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Homogenization of Metal Grid Reinforced Composites for Near-Field
Low Frequency Magnetic Shielding

Ghida Al Achkar1, 2, *, Lionel Pichon1, 2, Mohamed Bensetti1, 2, and Laurent Daniel1, 2

Abstract—The purpose of this paper is to provide simple analytical homogenization methods for
composite materials containing a metallic wire grid. Estimating their effective electrical properties
facilitates the numerical simulation of composite structures for shielding applications in the automotive
industry. The presented methods are based on surface impedance approaches and effective media
theory. The obtained results show that the shielding properties of the described wire grid composites
can be accurately estimated and bounded, using the proposed theories in the low frequency range. The
frequency limits vary according to the studied sample. For the presented materials, the validity of the
results is shown to be up to a few megahertz. The experimental validation is done by measuring the
shielding effectiveness of composite samples using a near-field test bench.

1. INTRODUCTION

Reducing the environmental impact of modern vehicles can be improved through weight optimization
approaches. Therefore, one of the steps that can be undertaken is the replacement of classically used
metal alloys with lighter yet conveniently robust composite materials. From an electrical viewpoint,
composites formed by placing metallic grids in an epoxy resin can substitute metal structures if they
prove capable of providing acceptable electromagnetic shielding levels. Shielding applications in the
automotive industry (e.g., shielding enclosures for electrical conversion chains, plates for wireless
charging systems of electric vehicles) hold importance in the lower frequency range, usually up to a
few megahertz.

Composite materials made of conductive reinforcement and dielectric matrices have been the subject
of multiple studies to determine their electrical and shielding properties. While numerically-based
approaches offer accurate results in this regard [1–7], the need for simple and fast methods which
can be used for conducting preliminary studies makes analytical design tools desirable. When this
path is pursued, two types of studies can be adopted. The first aims at predicting effective properties
based on equivalent impedance theories [8–12], whereas other homogenization techniques use mixing
rules [13–18] to provide estimates or bounds for the effective electrical properties of the material with
respect to frequency. Shielding Effectiveness (SE) estimations are then obtained typically using classical
transmission-line theory.

In previously published approaches, experimental measurements combined with inverse problem
solving techniques allowed to deduce homogenized properties of composite materials. In [19], composite
panels for aerospace applications were studied in low frequency, and in [20], different types of carbon
fiber reinforced composites for air-vehicles have been considered in the range [100 kHz–18 GHz]. In this
paper, simple analytical formulas are provided for metal grid composite materials used in the automotive
industry and experimentally validated using a near-field test bench. In the interest of facilitating the
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integration of composite structures in numerical simulations, a homogenization approach is adopted.
The heterogeneous material is replaced with a fictitious homogeneous medium that has an identical
electromagnetic EM response. The work is presented as follows. In the first part, the composite
material is described. Two homogenization techniques are then introduced. One is based on the surface
impedance method proposed in [21] and implemented in [10] for plane wave excitation. Here however,
a low-frequency approximation is presented, and an estimation of the effective conductivity is deduced.
The other uses mixing theory to provide upper and lower bounds of the shielding coefficient SE. In
the second part, these approaches are applied to two composite samples reinforced with metallic grids.
A near-field test bench is used to test their accuracy through multiple configurations and over the
frequency band of interest.

2. HOMOGENIZATION METHODS

The aim of this section is to propose adequate methods for the estimation, and bounding, of the effective
conductivity of square metal grids immersed in a dielectric material (Fig. 1). The effective permittivity
is neglected due to the abundance of conductive currents with respect to displacement currents in the
quasi-static frequency range. Hereafter, the homogenization methods are described.

2.1. Surface Impedance Technique

The proposed technique relies on the definition of homogenization which supposes that the existence
of a fictitious medium that is electrically equivalent to the heterogeneous composite. According to this
hypothesis, there exists a homogeneous conductive plate having the same shielding properties as the
square grid. The estimation of the effective conductivity for a quasi-static excitation is based on the
following analysis. First, the square grid is studied by cascading two wire arrays. In [21], the complex
surface impedance of each array Zs is given (Equation (1)) as a function of the wire diameter d, cell
size p, the electrical properties of both the matrix and fibers (Fig. 1) as well as the impedance per unit
length of the conductive wires Zw taking into account skin depth within the wire [22].

Zs =
[
Zwp + j α

√
μm

εm

]
(1)

where :

⎧⎪⎪⎨
⎪⎪⎩

α =
d

λm
· log

(p

d

)
λm =

C

f · √εrm

εm, μm and λm are the permittivity, permeability, and wavelength in the dielectric matrix, respectively.
C = 3 · 108 m/s is the wave velocity in vacuum, and f is the excitation frequency.

Then, the case of a plane wave excitation is considered as in [10]. For the material at hand, applying
the described cascading technique, when the wave is normally incident and x-polarized (Fig. 1), gives the
total impedance of the plate ZsT = Zs. In the quasi-static case, the plate’s resistivity Rs (represented
by the real part of the impedance) is dominant. It corresponds to that of an equivalent homogeneous
plate defined by its effective low frequency conductivity σ̃ as in Eq. (2).

σ̃ =
1

Rs · 2d =
1

real(ZsT ) · 2d (2)

It is worth noting that the considered thickness of the equivalent plate is that of the wire grid. Hence,
the term 2d is used to represent it in Eq. (2).

The above formula, while simple, is only valid for square grids where the material is considered
isotropic in the (xy) plane. Its limits, frequency wise, are to be studied on a case-by-case basis since
the quasi-static threshold is dependent on the grid’s physical and electrical properties. This is shown
in the experimental validation section.
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Figure 1. Composite material: a square grid of conductive fibers and a dielectric matrix.

2.2. Mixing Theory Method

In the previous section, an estimation of the effective conductivity was presented. However, it is also
helpful to provide lower and upper bounds of this property. This gives an idea of the range of shielding
levels that can be obtained from the composite since shielding effectiveness of isotropic media is directly
related to their conductivity. The search for a suitable homogenization method is limited by a multitude
of parameters. The frequencies of interest fall perfectly within the application domain of classical
analytical mixing rules. Moreover, the macroscopic isotropy of the material as well as the low volume
fraction of fibers and excitation polarization reasonably reduce the solution to the Hashin-Shtrikman
HS bounds (σHS− and σHS+) [23]. Thus, the effective conductivity σ̃ of the composite can be bounded
as follows:

σHS− ≤ σ̃ ≤ σHS+ (3)

where (for σm < σf ): ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σHS− = σm +
fv

1
σf − σm

+
(1 − fv)
2 · σm

σHS+ = σf +
(1 − fv)

1
σm − σf

+
fv

2 · σf

(4)

σm and σf represent the conductivity of the matrix and the fibers respectively. fv is the volume fraction
of the fiber component in the material. The accuracy of this method is tested in the experimental
validation part.

3. EXPERIMENTAL VALIDATION

In the previous section, two homogenization processes were presented. In order to test their validity
with respect to the application, i.e., magnetic shielding in the quasi-static frequency band, a shielding
coefficient must be estimated from the defined effective medium. The results should also be tested
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experimentally. Therefore, in this part, analytical formulas and numerical models capable of computing
the near-field magnetic shielding effectiveness are presented. Their accuracy and the accuracy of the
effective conductivity estimates are evaluated using an experimental test bench.

3.1. Near-Field Test Bench

In general, multiple experimental setups can be used to measure electromagnetic shielding
effectiveness [24–26]. However, this paper targets shielding applications in the automotive industry
where sources of perturbation are predominantly magnetic and wave propagation in the near-field is of
interest. To experimentally validate the proposed homogenization methods, and taking these conditions
into consideration, the near-field test bench [27, 28] of Fig. 2 is used to evaluate the shielding effectiveness
of two wire grid composite samples. The bench is made of two modules. The transmitting chain uses
a low frequency signal generator and a coil to generate a magnetic field. The receiver and acquisition
module connects a magnetic field sensor (AARONIA AG 12 mm: PBS H2) to a spectrum analyzer
(Tektronix RSA5106A) through a low-noise amplifier. The captured information is then transmitted to
a computer for processing. Once the position of the probe is fixed by controlling the robot arm attached
to it, a two-step measurement process is carried out where the magnetic field levels are measured with,
then without, the sample. The magnetic shielding effectiveness is defined as the variation introduced
in the magnetic field magnitude (in dB) when the shielding material is placed between the magnetic
source and the probe. It should be mentioned that the near-field test bench used in this paper is not set
in a controlled test environment. Background noise is present during the measurements. Their levels
are monitored using the spectrum analyzer to ensure an acceptable signal to noise ratio. Nevertheless,
in the presence of the shield, the higher the frequency is, the lower the power of the received signal is.
This makes inaccuracies highly probable at higher frequencies. Adding an amplifier to the transmitting
chain could provide a solution to this problem.

Measurement
probe

Spectrum
analyzer

Low frequency
signal generator

Composite
sample

Low-noise
amplier

Robot
PC

Transmitting
coil

Figure 2. Near-field test bench.
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Figure 3. Magnetic shielding setup: (a) parallel and (b) perpendicular configurations.

3.2. Near-Field Magnetic Shielding Effectiveness

Homogenization methods generate effective material properties. Testing the validity of the proposed
approaches requires an estimation of the corresponding shielding effectiveness. Hereinafter, an analytical
and a numerical method are introduced to provide estimates of shielding properties of homogeneous
isotropic plates under two configurations. An analytical formula derived in [29, 30] is used for the
case where the emitting coil is parallel to the plate (Fig. 3(a)). It is worth noting that the parallel
configuration formula was derived for a circular loop source; however, its results (see next section) will
prove to be equally accurate for the cylindrical coil used in the measurements, which is described in
Fig. 3(b)). For the perpendicular configuration, the analytical results are not as precise. Thus, a Finite
Element Analysis FEA using GMSH/GetDP [31, 32] is carried out for this configuration.

Composite materials reinforced with wire grids usually exhibit anisotropic behaviors. In the case of
a square grid, the material is isotropic in the plane of the grid: (xy) plane of Fig. 1. Consequently, the
proposed homogenization reduces the effective conductivity to a scalar value. The parallel configuration
test, on its own, does not assert the validity of this assumption, hence the need for a second test capable
of confirming the ‘isotropic effective property’ hypothesis. The perpendicular configuration test is used
for this purpose.

Magnetic shielding effectiveness SEH,dB is defined as the ratio of the magnetic field at an observation
point (Fig. 3) without the sample |Hw/o| to the transmitted field with the sample |Hw/|. Expressed in
dB, it is written as:

SEH,dB = 20 log10

|Hw/o|
|Hw/|

(5)

While Eq. (5) is a general definition, for the parallel configuration of Fig. 3(a), the shielding effectiveness
on the symmetry axis of a loop illuminating a plane shield of infinite extent is computed analytically as
follows [29]:

SEH =

∣∣∣∣∣∣∣∣
1

4μr

∫ +∞

0
λ2τ−1

0 J1(λR)e−τ0zdλ∫ +∞

0
Kλ2ττ−2

0 J1(λR)e−τ0z−(τ−τ0)Δdλ

∣∣∣∣∣∣∣∣
(6)
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where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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γ =
√

jωμ0μrσ

γ0 =j
ω

C

Jα is the Bessel function of first kind of order α, γ the propagation constant in the shield (in m−1), γ0

the free-space propagation constant (in m−1), ω the angular frequency (in rad · s−1), C the free-space
velocity of light (in m/s), Δ the shield thickness (in m), R the loop radius (in m), z the distance from
the emitting loop to the probe (in m), μ0 = 4π ·10−7 H/m the free space permeability, and (σ, μr) denote
the electrical conductivity and the relative magnetic permeability of the shield, respectively.

As for the perpendicular configuration, the magnetic shielding effectiveness is evaluated by
numerically solving an Eddy current problem using a FEA where displacement currents are neglected
(this same hypothesis is made for the analytical solution of the parallel configuration). Here, a good
mesh of the shield is crucial for obtaining accurate results especially when the skin depth becomes
smaller than the thickness of the plate. The mesh of the shielding material takes into account the skin
depth, which is a function of the frequency, in the following manner. Two uniformly distributed sets of
hexahedral mesh elements are used along the thickness direction of the plate (z-axis). The skin depth
is represented using three mesh elements. The remaining part is meshed using four elements.

To test these methods, the analytical method of Equation (6) and the FEA are carried out
for an aluminum and a copper sheet, respectively. Table 1 shows the two setups parameters and
Fig. 4 the shielding effectiveness with respect to frequency. The good agreement obtained between
analytical/numerical and experimental results proves the accuracy of the implemented methods. They
can therefore be used to study the validity of the homogenization formulas.

Table 1. Configuration parameters for two metal shields.

Sample Aluminum Copper
Configuration parallel perpendicular
Parameter Value Unit

Distance source — shield h 10 12 mm
Distance shield — probe 20 12 mm
Conductivity σ 3.77 · 107 5.9 · 107 S/m
Shield thickness Δ 1 0.034 mm
Shield dimensions L 80 × 80 80 × 80 cm

3.3. Sample Description, Results and Discussion

In this section, the homogenization of two composite samples made of copper (sample A) and steel
(sample B) wire grids is carried out according to the presented methods. The metallic grids are
embedded within an epoxy resin using a Sheet Moulding Compound SMC manufacturing process. The
estimated effective properties are shown in Table 2 along with the dimensions and electrical properties
of the composites. Based on the homogenization results, the shielding effectiveness is computed as a
function of frequency when the radiation source is parallel (Fig. 5) and perpendicular to the sample
(Fig. 6). Compared to measurement results, the obtained estimations show good accuracy up to a
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(a) (b)

Figure 4. Shielding effectiveness of two metal shields: (a) aluminum according to a parallel setup and
(b) copper according to a perpendicular one. Configuration parameters are in Table 1.

Figure 5. Magnetic shielding effectiveness of composite samples (A) and (B) obtained by
homogenization and measurement. A parallel setup (Fig. 3) is considered where the distance h between
the source and the shield is 1.5 cm and that between the source and the probe is z = {3, 7} cm. Composite
parameters are shown in Table 2.
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Figure 6. Magnetic shielding effectiveness of composite sample (B) obtained by homogenization and
measurement. A perpendicular setup (Fig. 3) is considered where the distance h between the source and
the shield is 1.5 cm and that between the source and the probe is z = {3, 7} cm. Composite parameters
are shown in Table 2.

Table 2. Dimensions and properties of composite samples.

Sample (A) Sample (B)
copper grid steel grid

Parameter Value Unit

Thickness Δ 2 2 mm
Wire diameter d 270 275 µm
Wire conductivity σf 5.84 · 107 1.4 · 106 S/m
Cell size p 1.32 × 1.32 1.476 × 1.476 mm2

Effective conductivity σ̃ 3.89 · 106 8.68 · 104 S/m
Lower HS bound σHS− 2.4 · 106 5.9 · 104 S/m
Upper HS bound σHS+ 4.6 · 106 1.13 · 105 S/m

certain frequency above which a deviation is observed (around 100 kHz for sample A and 800 kHz for
sample B). This could be due to a number of reasons, mainly the low-frequency assumption which
sets a limit to the validity of the approach. This upper frequency limit is a function of the composite
properties and dimensions. Moreover, the accuracy of the measurements decreases with frequency. This
is caused by the edge effects that depend on the dimensions of the sample [19].

In [25], it is shown that different electromagnetic shielding measurement methods can yield different
results. This statement is equally valid in the case of the studied wire grids. Concretely, shielding
effectiveness is closely related to wave-polarization with respect to wire-direction. For each configuration
of the near-field setup, the source (coil antenna) radiates a unique magnetic field. The polarization of
the field with respect to the wires is specific to the setup of the coil with respect to the composite sample.
Hence, the obtained magnetic shielding results are specific to the setup. However, effective properties
resulting from the homogenization method are valid, no matter the polarization of the incident wave.
This is proven by measuring two different configurations: one where the coil is parallel to the shield and
the other where it is perpendicular. The validity of the isotropic effective medium hypothesis is also
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proven in this way, since a good agreement between theoretical and experimental approaches is obtained
for both the parallel and perpendicular configurations. In this regard, it is worth noting that for the
parallel setup, only the z component of the H-field is measured (both x and y components are negligible
at the observation point). On the other hand, for the perpendicular setup, only the x-component is
measured (Fig. 3).

In the low frequency range, the two approaches provide accurate results: the surface impedance
based homogenization technique accurately estimates effective conductivity, and the Hashin-Shtrikman
formulas provide very narrow bounds for shielding properties.

4. CONCLUSION

In this paper, simple homogenization formulas for composite materials reinforced with square metal
grids are provided. Their application is valid at low frequencies. This can be helpful for the design
of composite electromagnetic shields in the automotive industry. Two complementary approaches
— estimates and bounds — are presented. An estimate of the quasi-static effective conductivity
is computed based on surface impedance studies, and lower and upper bounds of this property are
predicted using Hashin-Shtrikman theory (mixing rules). The obtained results indicate that the surface
impedance approach accurately predicts low-frequency effective conductivity and magnetic shielding
properties of conductive square grids. Moreover, Hashin-Shtrikman formulas are shown to yield very
narrow frames of these properties. Their validity, however, is limited to materials with low volume
fractions of inclusions (around 8% for the tested specimens). Shielding effectiveness is obtained from
the effective properties through an analytical formula and/or Finite Element Analysis. The proposed
approaches are validated experimentally using a magnetic near-field test bench.
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