extracting protein product sequence information 
either directly from the file or, if not available, through an 
online connection to a public database such as BioCyc 
[28] or KEGG [29], among others – see also http://www.​
biopax.​org/​mediawiki/​index.​php/​Data.

► Step 2: homology matrix construction.

Using the protein sequences of the enzymes from the query 
pathway at the first step, we construct a homology matrix, i.e. 
gene-content vectors, whose elements represent the number 
of homologues of genes belonging to each target genome.

In formal notation,

Impact Statement

Metabolic pathways represent an elegant formulation 
of functional units for cell physiology, whose efficacy 
relies on the combined activities of enzymes catalysing 
a set of interconnected reactions. As in any phylogeny, 
pathways reflect patterns of evolutionary events, 
leading to stability, loss or gain – observed as intact 
sets, fragmented remnants or augmented decorations, 
of the corresponding enzyme groups, respectively. With 
multiple genomic sequences at hand, methods that 
allow the inference of ancestral states for genes or 
genomes have been developed. In order to bridge these 
two ultimate aspects of evolutionary change, i.e. gene-
sequence evolution and genome phylogeny, the inference 
of ancestral metabolic pathways offers a fresh view that 
focuses on genome function and physiology, explaining 
how pathway presence or absence reflects the func-
tional capabilities of particular species. In this work, we 
describe a parsimonious method based on the ancestral 
inference of gene content, using metabolic pathways and 
entire pangenomes, collections of genomic sequences 
across taxonomic groups. We provide examples of 
how pangenomes contribute to the accurate detection 
of pathways and how pathways are inherited, lost or 
gained across a phylogeny of distantly related taxa. Our 
approach forms a basis upon which metabolic pathways 
can be understood in the context of pangenome informa-
tion, in an automated, highly scalable fashion for large-
scale computations of ancestral inference.

http://www.biopax.org/mediawiki/index.php/Data
http://www.biopax.org/mediawiki/index.php/Data
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where ﻿‍VHGi‍ is the homology vector of protein gi across m target 
genomes, ﻿‍h
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gi‍ is the count of homologues of protein gi existing 

in genome j, and MH is the homology matrix composed of the 
homology vectors of the n protein products participating in 
the pathway under investigation.

► Step 3: from homology matrix to fuzzy pathway profiles.

The key concept for any evolutionary method with 
regard to metabolic pathway evolution is the projection 
of comparative genomics information (e.g. gene content) 
onto pathway patterns. Our approach is similar to fuzzy 
phylogenetic profiles [30], as it attempts to represent the 
likelihood of the presence of a pathway across the target 
genomes. Presence needs to be quantified as a ‘fuzzy 
presence’, i.e. a measure of likelihood that the pathway is 
present in a species: this quantity may range from zero for 
complete absence, to partial presence, or in fact complete 
presence – the latter are represented by unbound real 
numbers.

For a given pathway with known protein products, the formal 
notation of a fuzzy pathway profile is the following:
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where Pf is the fuzzy profile of a pathway and fj is the fuzzy 
presence of the pathway in genome j. Notation follows step 
2, i.e. ﻿‍h

j
gi‍ is the count of homologues of protein gi existing in 

genome j.

The fuzzy-pathway profile formulation captures the available 
variance of the presence/absence of a pathway across a given 
set of target genomes in a composite fashion. Furthermore, 
it is critical to establish an accurate baseline of presence/
absence, therefore the fuzzy real-value profile needs to be 
reformulated into a discrete binary vector. The discretiza-
tion process requires an additional parameter α, which sets 
the boundary of presence for a corresponding threshold of 
homologues. The final, discrete, pathway profile in formal 
notation is as follows:

	﻿‍
Pd = [d1 d1 · · · dm] where dj =




0, if fj < a

1, if fj ≥ a




‍�

It is important to note at this point that the discretization 
threshold α is directly affected by the evolutionary distances 

Fig. 1. Overview of the main steps of PathTrace, including input, output and parameter set. The PathTrace method encompasses 
three main computational steps, surrounded by two steps for input/output. During the input phase, the algorithm extracts the protein 
sequences from the provided BioPAX files, through direct API calls to BioCyc. The next three steps include the construction of both the 
homology matrix and the corresponding fuzzy pathway profiles, leading to the reconstruction of the gene and pathway content, using 
GeneTrace. Finally, the produced output is bundled as a set of BioPAX-formated files, one for each node of the corresponding tree.
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within the species group under study. An intuitive explana-
tion towards this point is that closely related species would 
exhibit highly similar pathways and gene content, and thus 
a more restrictive threshold is required to showcase the 
differences between them. On the other hand, evolutionarily 
distant species would exhibit large variations and thus a low, 
permissive threshold would identify the most critical changes 
among them (see also Results).

► Step 4: ancestral pathway reconstruction.

The next step in the PathTrace process is to utilize the 
discrete pathway profiles, in order to assign pathway presence 
or absence at each node of the evolutionary tree, provided as 
input. In order to better define this step, we use the definition 
of the tree structure T as an ordered pair (V, E) comprising a 
set of nodes V and a set of edges E, where each edge is a two-
element subset of V, i.e. E = (vi, vj) where vi, vj∈ V. Moreover, 
a tree structure must conform to the constraint that T must 
be a connected graph and E = |V □ 1. A key attribute of T is 
that for an edge (u, v) in T, u is the parent of v, and v is a child 
of u, i.e. all edges are directional. Using this attribute, we can 
identify the following special cases:

•	 if u has children, then u is internal;
•	 if u has no children, then u is a leaf;
•	 if v has no parent, then v is the root of T;
•	 u and v are siblings if they have same parent.

Finally, given two nodes vi, vj in T, if there is a path from vi to 
vj then vi is an ancestor of vj, vj is a descendent of vi, and vj is 
in vi’s subtree, i.e. vj∈ T(vi).

Within the context of the PathTrace process, we need 
to identify each node of the tree with a value. Without loss 
of generality, let each node v contain a single attribute p 
∈ {TRUE,FALSE} that denotes presence [p(v)=TRUE] or 
absence [p(v)=FALSE of the pathway under consideration 
at that particular node.

The PathTrace process takes a bottom-up approach for 
the characterization of the nodes in T, beginning at the leaf 
level and pushing up to the root of the tree. It is important 
to note that, in the case of an evolutionary tree, the leaf 
nodes correspond to the current range of ‘extant’ genomes 
(i.e. the target genome set in PathTrace notation), whereas 
all internal nodes, as well as the root of T, correspond to the 
‘extinct’ ancestral nodes. The algorithm underlying this step 
is GeneTrace [11], meaning that the assignment conforms 
to the following cases:

(1)	 Given a parent node u and all respective k children nodes 
vi, then p(u)=p(vi), ∀ vi ∈ {(u, vi), i=1.k} and p(v1)=p(v2) 
= …=p(vk). Simply put, a parent node retains the pattern 
of the children nodes only in case the latter exhibit a 
uniform pattern, either presence or absence.

(2)	 Given a parent node u and all respective k children nodes 
vi, then if ∃ vj : p(vj) ≠ p(vi), ∀ vi ∈ {(u, vi), i=1.k}, vi, 
p(vi)=TRUE -|vj, p(vj)=FALSE >GAIN and ∃ vi, vj∈ 
{(u, vi),i=1.k}: p[TRUE(vi)]=p[TRUE(vj)]=TRUE, then 
p(u)=TRUE. Simply put, a parent node is assigned to 

pathway presence if the difference between the number of 
potential gains and losses is larger than a threshold value 
GAIN, and pathway presence is detected in at least two 
children subtrees.

(3)	 Given a parent node u and all respective k children 
nodes vi, then if ∃ vj : p(vj) ≠ p(vi), ∀ vi ∈ {(u, vi), 
i=1.k}, vi, p(vi)=FALSE -|vj, p(vj)=TRUE >LOSS, then 
p(u)=FALSE. Simply put, a parent node is assigned to 
pathway absence if the difference between the number 
of potential gains and losses is larger than a threshold 
value LOSS.

Finally, it is important to note that, in contrast to the Gene-
Trace algorithm, the ancestral pathway reconstruction process 
is largely insensitive with regards to changes in the GAIN and 
LOSS thresholds, due to the composite and thus robust nature 
of pathway profiles.

► Step 5: output to BioPAX and visualization.

The final step of the PathTrace method is the output of 
the reconstruction information into a computer-readable and 
universal format. To this end, we have selected the BioPAX file 
format as the most suitable choice [27].

Definition of presence/absence in BioPAX format
We have extended the BioPAX core functionality with the 
addition of a flag within a BioPAX file, indicating the presence 
or absence of an entire pathway or of specific proteins of the 
pathway. The BioPAX ontology representation is OWL-based 
and, in this sense, pathways are represented as ‘Pathway’ xml-
elements while proteins are represented as ‘ProteinReference’ 
xml-elements within a BioPAX file [27]. Both of these BioPAX 
elements share some common attributes and also possess some 
additional ones, depending on the functionality of the biological 
entity they describe. However, the BioPAX L3 format release 
does not provide attributes that could designate via a flag the 
presence or absence of a BioPAX element in a BioPAX file. 
To this end, and in order to avoid ambiguity and potentially 
erroneous interpretation of the data within a BioPAX file, we 
decided to insert the presence/absence flag through a custom 
structured comment. The custom comment should start with 
a predefined prefix, as a sub-element of a ‘Pathway’ or a 
‘ProteinReference’ element in a BioPAX file. Specifi-
cally, the prefix of the custom comment we have introduced 
is ‘$$custom comment$$:’ (without the quotes) and it is 
followed by the word ‘present’ or ‘absent’ (without any spaces) 
in case the protein/pathway is present or absent, respectively.

For example, if a ProteinReference instance (namely 
‘protRefId1’) is absent from a pathway then the corre-
sponding ‘ProteinReference’ element in the BioPAX 
file will have the following form:

<bp:ProteinReference rdf:about=“protRefId1”>
<bp:comment rdf:datatype=“http://www.​w3.​org/​2001/​XMLSchema#​
string”>$$custom
comment$$:absent</bp:comment>
</bp:ProteinReference>

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string
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Finally, the aforementioned BioPAX functionality exten-
sion provides us with the possibility of both creating alter-
native versions of pathways where some or all of the nodes 
are missing, and additionally highlighting the presence or 
absence of entire pathways from specific organisms.

Data resources and algorithms
Development and analysis were performed using both 
sequence and metabolic pathway information.

In order to acquire high-quality, annotated protein sequences, 
we selected the entire Bacteria EnsemblGenomes data-
base (http://​bacteria.​ensembl.​org/, release 12), from which 
we retrieved a total of 937 529 protein sequences from 249 
entries, organized into ten major collections (original data 
available in URL ftp://​ftp.​ensemblgenomes.​org/​pub/​bacteria/​
release-​12). The ten collections provided by EnsemblGe-
nomes, namely Mycobacterium, Streptococcus, Bacillus, 
Staphylococcus, Wolbachia, Buchnera, Escherichia/Shigella, 
Neisseria and Borrelia provide an extensive coverage of 
the domain Bacteria, while the collection for Pyrococcus 
represents an – arbitrarily chosen – representative from the 
domain Archaea, serving as an ougroup for phylogenetic tree 
construction (Table 1). The choice of an early release (2012) 
was dictated by the project design, collaborative annotation, 
and proper interpretation; it does not imply lack of scalability, 
which is limited by Step 2 (homology matrix construction). 
Other search algorithms that speed up similarity searches 
might be considered in the future (see below). The design 
of PathTrace allows the execution of other algorithms, 
such as DIAMOND [31], provided that the input format is 
transformed to that of the current version.

For the case study involving a large-scale experiment (see 
Results), nine pathways were defined as queries (Table 2) 

against a selection of a single pangenome for five genera 
coupled with genome instances of two strains from each 
genus (Table  3). In total, 182 single genomes were thus 
defined as a target set, with sufficient taxonomic coverage 
and full pangenome information. As a recommendation for 
users, the target set has to satisfy the criteria for the definition 
of a pangenome, for instance the saturation curves for close 
pangenomes or the bimodal frequency distribution of protein 
families [32]. These simple and reasonable criteria have to be 
respected before a target set is built for querying by pathway 
sets, perhaps with the exception of including an outgroup, as 
in the present work (see below).

Metabolic pathway data for target pathways were retrieved 
as Level 3 (L3) BioPAX files from the BioCyc database 
(https://​biocyc.​org/). The selection of pathways was such 
that it can provide a wide coverage of representative pathways 
with multiple enzymes/reactions, including some of the best-
characterized cases biochemically.

Similarity searches that are used to detect the number of 
homologues were performed using BlastP (version 2.2.31, 
build 7 January 2016) [33] for Unix, using a parameter set as 
follows (see Fig. 1): CAST threshold 30 with default param-
eters [34], blast e-value cut-off 10−06, no additional masking, 
PathTrace threshold α=1.37 (see below), GeneTrace 
gain=5/loss=2.

Table 1. Ten pangenome collections used in this study as target 
species, at the genus level; ‘block number’ signifies the partitioning of 
the phylogenetic profiles in the relevant figures (see below). For details, 
see also Table S1 (available in the online version of this article). Total 
number of genomes is 249 (used in Results i-ii); 182 of those have been 
selected for validation (used in Results iii, marked by an *asterisk, listed 
in Table 3)

Block no. Genus (pangenome) No. of genomes

1 Pyrococcus spp. 4*

2 Mycobacterium spp. 20

3 Streptococcus spp. 48*

4 Bacillus spp. 78*

5 Staphylococcus spp. 27

6 Wolbachia spp. 4

7 Buchnera spp. 6*

8 Escherichia/Shigella spp. 46*

9 Neisseria spp. 8

10 Borrelia spp. 8

Table 2. The nine metabolic pathways obtained from BioCyc as 
queries. Column ‘#Enzymes’ corresponds to the number of unique 
protein sequences for the enzymes of each pathway – no homologues 
or any other protein family information has been extracted. Source 
genome lists the three species/strains from which the pathways have 
been extracted. The Glycolysis V (Pyrococcus, an archaeal species) has 
been selected as an outgroup. Total number of enzymes is 86

Pathway name #Enzymes Source genome

1 Leucine Biosynthesis I 6 Escherichia coli K-12 
substr. MG1655

2 TCA cycle I (prokaryotic) 18 Escherichia coli K-12 
substr. MG1655

3 Methionine Biosynthesis I 6 Escherichia coli K-12 
substr. MG1655

4 Isoleucine Biosynthesis I 
(from threonine)

11 Escherichia coli K-12 
substr. MG1655

5 Lysine Biosynthesis I 9 Escherichia coli K-12 
substr. MG1655

6 Biotin Biosynthesis I 11 Escherichia coli K-12 
substr. MG1655

7 Glycolysis V (Pyrococcus) 8 Pyrococcus horikoshii 
OT3

8 Lysine Biosynthesis II 12 Bacillus subtilis subtilis 
168

9 Biotin Biosynthesis II 5 Bacillus subtilis subtilis 
168

http://bacteria.ensembl.org/
ftp://ftp.ensemblgenomes.org/pub/bacteria/release-12
ftp://ftp.ensemblgenomes.org/pub/bacteria/release-12
https://biocyc.org/
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Software development for PathTrace was performed using 
Perl (version 5.24.0), coupled with the Tree::Simple 
module and other Unix utilities (such as awk).

Evaluation for comparison purposes with existing tools as 
well as visual representation of the output, the Mesquite 
platform was also used [35]. The tool compare-classes 
from the RSAT/NeAT suite [36] was used for further cross-
checks with EC number assignment.

The analysis presented in this work is fully documented, and 
the relevant input/output files are provided along with the 
application, to ensure reproducibility and optimal use by the 
community.

RESULTS
To establish the PathTrace method and validate results 
through a number of experiments, we have performed the 
following analyses; (i) an exploration of the impact that target 
genome selection might have on the pathway reconstruction 
process, (ii) a validation of the fuzzy-pathway profile formula-
tion, utilizing an alternative mapping using E.C. numbers, and 
(iii) an assessment of the sensitivity of the method regarding 
the GAIN and LOSS parameters. The latter involves a carefully 
crafted case study using several well-investigated metabolic 
pathways and the validation of some of the evolutionary 
scenarios through comparison with the Mesquite suite [35].

Target genome selection: pangenomes improve 
accuracy
One of the key issues in any ancestral reconstruction analysis 
can be the optimal selection of the target genomes, i.e. the selec-
tion of the subset of the current genomes against which the 
reconstruction is performed. The range of options is essentially 
as follows: (i) several target genomes of varying phylogenetic 
distance, (ii) a single target pangenome and (iii) several different 
target pangenomes.

In the first case, the quasi-random choice of distinct genomes 
in the target set leads to a heterogeneous collection of elements 
with a broad range, potentially yielding a sharp contrast of 
phylogenetic profiling, which can be hard to evaluate (Fig. 2). 
The reverse situation emerges in the case of a single pange-
nome set (Fig. 3); the choice of a pangenome with a narrow 
range can lead to a homogeneous collection of elements with 
little contrast, effectively limiting the ability to evaluate the 
outcome.

We have learnt, through much experimentation with genome 
and pangenome ensembles and parameter choices, that an 
optimal contrast for the target genome set can be achieved 
through a combination of the previous options in their 
extremes, i.e. using several pangenomes (Fig. 4). In this case, 

Table 3. List of the pangenomes of five genera namely Escherichia, 
Buchnera, Bacillus, Streptococcus and Pyrococcus used as the target set 
with maximum taxonomic coverage, using the nine pathway queries 
(see Methods). Internal codes in Cogent style [70] are provided (see 
Table S1)

Genome name Internal code

1 Escherichia coli K12 ECOL-K12

2 Escherichia coli DH10B ECOL-DH1

3 Escherichia coli Pangenome ECOL-png

4 Buchnera aphidicola Schizaphis BAPH-SCH

5 Buchnera aphidicola 5a BAPH-5AX

6 Buchnera Pangenome BUCH-png

7 Bacillus subtilis BSUB-XXX

8 Bacillus anthracis ames ancestor BANT-AMA

9 Bacillus Pangenome BACI-png

10 Streptococcus pyogenes SF370 SPYO-SF3

11 Streptococcus pneumoniae 70 585 SPNE-705

12 Streptococcus Pangenome STRE-png

13 Pyrococcus abyssi PABY-XXX

14 Pyrococcus horikoshii PHOR-XXX

15 Pyrococcus Pangenome PYRO-png

Fig. 2. The homology matrix constructed for the 24 protein (enzyme) 
sequences involved in the Leucine biosynthesis pathway (six enzymes, 
rows 1–6) and the TCA Cycle (18 enzymes, rows 7–24) – separated by 
a purple horizontal line, across ten genomes, one from each of the 
10 collections used (Table 1). Each row of the matrix corresponds to 
the profile of a single enzyme, whereas each column corresponds 
to the homology patterns for a single genome. It is evident that the 
quasi-random selection of the ten distinct genomes leads to a very 
heterogeneous form of the matrix, e.g. column 3 (Streptococcus) would 
generally mean absence of both pathways while column 8 (Escherichia) 
would correspondingly indicate presence. In this example, the contrast 
is too sharp, thus making the decision for pathway presence or absence 
highly uncertain. Scale from 0 to 9 (the number of homologues, arbitrary 
value) is shown on the right.
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a mixture of representative pangenomes using all available 
information maintains the heterogeneity of the target species 
collection, by providing sufficient resolution and at the same 
time retaining the evidence of ‘loss’ of reactions (i.e. enzymes) 
across species and strains, with an optimum pathway contrast.

The above analysis demonstrates that the estimation of 
pathway presence or absence critically depends on an 
adequate selection of target genomes. This choice needs to 
reflect both the conservation of pathway elements in terms of 
phylogenetic profiles of the corresponding enzyme sequences 
(typically within a pangenome, i.e. strains) as well as the vari-
ation of those elements (typically across genomes, i.e. species). 
We thus require that any set of genomes selected as a target 
collection needs to exhibit both high contrast (i.e. entropy) as 
well as high segmentation (i.e. gradient entropy) – quantified 
by those parameters, following basic principles from the field 
of pattern recognition [37]. In our examples above, a random 
selection of target genomes, with one genus per pangenome 
(Fig. 2), shows a high level of entropy (0.99) and a low level 
of segmentation (0.30). In the case of a single pangenome, 
however rich in the number of strains, exhibits the oppo-
site behaviour (Fig.  3), with low entropy (0.08) and high 
segmentation (0.82). The optimal solution in this particular 
case emerges as the one with several pangenomes covering 
the corresponding genus with multiple species and strains 
(Fig. 4), with high entropy (0.92) as well as segmentation 
(0.93). This pattern has been observed consistently across 

our experiments with a range of pathways and species/strain 
groups (not shown) and has resulted in the optimal choice of 
both input datasets and parameter choices during the devel-
opment of PathTrace. A recommendation is to maintain 
these two metrics in the resulting homology matrices, as 
above.

E.C. numbers: reaction information in agreement 
with genome comparisons
An alternative approach for the detection of presence or 
absence of a given pathway against a target genome list, is to 
utilize reaction information related to that pathway, i.e. the 
E.C. numbers of the participating enzymes [38]. In order to 
perform this type of analysis, we have used the RSAT suite 
and specifically the ‘NeAT – compare-classes’ module [39]. 
This algorithm accepts as input a list of pairs in the form of 
{E.C. Number, Genome ID} and a list of pairs in the form 
of {E.C. Number, Pathway ID} and produces an intersec-
tion metric, with a significance level estimated by a hyper-
geometric distribution [39].

An interesting example in the case of leucine biosynthesis 
for E. coli DH10b can be seen (Fig. 5, in column 198), as an 
indication of strain diversity within the pangenome. DH10B 
is strictly auxotrophic only for leucine, as low growth rates 

Fig. 3. The homology matrix of the same set of 24 enzymes as in Fig. 2 
(Leucine biosynthesis in rows 1–6 and TCA Cycle in rows 7–24), using 
the pangenome approach. In this instance, the columns correspond 
to the 46 strains present in the entire Escherichia/Shigella collection 
(Table  1). In this case, the crisp choice of a single pangenome of 
multiple, highly related strains, produces a homogeneous pattern 
(e.g. presence) of the two pathway examples. Using this strategy, the 
contrast can be low resulting in a biassed result, thus confounding 
the assessment of pathway presence or absence, regardless of the 
accuracy of the phylogeny for the pangenome. Scale from 0 to 6 (the 
number of homologues, arbitrary value) is shown on the right.

Fig. 4. The homology matrix of the same set of 24 enzymes (Leucine 
biosynthesis in rows 1–6 and TCA Cycle in rows 7–24) – as in Figs 2 
and 3, using several pangenomes as the target set. In this instance, 
the 249 columns correspond to the entire set of available genomes in 
the Bacteria EnsemblGenomes database (release 12), organized as a 
set of ten pangenomes (Table 1), outlined by the vertical purple lines. 
The mixture of representative genomes and pangenomes maintains 
the required heterogeneity of pathway information with an ‘optimum’ 
contrast, thus providing evidence of loss (i.e. absence) of reactions 
across entire pangenomes. This information is consequently used 
to construct the fuzzy-pathway profiles, even with a coarse-grained 
phylogeny. Scale from 0 to 9 (the number of homologues, arbitrary 
value) is shown on the right.
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are not due to the lack of other amino acids [40]. Indeed, 
the operon leuLABCD is absent compared to the wild-type, 
‘causing both sensitivity to nutritional downshifts and slightly 
lower growth rates’ [40]. This example vividly demonstrates 
how the detection of loss in different representations of 
enzyme profiles (Fig. 5) can be validated with existing knowl-
edge from the literature, where appropriate.

Evidently the TCA cycle appears to be absent from Strepto-
coccus (block 3) and Buchnera (block 7) and entirely from 
Borrelia (block 10) (Fig. 6): in the case of Streptococcus spp., 
the first enzyme of the pathway, citrate synthase is partially 
present (as citZ, homologue of gltA in E. coli) [41], while 
aconitase and other key TCA cycle multi-subunit enzymes 
such as succinate dehydrogenase or fumarase are missing, as 
seen from homology searches (Data S2). These patterns of 
presence/absence are consistent with the general, early find-
ings that the TCA cycle exhibits a fragmented distribution 
across major phylogenetic clades [42], including Borrelia [43].

Thus, in two separate cases of complex pathway evolution, 
using the Leucine biosynthesis (Fig. 5) and the TCA cycle 
(Fig. 6) as examples, it is clear that the fuzzy phylogenetic 

profile formalism of PathTrace allows us to capture the 
presence or absence of the enzyme/protein group across the 
target pathway with finer resolution than the RSAT approach.

In all, the homology matrix in both cases provides evidence 
of presence of specific enzymes in certain species/strain 
groups that are consistently detected in both approaches, 
namely PathTrace and RSAT, used as internal controls in 
this validation step. Again, these patterns are consistently 
observed for different choice of other target pathways and 
species collections.

Case study: interpreting presence/absence 
patterns across a phylogeny
In order to further examine PathTrace in a real-world situ-
ation and a high-throughput mode, we have applied the entire 
process to a set of nine metabolic pathways across a larger 
collection of bacterial genomes. Pathway queries were selected 
from common metabolic routes with a sufficient number of 
enzymes, 86 in total, typically well-characterized (Table 2). 
The target genome collection consists of ten genomes (strains) 
and five (most sampled) pangenomes (genera), comprising 
182 single (unique) entries, thus covering a reasonable range 
of represented species at both the genome and pangenome 
levels (Table  3), following the reasoning of the findings 
reported above. The individual strain genomes were selected 
so that maximum phylogenetic variation can be captured, i.e. 
those most distant to the rest of the pangenome. To increase 

Fig. 5. Comparison of three different representations of pathway status 
(presence/absence), using the Leucine biosynthesis pathway as a case 
study. The top panel (identical to rows 1–6 of Fig. 4 – including scale) 
shows the plain homology matrix of the six enzymes involved in the 
pathway (rows), across the entire complement of the 249 genomes 
in the Bacteria EnsemblGenomes database (release 12) organized 
in ten pangenomes (Table  1), outlined with the red vertical lines for 
all panels. The bottom panel corresponds to the metric produced by 
NeAT [39], using a greyscale representation of values ranging from 
white (presence) to black (absence). The middle panel corresponds 
to the PathTrace representation of fuzzy-pathway profiles, with the 
horizontal purple line indicating the threshold for presence (above 
threshold) or absence (below threshold). It is evident that, although 
all three representations capture the essence of pathway absence 
or presence across all genomes and pangenomes, the fuzzy-profile 
approach of PathTrace (middle panel) provides increased sensitivity 
in the subtle variations within a single pangenome while still capturing 
the robust classification between absence and presence. See text for 
details.

Fig. 6. Comparison of three different representations of pathway 
status (presence/absence), using the TCA Cycle pathway as a case 
study. The top panel (identical to rows 7–24 of Fig.  4 – including 
scale) shows the homology matrix of the 18 enzymes involved in the 
pathway (rows), across the entire complement of the 249 genomes in 
the Bacteria EnsemblGenomes database (release 12) as organized in 
ten pangenomes (Table 1). The bottom panel corresponds to the metric 
produced by NeAT [39] (as in Fig. 5). The middle panel corresponds to 
the PathTrace representation (as in Fig. 5). Similarly to the Leucine 
biosynthesis example, subtle patterns of absence or presence across 
pangenomes can be seen – in this case, Streptococcus (block 3), 
Buchnera (block 7) and Borrelia (block 10). See text for details.
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the necessary contrast, outgroups both in terms of query and 
target were also selected: the Glycolysis metabolic pathway 
Variant V (specific to Archaea) as a pathway query, and the 
Pyrococcus genomes (two genomes and the pangenome) as 
a species target set. In total, the homology matrix in this case 
study is composed of 86 enzymes×182 genomes (Fig. 7).

For each reference pathway, the participating protein prod-
ucts were selected, according to the BioCyc database, 
and used as queries for similarity searches. Overall, three 
reference genomes were used as source organisms for the 
corresponding pathways, namely Escherichia coli K-12 substr. 
MG1655, Bacillus subtilis subsp. subtilis 168 and Pyrococcus 
horikoshii OT3 (Table 2). As the presence of these pathways 
in the source organisms is indisputable, they have served as 
internal, positive controls for the development of Path-
Trace and the assessment of results.

Deploying the PathTrace approach, the composite pathway 
profiles of the nine pathways were constructed (Fig. 8), on the 
basis of sequence similarities (see Methods). Each profile is 
thus a 15-element vector (as in Table 3), with a real number 
value for each of the target genomes (Fig. 8a). The real-valued 
vectors are consequently transformed into binary vectors 
(Fig. 8b) through the application of a threshold for the α 
parameter (α=1.37 in this case, average over all genomes).

To further evaluate the pathway ancestry inference, we utilize 
the discretized pathway profiles to assess performance in this 
test case (as in Table 3) coupled to biological interpretation. 
There are six cases that need to be discussed, which are labelled 
from A to F (Fig. 9). Of the nine query pathways, only Lysine 
biosynthesis I (DAP pathway) (no. 5 in Table 2) appears at 

the root of the tree, and therefore considered as universal 
(Fig. 9). The Glycolysis V (archaeal type) pathway (no. 7 in 
Table 2) is found at the root of the outgroup (Pyrococcus spp. 
– only enolase and pyruvate kinase have similarity to their 
E. coli homologues with >40 % sequence identity) while the 
remaining pathways appear at the root of the bacterial clade 
of the test set, implying that they are not detected as intact 
pathways in the Archaea (Fig. 9). It should be noted that this 
analysis represents a validation step for the method with a 
real-world scenario: while we have been able to interpret 

Fig. 8. A visual representation of the fuzzy (a, top panel) and discrete 
(b, bottom panel) profiles of the nine pathways (rows, y-axis) listed in 
Table 2, across the 15 target genomes (columns, x-axis) listed in Table 3, 
produced by the equations in Step 3 of the PathTrace algorithm (see 
Methods). The colour scheme used in the fuzzy (real value) form of the 
profiles ranges from absence (blue) to presence (red), with intermediate 
values indicated partial states of the pathway. Through the application 
of parameter α (α=1.37), the binary profile provides a sharp overview of 
pathway absence or presence in the selected genomes, in a controlled 
manner.

Fig. 7. Representation of the entire homology matrix produced for the 
PathTrace case study. The 86 rows correspond to the enzymes that 
participate in the nine selected pathways, whereas the 182 columns 
correspond to the target genome sequences used, constructing an 
overall matrix of 15 652 cells. Scale from 0 to 14 (number of homologues, 
arbitrary value) is shown on the right.
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most of the results in a biologically meaningful manner and 
corroborating evidence from the literature, our intention has 
not been to make ‘real’ biological discoveries in this section.

Case A: the pathways for TCA cycle, Leucine I/Isoleucine/
Methionine/Lysine II/Biotin I and II biosynthesis (Table 2) 
are found at the root of the bacterial branch, not fully detected 
in the archaeal outgroup (Fig. 9). The TCA cycle enzymes 
(no. 2 in Table 2) without homologues in the Pyrococcus 
clade include multiple cases, namely SucA/SucB, subunits 
of the E1(0) component of 2-oxoglutarate dehydrogenase, 
lpd – lipoamide dehydrogenase, SucD/SucC – succinyl-CoA 
synthetase, succinate dehydrogenase SdhB (Fe-S protein), 
SdhC/SdhD (membrane proteins), Fumarase (FumC), Mdh 
and Mqo (not shown, 11 out of 18 instances), consistent 
with early observations [42]. To explain the actual presence 
of some TCA cycle enzymes, it has been postulated that 
these proteins in hyperthermophilic Archaea are involved in 
amino acid biosynthesis [44], adapted to the environmental 
conditions in which these organisms thrive [45]. Isoleucine 

biosynthesis enzymes (no. 4 in Table 2) lack orthologues of 
IlvA, IlvM, IlvN, IlvH and IlvE in Pyrococcus (IlvM and 
possibly IlvN are absent from Archaea altogether)– 5 out of 
the 11 instances. Alternative isoleucine biosynthesis pathways 
have been detected in Bacteria, e.g [46] – not excluding this 
possibility for Archaea as well. Methionine biosynthesis (no. 3 
in Table 2) as exhibited in Bacteria also appears to be absent in 
the Pyrococcus clade (e.g. no homologues of MetA or MetH 
can be found, two out of six instances), as the archaeal pathway 
has not been fully characterized [13], despite the presence 
of homologues in other archaeal branches (not shown). For 
Lysine biosynthesis II (a DAP pathway variant), homologues 
of Asd – semialdehyde dehydrogenase, DapB, DapD, DapF 
and LysA, i.e. five out of nine instances, are missing from 
Pyrococcus, clearly indicating the absence of this pathway 
variant (no. 8 in Table 2), as opposed to the AAA pathway 
for lysine biosynthesis in Archaea [47], potentially connected 
to arginine [48] or leucine [49] biosynthesis. Finally, biotin 
biosynthesis pathways (no. 6 and no. 9 in Table 2) appear 
to be absent from Pyrococcus, as a representative for the 
archaeal domain: for biotin I, only FabG, BioF, BioA (3 out 
of 11 instances) have highly similar genes in this genus (while 
most genes are present in some Archaea, with the possible 
exception of BioB, BioD, BioH, FabB, FabH and FabI – not 
shown); for biotin II, BioF and BioK homologues are present 
in Pyrococcus (two out of five instances); this pathway appears 
to be present in Archaea in general, justifying the presence of 
BirA [50] and of course the biotin regulon [51].

Case B: The loss of Leucine biosynthesis I in E. coli DH10b 
(Fig. 9) has been commented above (Fig. 5), an interesting 
case of detection of pathway absence with biochemical and 
genetic evidence to support it.

Case C: The loss of Leucine biosynthesis I in Buchnera spp. 
is evident, with TyrB and IlvE being absent. The TCA cycle 
is also incomplete, with key enzymes missing, for example 
succinate dehydrogenase or fumarase subunit homologues, 
amongst others [43]; only homologues for Icd, SucA, SucB 
and Lpd are detectable, i.e. 4 out of 18 instances [52]. Interest-
ingly, SucA, SucB and Lpd are involved in the 2-oxoglutarate 
decarboxylation to succinyl-CoA (see also, relevant biocyc 
entry), potentially justifying the presence of only those homo-
logues (3 out of 18 instances). For Isoleucine biosynthesis, half 
of the enzymes are detected (6 out of 11 instances), namely 
IlvG, IlvI, IlvH (all subunits of acetolactate synthase), IlvB 
(involved in ILV biosynthesis), IlvC and IlvD – their role 
in this species is somewhat unclear, as the last enzyme in 
this pathway (IlvE) is not detectable; its function might be 
complemented by another aminotransferase. Buchnera 
lacks enzyme homologues for methionine biosynthesis 
except MetE [53], pointing to the possibility of production 
of methionine from cystathionine (see also, relevant biocyc 
entry); we reason that this pathway has been lost in the entire 
pangenome of this clade. The Lysine II variant has been lost in 
this branch, as SpoV genes as well as DapL are not detectable. 
It should be noted that Buchnera synthesizes both leucine and 
lysine, through other pathway variants not used in this study 
[54]. For Biotin I biosynthesis, BioC/FabH/BioF are missing  

Fig. 9. Visual representation of the PathTrace output for the nine 
pathways listed in Table  2, across the taxonomic tree constructed 
by the ten selected genomes and including the five corresponding 
pangenomes (encoded as: ECOL-PNG, BUCH-PNG, BACI-PNG, STRE-
PNG and PYRO-PNG, as in Table  3). In each case, the pangenome 
is included as a ‘virtual’ genome, which includes all genomes of 
the species, connected to the rest of the strains at the root of the 
corresponding subtree. The nine pathways are shown at the root node 
of the subtree using the following colour scheme for parsimony-based 
ancestral inference: red signifies the gain (genesis) of a pathway in 
the corresponding subtree, blue signifies the loss of a pathway in the 
subtree and black denotes presence of a pathway, only evident at the 
root of the entire tree (in this case ‘Lysine I’). Purple circles correspond 
to paragraphs in section (iii) of Results, to facilitate interpretation. To 
assist with interpretation, more details can be found in Table S2.

https://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=PWY-6151
https://biocyc.org/ECOLI/NEW-IMAGE?type=PATHWAY&object=PWY-6151
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(3 out of 11 instances), while for Biotin II biosynthesis, BioW/
BioF are not detectable across the pangenome. These results 
for Buchnera are consistent with its nature as an extreme 
case of genome reduction [55], and clearly point to gene loss 
as a major factor shaping both gene content and metabolic 
capabilities [5] (Fig. 9).

Case D: A similar group of undetectable pathways emerges 
for the Streptococcus clade, with the exception of Methionine 
biosynthesis, which presents a more complex pattern (Fig. 9). 
Indeed, it is established that many amino acid biosynthesis 
pathways might be absent from Streptococcus pyogenes 
(including Leucine, Methionine, Isoleucine), fewer in the case 
of S. pneumoniae [56]. For Leucine I biosynthesis, TyrB is 
not detectable at the pangenome level (except S. pneumoniae 
and S. equinus), while all enzymes except IlvE (branched-
chain aminotransferase) are missing from S. pyogenes. The 
Streptococcus pangenome apparently lacks the TCA cycle 
(at least components of succinate dehydrogenase, e.g. SucD, 
SdhB exhibit a limited distribution) as well as the Isoleucine 
(IlvM/IlvN missing) and Biotin I (BioC/BioH missing)/II 
(limited distribution of certain enzyme homologues across 
the pangenome) biosynthesis pathways [57]. For Lysine II, 
DapG/LysC as queries have similarities to potentially unchar-
acterized aspartokinases in S. pneumoniae, while SpoV genes 
and DapF are missing (except in S. pneumoniae); all genes 
with the exception of a DapA homologue are missing from 
S. pyogenes, reflecting a genuine, established biological fact 
[58–60] (Fig. 9). In this complex case, PathTrace returns 
its results according to the generic threshold imposed, 
whereas in the Buchnera case the number of homologues is 
relatively restricted, in the case of Streptococcus it is evident 

that in certain cases the presence of a pathway is more difficult 
to establish, as there is a much wider variation in the number 
of enzyme homologues across strains and species.

Case E: The particular losses of Lysine I (no. 5 in Table 2) 
and Methionine (no. 3 in Table 2) biosynthesis detected by 
PathTrace for S. pyogenes SF370 and the Streptococcus 
pangenome are consistent with the absence of most enzymes 
in the former strain and their fragmented distribution across 
other strains [59]. For instance, DapF (lysine biosynthesis) 
is present only in S. pneumoniae and S. agalactiae (Table 
S2). In the case of S. pneumoniae, while most enzymes have 
homologues in the case of Lysine I biosynthesis, Asd, ArgD, 
DapE and DapF (four out of nine instances) are missing; 
this might be due to the threshold imposed by the algorithm 
(Table S2). Similarly, S. pneumoniae lacks MetE in Methionine 
biosynthesis (one out of six instances), while S. pyogenes only 
possesses MetB and MetC enzymes. For the entire pange-
nome, a fragmented distribution of homologues is observed, 
with MetH for instance being partially absent (Fig. 9). Overall, 
this case signifies the challenge of exact pathway detection in 
complex pangenomes and the need for more accurate, taxon-
specific values for the threshold of detection.

Case F: Finally, in the case of the Pyrococcus clade, Lysine 
I biosynthesis (no. 5 in Table  2) is detected as present in  
P. horikoshii (with DapA/ArgD/DapE present), but potentially 
absent from P. abyssi and the pangenome – where it is known 
to be replaced by the AAA lysine biosynthesis pathway [61]. 
The presence of the above homologues is not fully under-
stood, to our knowledge – these proteins might be involved 
in processes other than lysine biosynthesis.

Fig. 10. Comparison of PathTrace with the Mesquite suite using the selected nine pathways listed in Table 2. The colour scheme 
used by Mesquite ranges from red (denoting presence) to blue (denoting absence), with intermediate colours defining partial status 
(see also Fig. S1). The taxonomic tree utilized here is identical to the tree used in the PathTrace use case (Fig. 9), with a 90 degree 
rotation. Inspection of the nine panels reveals that both Mesquite and PathTrace establish similar evolutionary scenarios of the 
query pathways.
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All the above results are available on the Figshare repository 
(see, Data Summary) and might be reproduced either in auto-
mated or interactive fashion, using as queries the sequences 
from the nine pathways documented in FASTA format in 
Data S1 and targets the specific databases restricted to the 
taxon (strain, species, genus or pangenome) of interest.

The detailed case study results for the assessment of Path-
Trace are consistent with our knowledge of pathway evolu-
tion, supported by corroborating evidence from the literature. 
It also demonstrates the difficulties of establishing pathway 
presence or absence, in particular with a single threshold – an 
ongoing challenge in fields such as similarity searches and 
clustering [62].

To further compare the last element of PathTrace, 
namely the ancestral inference given a pathway profile, we 
deployed Mesquite, a suite for evolutionary inference [35]. 
Mesquite is not capable to execute the early phases of the 
PathTrace protocol, but can be used for a parsimony-based 
inference of ancestral states. To this end, we used the fuzzy, 
real-value profiles of the nine selected pathways, and applied 
the maximum parsimony process of Mesquite using default 
parameters. The produced patterns closely follow the results 
of PathTrace as can be seen in Fig. 10 – and in more detail 
in Fig. S1 for individual pathways and raw output, signifying 
that parsimony-based evolutionary histories can be repro-
duced consistently.

This final, complex section summarizes the presence/absence 
patterns of query pathways across the target genomes and 
their corresponding clades and demonstrates that the Path-
Trace pathway profiles capture succinctly the distribution 
of these patterns with reasonable accuracy, reflecting genuine 
biological knowledge supported by existing knowledge. While 
it has been difficult to interpret partial presence of pathways 
(i.e. a fraction of their enzyme sequences), the most chal-
lenging issue has been the assertion of absence for certain 
reactions/pathways, as negative results can rarely be estab-
lished, or in fact reported in the literature.

DISCUSSION
By extending the notion of a phylogenetic profile to a 
composite group represented by the corresponding enzyme 
profiles of a pathway against a target selection of genomes, 
and typically organized into a pangenome, PathTrace is 
able to detect unambiguously the presence or absence of a 
pathway across a phylogeny. While the algorithm is based on 
parsimony and inspired by previous, similar implementations 
of phylogenetic profiling, it is evident that its performance 
is significantly increased when coherent, phylogenetically 
similar genome collections are used as targets, eliminating 
individual effects deriving from gene gain or loss. Indeed, 
following extensive experimentation, we have established 
the advantage of pangenome collections for a more accurate 
detection of pathway groups. It is evident that query path-
ways, represented as groups of genes, are less sensitive to 
parameters of parsimony-based algorithms for gain or loss 

[22]; however, the crisp decision for presence or absence 
remains a bottleneck.

More sophisticated models using taxon-specific values and 
genome-size normalization [63] or dynamical models of 
gene acquisition and loss impacting pathways [64] are direc-
tions for future algorithm development. Issues that also need 
further investigation include the effect of multiple paralogues 
on parameter choice (thresholds, e.g. [65]), the differential 
treatment of enzymes with respect to genome structure or 
pathway topology [66], the mode and tempo of horizontal 
gene transfers [67], the nature of ecological characteristics of 
target organisms with respect to speciation and innovation 
[68], as well as integration of PathTrace with related tools 
into software pipelines and relevant resources [69]. Those 
developments, coupled with the ever-growing availability of 
pangenome ensembles will facilitate the inference of ancestral 
states for entire pathways, helping us decipher the emergence 
and loss of entire functional modules within a broader phylo-
genetic and ecological context.
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