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PRINCIPAL KINEMATIC FORMULAS FOR GERMS OF CLOSED

DEFINABLE SETS

NICOLAS DUTERTRE

Abstract. We prove two principal kinematic formulas for germs of closed

definable sets in Rn, that generalize the Cauchy-Crofton formula for the density

due to Comte and the infinitesimal linear kinematic formula due to the author.
In this setting, we do not integrate on the space of euclidian motions SO(n)n
Rn, but on the manifold SO(n) × Sn−1.

1. Introduction

The search for kinematic formulas is one of the main goal of integral geometry.
Such formulas have been proved in various contexts by various authors, for instance:

- For convex bodies by Blaschke and Hadwiger (see [25]);
- For manifolds by Chern [7] and manifolds with boundary by Santaló [35];
- For PL-sets by Cheeger, Müller and Schrader [6];
- For sets with positive reach by Federer [19, 20] (see also [34]);
- For subanalytic sets by Fu [22], and more generally for sets definable in an

o-minimal structure by Bernig, Bröcker and Kuppe [4, 2, 3].

There are many other situations where kinematic formulas hold, but we cannot give
here a complete list of all the interesting papers published on this topics.

In this paper, we are interested in the case of definable sets in an o-minimal
structure. Definable sets are a generalization of semi-algebraic sets and globally
subanalytic sets, we refer the reader to classical references [37, 36, 10, 29, 33] for
basic definitions and results on this topics. The study of the geometric properties of
these objects was initiated by Fu [22], who developed integral geometry for compact
subanalytic sets. Using the technology of the normal cycle, he associated with every
compact subanalytic set X of Rn a sequence of curvature measures

Λ0(X,−), . . . ,Λn(X,−),

called the Lipschitz-Killing measures, and he established several integral geom-
etry formulas. Among them, he proved the following kinematic formulas: for
k ∈ {0, . . . , n}, we have∫

SO(n)nRn
Λk(X ∩ γY, U ∩ γV )dγdx =

∑
p+q=k+n

e(p, q, n)Λp(X,U)Λq(X,V ),

where X and Y are two compact subanalytic subsets of Rn and U and V are
Borel subsets of X and Y respectively. We will state these formulas specifically
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in the next section. In [4] (see also [2, 3]), Bröcker and Kuppe gave a geometric
characterization of these measures using stratified Morse theory, in the more general
setting of definable sets.

In [8] Comte started the study of real equisingularity by proving that the density
is continuous along the strata of a Verdier stratification of a subanalytic set (see also
[38]). The main tool to prove his result was a local Cauchy-Crofton formula for the
density. He continued this work with Merle in [9] where a similar continuity result
was established for the so-called local Lipschitz-Killing invariants (see also [32]).
The tools for proving this continuity property are local linear kinematic formulas
that generalize the Cauchy-Crofton formula for the density. These formulas will
be explained in Section 3 but, roughly speaking, they relate the so-called polar
invariants, which are mean-values of Euler characteristics of real Milnor fibres of
generic projections, to the local Lipschitz-Killing invariants.

In [15] we also established an infinitesimal linear kinematic formula. It is slightly
different from the ones of Comte and Merle, because instead of using projections,
we make “infinitesimally small” translations of linear spaces. Let us recall it here
because it is our main inspiration. We will use the following notations:

• sk is the volume of unit sphere Sk of dimension k and bk is the volume of
the unit ball Bk of dimension k,
• for k ∈ {0, . . . , n}, Gkn is the Grassmann manifold of k-dimension linear

spaces in Rn equipped with the O(n)-invariant Maurer-Cartan density (see
for instance [35], p.200), gkn is its volume,

• if P is a linear subspace of Rn of dimension k, Sk−1
P is the unit sphere in P ,

• in Rn, Bnε (x) is the closed ball of radius ε centered at x and Sn−1
ε (x) is the

sphere of radius ε centered at x, if x = 0, we simply write Bnε and Sn−1
ε .

Let (X, 0) ⊂ (Rn, 0) be the germ of a closed definable set. We consider the following
limits:

Λlim
k (X, 0) := lim

ε→0

Λk(X,X ∩ Bnε )

bkεk
.

Let H ∈ Gn−kn , k ∈ {1, . . . , n}, and let v be an element in Sk−1
H⊥

. For δ > 0, we
denote by Hv,δ the (n− k)-dimensional affine space H + δv and we set

β0(H, v) = lim
ε→0

lim
δ→0

Λ0(Hδ,v ∩X,Hδ,v ∩X ∩ Bnε ),

and

β0(H) =
1

sk−1

∫
Sk−1

H⊥

β0(H, v)dv.

In [15] Theorem 5.5, we proved that for k ∈ {1, . . . , n}

Λlim
k (X, 0) =

1

gn−kn

∫
Gn−kn

β0(H)dH.

In view of this formula and since it is possible to make “infinitesimally small”
translations of any definable set, the question that motivated us was the following:
Is it possible to establish a kinematic formula for germs of closed definable sets or,
in other words, can we replace the (n−k)-plane H with any germ of closed definable
set? The goal of this paper is to provide a positive answer to this question.

Let us present the main results of the paper. Let (X, 0) ⊂ (Rn, 0) be the germ of
a closed definable set. To such a germ, we associate two sequences of real numbers:
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the polar invariants σk(X, 0), k = 0, . . . , n, and the above limits Λlim
k (X, 0). Let

(Y, 0) ⊂ (Rn, 0) be another germ of closed definable set and let

σ(X,Y, 0) =
1

s2
n−1

∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv.

Here SO(n) is equipped with the Haar measure dγ, normalized in such a way
that the volume of SO(n) is sn−1, Sn−1 is equipped with the usual Riemanniann
measure (or density) dv and SO(n) × Sn−1 with the product measure dγdv. Our
first infinitesimal principal kinematic formula takes the following form (Theorem
8.15):

σ(X,Y, 0) =

n∑
i=0

Λlim
i (X, 0) · σn−i(Y, 0).

When X and Y have complementary dimensions, this gives a Bezout type formula,
since the integrand of the left-hand side is a number of intersection points and
the right-hand side is the product of the densities of X and Y at the origin (see
Corollary 8.16). Then we set

Λlim
0 (X,Y, 0)

=
1

s2
n−1

∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

Λ0 (X ∩ (γY + δv), X ∩ (γY + δv) ∩ Bnε ) dγdv.

In Theorem 8.17, we establish our second infinitesimal principal kinematic for-
mula:

Λlim
0 (X,Y, 0) =

n∑
i=0

Λlim
i (X, 0) · Λlim

n−i(Y, 0).

This formula is a corollary of Theorem 8.15 and the Gauss-Bonnet formula proved
in [15].

Throughout the paper, we will also use the following notations and conventions:

• for v ∈ Rn, the function v∗ : Rn → R is defined by v∗(y) = 〈v, y〉,
• for x ∈ Rn, |x| denotes the usual Euclidean norm,

• if X ⊂ Rn, X is its topological closure, X̊ its topological interior,
• when it makes sense, vol(X) means the volume of the set X and χc(X) its

Euler characteristic for Borel-Moore homology.

The paper is organized as follows. In Section 2, we recall the notion of strat-
ified critical points and the definition of the Lipschitz-Killing measures. We also
state kinematic formulas. In Section 3, we recall the Gauss-Bonnet formula for real
Milnor fibres proved by the author in [15], and the infinitesimal linear kinematic
formulas proved by Comte [8], Comte and Merle [9] and the author [15]. Section 4
contains several topological and geometrical lemmas that will be useful in the next
sections. In Section 5, we prove a new spherical kinematic formula for definable
sets. Combining this formula with Hardt’s theorem [24, 10, 37], we obtain a new
kinematic formula for definable subsets of the unit ball in Section 6. We apply
this formula in Section 7 to get our first principal kinematic formula for closed
conic definable sets. In Section 8, we prove our first principal kinematic formula
in the general case using the previous case and tangent cones, and then our sec-
ond principal kinematic formula. Finally Section 9 contains two other kinematic
formulas.
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2. Stratified critical points and Lipschitz-Killing curvatures

2.1. Stratified critical points. Let X ⊂ Rn be a compact definable set equipped
with a finite definable Whitney stratification S = {Sa}a∈A. The fact that such a
stratification exists is due to Loi [28] (see also [31]).

Let f : X → R be a definable function. We assume that f is the restriction to
X of a C2 definable function F : U → R, where U is an open neighborhood of X
in Rn. A point p in X is a (stratified) critical point of f if p is a critical point of
f|S , where S is the stratum that contains p.

Definition 2.1. Let p ∈ X be an isolated critical point of f : X → R. The index
of f at p is defined by

ind(f,X, p) = 1− χ (X ∩ {f = f(pi)− δ} ∩ Bnε (p)) ,

where 0 < δ � ε� 1. If p ∈ X is not a critical point of f , we set ind(f,X, p) = 0.

Since we are in the definable setting, this index is well-defined thanks to Hardt’s
theorem [24, 10, 37].

Theorem 2.2. Assume that f : X → R has a finite number of critical points
{p1, . . . , ps}. Then the following equality holds:

χ(X) =

s∑
i=1

ind(f,X, pi).

Proof. See Theorem 3.1 in [13]. When f is a Morse stratified function, this follows
from [23]. �

2.2. Lipchitz-Killing curvatures. In this subsection, we present the Lipschitz-
Killing measures of a definable set in an o-minimal structure. We describe Bröcker
and Kuppe’s approach [4].

Let X ⊂ Rn be a compact definable set equipped with a finite definable Whitney
stratification S = {Sa}a∈A.

Let us fix a stratum S. For k ∈ {0, . . . , dS}, dS = dimS, let λSk : S → R be
defined by

λSk (x) =
1

sn−k−1

∫
S
TxS⊥

indnor(v
∗, X, x)σdS−k(IIx,v)dv,

where IIx,v is the second fundamental form on S in the direction of v and where
σdS−k(IIx,v) is the (dS − k)-th elementary symmetric function of its eigenvalues.
The index indnor(v

∗, X, x) is defined as follows:

indnor(v
∗, X, x) = 1− χ

(
X ∩Nx ∩ Bnε (x) ∩ {v∗ = v∗(x)− δ}

)
,

where 0 < δ � ε� 1 and Nx is a normal (definable) slice to S at x in Rn . When
v∗|X has a stratified Morse critical point at x, it coincides with the normal Morse

index at x of a function f : Rn → R such that f|X has a stratified Morse critical

point at x and ∇f(x) = v. For k ∈ {dS + 1, . . . , n}, we set λSk (x) = 0.
If S has dimension n then for all x ∈ S, we put λS0 (x) = · · · = λSn−1(x) = 0 and

λSn(x) = 1. If S has dimension 0 then indnor(v
∗, X, x) = ind(v∗, X, x) and we set

λS0 (x) =
1

sn−1

∫
Sn−1

ind(v∗, X, x)dv,

and λSk (x) = 0 if k > 0.



PRINCIPAL KINEMATIC FORMULAS FOR GERMS OF CLOSED DEFINABLE SETS 5

Definition 2.3. For every Borel set U ⊂ X and for every k ∈ {0, . . . , n}, we define
Λk(X,U) by

Λk(X,U) =
∑
a∈A

∫
Sa∩U

λSak (x)dx.

These measures Λk(X,−) are called the Lipschitz-Killing measures of X. Note
that for any Borel set U of X, we have

Λd+1(X,U) = · · · = Λn(X,U) = 0,

and Λd(X,U) = Hd(U), where d is the dimension of X and Hd is the d-th dimen-
sional Hausdorff measure in Rn. If X is smooth then for k ∈ {0, . . . , d}, Λk(X,U)
is equal to

1

sn−k−1

∫
U

Kd−k(x)dx.,

where Kd−k denotes the (d− k)-th Lipschitz-Killing curvature.
As in the smooth case, the measure Λ0(X,−) satisfies an exchange formula (see

[4]).

Proposition 2.4. For every Borel set U ⊂ X, we have

Λ0(X,U) =
1

sn−1

∫
Sn−1

∑
x∈U

ind(v∗, X, x)dv.

For U = X and by Theorem 2.2, we see that a special case of this exchange
formula is the Gauss-Bonnet formula Λ0(X,X) = χ(X).

The Lipschitz-Killing measures satisfy the kinematic formula (see [22, 4, 2, 3]).
We provide the group SO(n) n Rn of all euclideans motions of Rn with the prod-
uct measure dγdx, where the canonical Haar measure dγ is normalized such that
vol (SO(n)) = 1.

Proposition 2.5. Let X ⊂ Rn and Y ⊂ Rn be two compact definable sets and let
U ⊂ X and V ⊂ Y be two Borel sets. For k ∈ {0, . . . , n}, the following kinematic
formula holds:∫

SO(n)nRn
Λk(X ∩ γY, U ∩ γV )dγdx =

∑
p+q=k+n

e(p, q, n)Λp(X,U)Λq(X,V ),

where e(p, q, n) =
sp+q−nsn
spsq

.

For k = 0, the above formula is called the principal kinematic formula. A
particular case of the kinematic formula is the linear kinematic formula. Let Akn be
the affine grassmannian of k-dimensional affine spaces in Rn. It is a fibre bundle
over Gkn with fibre Rn−k. We equip Akn with the product measure denoted by dE.

Proposition 2.6. Let X ⊂ Rn be a compact definabet set and let U ⊂ X be a
Borel set. For k ∈ {0, . . . , n}, we have

Λn−k(X,U) =
1

gkn
· 1

e(k, n− k, n)

∫
Akn

Λ0(X ∩ E,X ∩ E ∩ U)dE.

In Section 5, we will consider definable subsets of the unit sphere Sn−1. For such
sets, one can define spherical Lipschitz-Killing measures. These measure are defined
in [3], Section 3 (see also [14]). Their definition is very similar to the definition of
the above Lipschitz-Killing measures. For X ⊂ Sn−1 and k ∈ {0, . . . , n−1}, we will
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denote by Λ̃k(X,−) the k-th spherical Lispchitz-Killing measures. The spherical
Lipschitz-Killing measures satisfy a Gauss-Bonnet formula ([3], Theorem 1.2) and
a spherical kinematic formula ([3], Theorem 4.4).

3. Some topological ang geometrical properties of definable sets

In this section, we review some results on the local topology and geometry of
closed definable sets. Let (X, 0) be the germ of a closed definable set. For conve-
nience, we will work with a small representative that we denote by X as well. We
assume that this representative is included in a an open bounded neighborhood U
of 0.

3.1. The Gauss-Bonnet formula for real Milnor fibres. We can equip X
with a finite Whitney stratification S = {Sα}α∈A such that 0 ∈ Sα (this is possible
taking a smaller representative if necessary).

Let ρi : U → R, i = 1, 2, be two continuous definable functions of class C2

on U \ {0}, such that ρ−1
i (0) = {0} and ρi(x) ≥ 0 for all x ∈ X. It is well-

known that there exists εi > 0 such that for 0 < ε ≤ εi, ρ
−1
i (ε) intersects X

transversally in the stratified sense (see [15] Lemma 2.1), and that the topological
type of ρ−1

i (ε)∩X does not depend on ε. Moreover, as explained by Durfee in [11],
Lemma 1.8 and Corollary 3.6, there is a neighborhood Ω of 0 in Rn such that for
every stratum S of X, ∇(ρ1|S) and ∇(ρ2|S) do not point in opposite direction in

Ω \ {0}. Applying Durfee’s argument ([11], Proposition 1.7 and Proposition 3.5),
we see that ρ−1

1 (ε)∩X, 0 < ε ≤ ε1, and ρ−1
2 (ε′)∩X, 0 < ε′ ≤ ε2, are homeomorphic.

The link of X at 0, denoted by Lk(X), is the set X ∩ ρ−1(ε), 0 < ε � 1, where
ρ : U → R is a continuous definable function of class C2 on U \ {0}, such that
ρ−1(0) = {0} and ρ(x) ≥ 0 for all x ∈ X. We will call such a function ρ a distance
function to the origin. By the above discussion, the topological type of Lk(X) does
not depend on the choice of the definable distance function to the origin (actually
to define the link, we do not need to assume that ρ is C2 on U \ {0}, continuity is
enough).

Let f : (X, 0) → (R, 0) be the germ of a definable function. We assume that f
is the restriction to X of a C2 definable function F : U → R. We denote by Xf

the set f−1(0) and by [1, 27], we can equip X with a definable Thom stratification
V = {Vβ}β∈B adapted to Xf . This means that {Vβ | Vβ * Xf} is a Whitney

stratification of X \Xf and that for any pair of strata (Vβ , Vβ′) with Vβ * Xf and

Vβ′ ⊂ Xf , the Thom condition is satisfied.
Note that if f : (X, 0) → (R, 0) has an isolated stratified critical point at 0,

where X is equipped with the above Whitney stratification S = {Sα}α∈A, then the
following stratification:{

Sα \ f−1(0), Sα ∩ (f−1(0) \ {0}), {0} | α ∈ A
}
,

is a Thom stratification of X adapted to Xf .
As explained above, there is ε′1 > 0 such that for 0 < ε ≤ ε′1, ρ−1

1 (ε) intersects
Xf transversally. The Thom condition implies that there exists δε > 0 such that
for each δ with 0 < δ ≤ δε, ρ

−1
1 (ε) intersects f−1(δ) transversally as well. Hence

the set f−1(δ) ∩ {ρ1 ≤ ε} is a Whitney stratified set equipped with the following
stratification:{

f−1(δ) ∩ Vβ ∩ {ρ1 < ε}, f−1(δ) ∩ Vβ ∩ {ρ1 = ε} | Vβ * Xf
}
.
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Moreover, taking ε′1 and δε smaller if necessary, the topological types of f−1(δ) ∩
{ρ1 ≤ ε} and f−1(δ) ∩ {ρ1 = ε} do not depend on the couple (ε, δ). To see this, it
is enough to adapt the proof of Lemma 2.1 in [18] to the stratified case. The same
fact is true for negative values of f .

Of course, we can make the same construction with ρ2 instead of ρ1. But as
above, there is a neighborhood Ω′ of 0 in Rn such that for every stratum W of
Xf , ∇(ρ1|W ) and ∇(ρ2|W ) do not point in opposite direction. Let us choose ε′ > 0

and ε > 0 such that {ρ2 ≤ ε′} ( {ρ1 ≤ ε} ⊂ Ω′. If ε, ε′ and δ are sufficiently
small then, for every stratum V * Xf , ∇(ρ1|V ∩f−1(δ)) and ∇(ρ2|V ∩f−1(δ)) do not

point in opposite direction in {ρ1 ≤ ε} \ {ρ2 < ε′}. Otherwise, by Thom (af )-
condition, we would find a point p in Xf ∩ ({ρ1 ≤ ε} \ {ρ2 < ε′}) such that
either ∇(ρ1|W )(p) or ∇(ρ2|W )(p) vanish or ∇(ρ1|W )(p) and ∇(ρ2|W )(p) point in

opposite direction, where W is the stratum of Xf that contains p (see the proof
of Lemma 3.7 in [15]). This is impossible if we are sufficiently close to the origin.
Applying Durfee’s argument mentioned above, we see that f−1(δ) ∩ {ρ1 ≤ ε} is
homeomorphic to f−1(δ) ∩ {ρ2 ≤ ε′} and that f−1(δ) ∩ {ρ1 = ε} is homeomorphic
to f−1(δ) ∩ {ρ2 = ε′}.

The positive (resp. negative) Milnor fibre of f is the set f−1(δ) ∩ {ρ ≤ ε} (resp.
f−1(−δ)∩{ρ ≤ ε}), where 0 < δ � ε� 1 and ρ is a distance function to the origin.
The set f−1(±δ) ∩ {ρ = ε} is the boundary of the Milnor fibre. By the previous
discussion, the topological type of the positive (resp. negative) Milnor fibre and
the topological type of its boundary do not depend on the choice of the definable
distance function to the origin.

In [15], we considered a second definable function-germ g : (Rn, 0)→ (R, 0) and
we assumed that g was the restriction to X of a C2 definable function G : U → R.
Moreover, we assumed that g satisfied the following two conditions:

• Condition (A): g : (X, 0)→ (R, 0) has an isolated critical point at 0.
• Condition (B): the relative polar set

Γf,g = tVβ*XfΓ
Vβ
f,g = tVβ*Xf

{
x ∈ Vβ | rank

[
∇(f|Vβ )(x),∇(g|Vβ )(x)

]
< 2
}

is a 1-dimensional C1 definable set (possibly empty) in a neighborhood of
the origin.

We wrote Γf,g = tli=1Bi, where each Bi is a definable connected curve, and we
considered the intersections points of Γf,g with f−1(δ) ∩ Bnε :

Γf,g ∩ (f−1(δ) ∩ Bnε ) = tli=1Bi ∩ (f−1(δ) ∩ Bnε ) =
{
pδ,ε1 , . . . , pδ,εr

}
,

where 0 < |δ| � ε � 1. The points pδ,εi are exactly the critical points of g on

f−1(δ) ∩ B̊nε . Then we set

I(δ, ε, g) =

r∑
i=1

ind(g, f−1(δ), pδ,εi ),

I(δ, ε,−g) =

r∑
i=1

ind(−g, f−1(δ), pδ,εi ),

and in [15], Theorem 3.10, we related I(δ, ε, g) + I(δ, ε,−g), with 0 < |δ| � ε� 1,
to the topology of the Milnor fibre and its boundary.
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Let us give now a new characterization of I(δ, ε, g) and I(δ, ε,−g) independent
on δ and ε. Let us fix a connected component B of Γf,g. We can assume that f is
stricly increasing on B and we put B ∩ f−1(δ) = {pδ} for δ > 0.

Lemma 3.1. There exists δ0 > 0 such that for 0 < δ ≤ δ0, the function δ 7→
ind(g, f−1(δ), pδ) is constant on ]0, δ0].

Proof. Let d : Rn → R be the distance function to B. It is a continuous definable
function on an open definable neighborhood O of B. Let

A = {x ∈ X | ∃p ∈ B such that f(x) = f(p) and g(x) ≤ g(p)} .
It is a definable subset of X. Let ρ : A ∩ (O \ B) → R2 be the mapping defined
by ρ(x) = (f(x), d(x)). By Hardt’s theorem [24, 10, 37], there is a partition of
]0,+∞[×]0,+∞[ into finitely many definable sets such that ρ is trivial over each of
this set. Let us denote by ∆ the union of the members of this partition which have
dimension less than or equal to 1. By Hardt’s theorem again, the set

{ν ∈]0,+∞[ | ∆ ∩ ({ν}×]0,+∞[) has dimension 1}
is finite. For ν > 0, the function r(ν) = inf{ε′ | (ν, ε′) ∈ ∆} is definable and by
the previous remark, there is ν1 > 0 such that r(ν) > 0 for 0 < ν < ν1. Hence by
the Monotonicity Theorem (see [10], Theorem 2.1 or [37], 4.1), there is 0 < δ0 < ν1

such that r is continuous, monotone and strictly positive on ]0, δ0]. Moreover the
function (δ, ε′) 7→ χ (A ∩ {f = δ} ∩ {d = ε′}) is constant on {(δ, ε′) | 0 < δ < δ0, 0 <
ε′ < r(δ)}. But, by Lemma 3.1 in [18] and the above discussion on the topology of
the link, we have

ind(g, f−1(δ), pδ) = 1− χ
(
{g ≤ g(pδ)} ∩ {f = δ} ∩ {d = ε′}

)
= 1− χ (A ∩ {f = δ} ∩ {d = ε′}) .

We conclude that the function δ 7→ ind(g, f−1(δ), pδ) is constant on ]0, δ0]. �

Of course, a similar result holds for negative values of f .
By the general  Lojasiewicz inequality (see [4], Corollary 1.5.2), there exists a

continuous definable function ψ : (R, 0)→ (R, 0) such that |p| ≤ ψ(f(p)) for p ∈ B.
Moreover ψ is of class C2 in an open neighborhood of 0 and ψ(u) > 0 for u > 0.
Let us fix ε > 0 small. If 0 < δ < ψ−1( ε4 ) then |p| ≤ ε

4 for p ∈ B ∩ f−1(δ).
Since Γf,g consists of a finite number of branches, we can conclude that for

ε > 0 there exists δ0 > 0 such that for 0 < |δ| ≤ δ0, Γf,g ∩ f−1(δ) ⊂ Bnε
4
, and

so Γf,g ∩ (f−1(δ) ∩ Bnε ) = Γf,g ∩ f−1(δ). With the above notation, this means

that pδ,εi = pδi for 0 < |δ| � ε � 1 and i ∈ {1, . . . , r}. For i ∈ {1, . . . , r}, let
τi(g) (resp. τi(−g)) be the value that the function δ 7→ ind(g, f−1(δ), pδi ) (resp.
ind(−g, f−1(δ), pδi )) takes close to the origin. We deduce the following relations:

lim
ε→0

lim
δ→0+

I(δ, ε, g) + I(δ, ε,−g) =
∑

i | f>0 on Bi

τi(g) + τi(−g),

lim
ε→0

lim
δ→0−

I(δ, ε, g) + I(δ, ε,−g) =
∑

i | f<0 on Bi

τi(g) + τi(−g).

Of course, the same study can be done with another definable distance func-
tion to the origin and so, the two limits limε→0 limδ→0+ I(δ, ε, g) + I(δ, ε,−g) and
limε→0 limδ→0− I(δ, ε, g) + I(δ, ε,−g) do not depend on the distance function to the
origin chosen to define the Milnor fibre of f .
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Applying this study to a linear form v∗, where v is generic in Sn−1, we established
in [15], Theorem 4.5, an infinitesimal Gauss-Bonnet formula for the Milnor fibre of
f . We will use only this formula for functions with an isolated stratified critical
point at 0. Namely if X is equipped with a Whitney stratification for which f :
(X, 0) → (R, 0) has an isolated stratified critical point at 0, then ([15], Corollary
4.6)

lim
ε→0

lim
δ→±0

Λ0

(
f−1(δ), f−1(δ) ∩ Bnε

)
= lim
ε→0

lim
δ→±0

χ
(
f−1(δ) ∩ Bnε

)
−1

2
χ
(
Lk(Xf )

)
− 1

2sn−1

∫
Sn−1

χ
(
Lk(Xf ∩ {v∗ = 0})

)
dv.

The proof of this Gauss-Bonnet formula relies on the following exchange formula:

lim
ε→0

lim
δ→±0

Λ0

(
f−1(δ), f−1(δ) ∩ Bnε

)
=

1

2sn−1

∫
Sn−1

lim
ε→0

lim
δ→±0

[
I(δ, ε, v∗) + I(δ, ε,−v∗)

]
dv.

But we have explained above that limε→0 limδ→0 I(δ, ε, v∗) + I(δ, ε,−v∗) does not
depend on the choice of the distance function to the origin used to define the Milnor
fibre of f . Therefore the relations proved in [15], Theorem 4.5 and Corollary 4.6,
are also valid if we replace the usual euclidian distance function by any definable
distance function to the origin. This remark will be important in the next sections.

3.2. Linear kinematic formulas for germs of closed definable sets. Let us
recall the definition of the polar invariants [9]. Let k ∈ {1, . . . , n} and let P ∈ Gkn.
We denote by πP : X → P the orthogonal projection on P . For P generic in
Gkn, Comte and Merle established the existence of an open and dense definable

germ (KP , 0) ⊂ (P, 0) such that, if KP = ∪NPi=1K
P
i denotes its decomposition into

connected components, then the function

KP
i 7→ χPi := lim

ε→0
lim
y∈KP

i
y→0

χ
(
π−1
P (y) ∩X ∩ Bnε

)
is well-defined. Then they set the following definition:

Definition 3.2. Let k ∈ {1, . . . , n}. The polar invariant σk(X, 0) is defined by

σk(X, 0) =
1

gkn

∫
Gkn

NP∑
i=1

χPi ·Θ(Kp
i , 0)dP.

We set σ0(X, 0) = 1.

In [9] the authors defined another sequence of invariants attached to X, called
the local Lipschitz-Killing invariants.

Definition 3.3. Let k ∈ {0, . . . , n}. The local Lipschitz-Killing invariant Λloc
k (X, 0)

is defined by

Λloc
k (X, 0) = lim

ε→0

Λk(X ∩ Bnε , X ∩ Bnε )

bkεk
.

We note that Λloc
0 (X, 0) = 1. Then Comte and Merle proved linear kinematic

formulas that relate the local Lipschitz-Killing invariants to the polar invariants.
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Theorem 3.4 ([9], Theorem 3.1). For any germ (X, 0) ⊂ (Rn, 0) of definable closed
set, we have Λloc

1 (X, 0)
...

Λloc
n (X, 0)

 =


1 m2

1 . . . mn
1

0 1 . . . mn
2

...
...

. . .
...

0 0 . . . 1

 ·
 σ1(X, 0)

...
σn(X, 0)

 ,

where mj
i =

bj
bj−ibi

(
j
i

)
− bj−1

bj−1−ibi

(
j−1
i

)
, for i+ 1 ≤ j ≤ n.

If dimX = d then σd+1(X, 0) = · · · = σn(X, 0) = 0 and one recovers the local
Cauchy-Crofton formula Λloc

d (X, 0) = σd(X, 0), previously proved by Comte [8].
In [14], we also studied the asymptotic behavior of the Lipschitz-Killing measures.

For k = 0, . . . , n, we considered the limits

Λlim
k (X, 0) := lim

ε→0

Λk(X,X ∩ Bnε )

bkεk
,

and we showed the following theorem:

Theorem 3.5 ([14], Theorem 5.1). For any germ (X, 0) ⊂ (Rn, 0) of definable
closed set, we have

Λlim
0 (X, 0) = 1− 1

2
χ(Lk(X))− 1

2gn−1
n

∫
Gn−1
n

χ(Lk(X ∩H))dH.

Furthermore for k ∈ {1, . . . , n− 2}, we have

Λlim
k (X, 0) = − 1

2gn−k−1
n

∫
Gn−k−1
n

χ(Lk(X ∩H))dH

+
1

2gn−k+1
n

∫
Gn−k+1
n

χ(Lk(X ∩ L))dL,

and:

Λlim
n−1(X, 0) =

1

2g2
n

∫
G2
n

χ(Lk(X ∩H))dH,

Λlim
n (X, 0) =

1

2g1
n

∫
G1
n

χ(Lk(X ∩H))dH.

As a corollary, we obtained:

Corollary 3.6 ([14], Corollary 5.2). For any germ (X, 0) ⊂ (Rn, 0) of definable
closed set, the equality 1 =

∑n
k=0 Λlim

k (X, 0) holds.

We note that Λlim
k (X, 0) differs from Λloc

k (X, 0), because the link of X does not
have any contribution in the computation of Λlim

k (X, 0).
In [15], we continued our study of the Lipschitz-Killing measures and established

a local linear kinematic formula for Λlim
k (X, 0), which was our inspiration for the

present work. Let H ∈ Gn−kn , k ∈ {1, . . . , n}, and let v be an element in Sk−1
H⊥

. For
δ > 0, we denote by Hv,δ the (n− k)-dimensional affine space H + δv and we set

β0(H, v) = lim
ε→0

lim
δ→0

Λ0(Hδ,v ∩X,Hδ,v ∩X ∩ Bnε ).

Then we set

β0(H) =
1

sk−1

∫
Sk−1

H⊥

β0(H, v)dv.
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Theorem 3.7 ([15], Theorem 5.5). For k ∈ {1, . . . , n}, we have

Λlim
k (X, 0) =

1

gn−kn

∫
Gn−kn

β0(H)dH.

We also proved local linear kinematic formulas that relate the limits Λlim
k (X, 0)

to the polar invariants.

Theorem 3.8 ([15], Theorem 5.6). For k ∈ {0, . . . , n− 1}, we have

Λlim
k (X, 0) = σk(X, 0)− σk+1(X, 0).

Furthermore, we have
Λlim
n (X, 0) = σn(X, 0).

4. Some preliminary topological and geometrical results

Let (X, 0) and (Y, 0) be two germs of closed definable sets in Rn. For convenience,
we will work with two representatives of these germs that we denote by X and Y
as well. We assume that these representatives X and Y are included in an open
neighborhood U of 0.

4.1. A Gauss-Bonnet formula. Let {Si}li=0 be a Whitney stratification of X,
where S0 = {0} and 0 ∈ Si for i ∈ {1, . . . , l}. Similarly let {Tj}mj=0 be a Whitney

stratification of Y , where T0 = {0} and 0 ∈ Tj for j = {1, . . . ,m}. We assume each
stratum to be connected. We introduce the following condition:

• Condition (1): for i ∈ {1, . . . , l} and for j ∈ {1, . . . ,m}, Si and Tj intersect
transversally (the case Si ∩ Tj = ∅ is possible).

If X and Y satisfy Condition (1) then X ∩ Y admits a Whitney stratification
X ∩ Y = trk=0Rk, where R0 = {0} and each Rk is a connected component of an
intersection Si ∩ Tj , (i, j) ∈ {1, . . . , l} × {1, . . . ,m}.

Let X̂ ⊂ Rn+1 be the following definable set:

X̂ =
{

(x, t) ∈ Rn+1 | x ∈ X
}
.

It is included and closed in U×R. Let v ∈ Sn−1 and let Ŷv ⊂ Rn+1 be the following
definable set:

Ŷv =
{

(y, t) ∈ Rn+1 | ∃y′ ∈ Y such that y = y′ + tv
}
.

It is included and closed in the open set

Ûv =
{

(u, t) ∈ Rn+1 | ∃u′ ∈ U such that u = u′ + tv
}
.

It is well-known (see [23]) that we can equip X̂ with a Whitney stratification in the

following way: X̂ = tli=0Ŝi where Ŝi = {(x, t) ∈ Rn+1 | x ∈ Si}. Similarly we can

consider the following partition of Ŷv: Ŷv = tmj=0(̂Tj)v where

(̂Tj)v =
{

(y, t) ∈ Rn+1 | ∃y′ ∈ Tj such that y = y′ + tv
}
.

Lemma 4.1. The partition Ŷv = tmj=0(̂Tj)v gives a Whitney stratification of Ŷv.

Proof. With obvious notations, the partition Ŷ = tmj=0T̂j induces a Whitney strat-

ification of Ŷ . Let φ : U × R → Ûv be defined by φ(u, t) = (u + tv, t). Then φ is

a diffeomorphism, φ(Ŷ ) = Ŷv and φ(T̂j) = (̂Tj)v for j ∈ {0, . . . ,m}. This gives the
result for Whitney’s conditions are invariant by C1-diffeomorphisms. �
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From now on, we will focus on the definable set X̂ ∩ Ŷv. Let us denote if by Zv.

It is included and closed in the open set (U ×R) ∩ Ûv. We introduce the following
second condition:

• Condition (2): for i ∈ {0, . . . , l} and j ∈ {0, . . . ,m}, the strata Ŝi and (̂Tj)v
intersect transversally outside (0, 0).

If v satisfies Condition (2) then Zv admits a Whitney stratification Zv = tql=0Ql

where each Ql is a connected component of an intersection Ŝi∩ (̂Tj)v. We note that

necessarly Ŝ0 ∩ (̂T0)v = {(0, 0)} and that we can put Q0 = {(0, 0)}.

Lemma 4.2. Assume that X and Y satisfy Condition (1) and that v satisfies
Condition (2). Then the function

t|Zv : Zv → R
(y, t) 7→ t

has an isolated stratified critical point at (0, 0).

Proof. Let Q be a stratum of Zv different from {(0, 0)}. Since the critical points of

t|Q lie in {t = 0}, we can suppose that Q is a connected component of Ŝi ∩ (̂Tj)v

with i 6= 0 and j 6= 0. Let us prove that {t = 0} intersects Ŝi ∩ (̂Tj)v transversally.

If it is not the case, then there is a point p in Ŝi ∩ (̂Tj)v ∩ {t = 0} such that

Tp(Ŝi ∩ (̂Tj)v) ⊂ Rn. But it is not difficult to check that {t = 0} intersects Ŝi

and (̂Tj)v transversally, so TpSi = TpŜi ∩ Rn and TpTj = Tp(̂Tj)v ∩ Rn. Moreover,
Si and Tj intersect transversally and so Tp(Si ∩ Tj) = TpSi ∩ TpTj . Similarly,

Tp(Ŝi ∩ (̂Tj)v) = TpŜi ∩ Tp(̂Tj)v. We get that Tp(Si ∩ Tj) = Tp(Ŝi ∩ (̂Tj)v). This

is not possible, for dimŜi = dimSi + 1, dim(̂Tj)v = dimTj + 1 and these two
intersections are transverse in Rn and Rn+1. �

We can apply Corollary 4.6 in [15] to t and Zv.

Corollary 4.3. Assume that X and Y satisfy Condition (1) and that v satisfies
Condition (2). Then we have

lim
ε→0

lim
δ→±0

Λ0

(
Zv ∩ {t = δ}, Zv ∩ {t = δ} ∩ Bn+1

ε

)
= lim
ε→0

lim
δ→±0

χ
(
Zv ∩ {t = δ} ∩ Bn+1

ε

)
−1

2
χ (Lk(X ∩ Y ))− 1

2sn−1

∫
Sn−1

χ (Lk(X ∩ Y ∩ {u∗ = 0}) du.

Proof. We just have to show that

1

2sn−1

∫
Sn−1

χ (Lk(X ∩ Y ∩ {u∗ = 0}) du =
1

2sn

∫
Sn
χ (Lk(X ∩ Y ∩ {u∗ = 0}) du.

But since X ∩ Y is included in Rn, the method given in the proof of Corollary 5.1
[12] applies here. �

Let us go back now to the sets X and Y . We denote the definable set X∩(Y +δv)
by Zv,δ.

Lemma 4.4. There exists ε0 > 0 such that for 0 < ε ≤ ε0, there exists δε > 0 such
that for 0 < δ ≤ δε, the topological type of Zv,δ ∩ Bnε does not depend on the choice
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of the couple (ε, δ). Moreover for 0 < δ � ε� 1, Zv,δ ∩Bnε and Zv ∩{t = δ}∩Bn+1
ε

are homeomorphic.

Proof. Let ρ(x, t) =
√
x2

1 + · · ·+ x2
n + t. Then Zv,δ ∩ Bnε is homeomorphic to Zv ∩

{t = δ} ∩ {ρ ≤ ε + δ}. Let π : Zv ∩ {t ≥ 0} → R be the mapping defined by
π(x, t) = (ρ(x, t), t) and let ∆ ⊂ R2 be its (stratified) discriminant. It is a definable
curve in a neighborhood of 0 ∈ ∆ in R+ × R+. The following function

r : R+ → R+

ν 7→ inf{t | (ν, t) ∈ ∆}
is a definable function defined in a neighborhood of 0. Note that r(0) = 0 and
r(ν) > 0 for ν > 0 close to 0. By the Monotonicity Theorem (see Theorem 2.1
in [10] or [37], 4.1), we can assume that r is continuous and increasing on a small
interval ]0, ν0[. Let (ε, δ) be a couple such that 0 < ε < ν0, 0 < δ < r(ε) and
Zv ∩ {t = δ} ∩ {ρ ≤ ε} has the topological type of the Milnor fibre of t|Zv . By
taking δ smaller if necessary, we can assume that ε+ δ < ν0. Since r is increasing,
δ < r(ε) < r(ε + δ) and so Zv ∩ {t = δ} ∩ {ρ ≤ ε + δ} is homeomorphic to
Zv ∩ {t = δ} ∩ {ρ ≤ ε}. We conclude with the results of Section 3. �

A similar result is true for negative values of t replacing
√
x2

1 + · · ·+ x2
n+ t with√

x2
1 + · · ·+ x2

n − t. We can state the infinitesimal Gauss-Bonnet formula for Zv,δ.

Lemma 4.5. Assume that X and Y satisfy Condition (1) and that v satisfies
Condition (2). Then we have

lim
ε→0

lim
δ→±0

Λ0 (Zv,δ, Zv,δ ∩ Bnε ) = lim
ε→0

lim
δ→±0

χ (Zv,δ ∩ Bnε )

−1

2
χ (Lk(X ∩ Y ))− 1

2sn−1

∫
Sn−1

χ (Lk(X ∩ Y ∩ {u∗ = 0})) du.

Proof. Let i : Rn → Rn+1, x 7→ (x, δ). Since i is a definable isometry, by Theorem
5.0 in [22] or Proposition 9.2 in [4], we have

Λn0 (Zv,δ, Zv,δ ∩ Bnε ) = Λn+1
0 (Zv ∩ {t = δ}, Zv ∩ {t = δ} ∩ {ρ ≤ ε+ δ}) .

Here we suppose that δ > 0, Λn0 (resp. Λn+1
0 ) stands for the Gauss-Bonnet measure

in Rn (resp. Rn+1) and ρ(x, t) =
√
x2

1 + · · ·+ x2
n + t

As explained in Section 3, for u generic in Sn and for ε > 0 sufficiently small,
there exists δε,u such that for 0 < δ ≤ δε,u, the critical points of u∗ and −u∗ in
Zv,δ ∩ {t = δ} actually lie in Zv,δ ∩ {t = δ} ∩ {ρ ≤ ε

4}, hence there are not in
Zv,δ ∩ {t = δ} ∩ {ε ≤ ρ ≤ ε+ δ}. Thanks to this observation, we can conclude that

lim
ε→0

lim
δ→0

Λn+1
0 (Zv ∩ {t = δ}, Zv ∩ {t = δ} ∩ {ρ ≤ ε+ δ})

= lim
ε→0

lim
δ→0

Λn+1
0 (Zv ∩ {t = δ}, Zv ∩ {t = δ} ∩ {ρ ≤ ε}) .

It is enough to apply Corollary 4.3 and the comments of Section 3 on the choice of
the distance function to the origin to get the result. �

4.2. A useful lemma. We continue this section with a remark. Instead of trans-
lating Y , we can translate X, intersect this translated set with Y and obtain another
Milnor fibre Y ∩ (X + δv) ∩ Bnε , 0 < |δ| � ε� 1.

Lemma 4.6. There exists ε0 > 0 such that for 0 < ε ≤ ε0, there exists δε > 0 such
that 0 < δ ≤ δε, X ∩ (Y + δv) ∩ Bnε and Y ∩ (X − δv) ∩ Bnε are homeomorphic.
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Proof. Let ρv(x, t) =
√

(x1 − tv1)2 + · · ·+ (xn − tvn)2+t. By the results of Section
3, we know that there exists ε0 > 0 such that for 0 < ε ≤ ε0, there exists δε > 0
such that for 0 < δ ≤ δε, the topological type of Zv ∩ {t = δ} ∩ {ρv ≤ ε} does not
depend on the couple (ε, δ) and is the topological type of the positive Milnor fibre
of t|Zv . On the other hand, the set X ∩ (Y + δv) ∩ (Bnε + δv) is homeomorphic to
Zv ∩{t = δ}∩{ρv ≤ ε+ δ}. The same method as the one used in Lemma 4.4 shows
that for 0 < ε ≤ ε0 and 0 < δ ≤ δε small enough, Zv ∩ {t = δ} ∩ {ρv ≤ ε + δ}
is homeomorphic to Zv ∩ {t = δ} ∩ {ρv ≤ ε}. We conclude that Zv,δ ∩ Bnε is
homeomorphic to Zv,δ ∩ (Bnε + δv) for 0 < δ � ε� 1. But[

X ∩ (Y + δv) ∩ (Bnε + δv)
]
− δv = (X − δv) ∩ Y ∩ Bnε .

�

4.3. Genericity of Conditions (1) and (2). We prove the genericity of Condi-
tions (1) and (2). To prove the genericity of Condition (1), we need some auxiliary
lemmas.

Lemma 4.7. Let x ∈ Rn be a non-zero vector. We have{
Hx | H ∈Mn(R) such that tH = −H

}
= x⊥.

Proof. It is clear that if H is an antisymmetric matrix, then Hx ∈ x⊥. Let us write
x = (x1, . . . , xn) and let a = (a1, . . . , an) ∈ x⊥. Since x 6= (0, . . . , 0) then there
exists k such that xk 6= 0. Then we can construct H = (hij) in the following way:

hkj = − aj
xk
, hjk = −hkj for j 6= k,

and putting hij = 0 for the other coefficients. Then H is antisymmetric and
Hx = a. �

Lemma 4.8. Let f : Rn → Rk with 1 ≤ k ≤ n− 1 be a C1 mapping and let F be
the mapping defined by

F : Mn(R) → Sn(R)× Rk
A 7→ (tAA, f(Ax)),

where x is a non-zero vector. If A ∈ SO(n) and Df(Ax)|(Ax)⊥ : (Ax)⊥ → Rk is
surjective then DF (A) is a surjection.

Proof. We have DF (A)(H) = (tAH+tHA,Df(Ax)(Hx)). Let (Y, α) ∈ Sn(R)×Rk,
we have that

tA

(
1

2
AY

)
+ t

(
1

2
AY

)
A = Y.

Let β = Df(Ax)( 1
2AY x). We have to find H such that tAH + tHA = 0 and

Df(Ax)(Hx) = α−β. Since Df(Ax)|(Ax)⊥ is a surjection, by the previous lemma,
there exists an antisymmetric matrix L such that Df(Ax)(LAx) = α−β. We take
H = LA. �

Lemma 4.9. Let T ⊂ Rn be a C1 definable submanifold of dimension d such that
0 ∈ T . Then there exists a neighborhood UT of 0 such that for x ∈ T ∩ (UT \ {0}),
dim(TxT ∩ x⊥) ≤ d− 1.
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Proof. If it is not the case, then there exists an injective C1 definable map µ :
[0, ν) → T such that µ(0) = 0 and for t 6= 0, Tµ(t)T ⊂ µ(t)⊥, hence µ(t) ⊥ Tµ(t)T .
Since µ′(t) ∈ Tµ(t)T , we get that 〈µ(t), µ′(t)〉 = 0. This implies that 〈µ(t), µ(t)〉′ = 0
and that |µ(t)| = 0, which is not possible. �

Lemma 4.10. There exists a definable subset ΣX,Y ⊂ SO(n) of positive dimension
such that for γ /∈ ΣX,Y , X and γY satisfy Condition (1).

Proof. We note first that {γTj}mj=0 is a Whitney stratification of γY . Let S 6= {0}
be a stratum of X and let T 6= {0} be a stratum of Y . We have to prove that there
exists a definable subset ΣS,T ⊂ SO(n) of positive codimension such that S and γT
intersect transversally in a neighborhood of 0. If dimS = n or dimT = n, there is
nothing to prove so we can assume that e := dimS ≤ n− 1 and d := dimT ≤ n− 1.
Let M be the following definable set:

M =
{

(p, γ) ∈ (U ′ \ {0})×O(n) | p ∈ S ∩ γ−1T
}
,

where U ′ is an open definable neighborhood of 0, included in U ∩UT and such that
γU ′ ⊂ U ′ for all γ ∈ O(n). Let us prove that M is a definable submanifold of
Rn ×Mn(R).

Let (p, γ) be a point in M . There is an open neighborhood V of (p, γ) in Rn ×
Mn(R) such that in V, M is defined G(x,A) = (0, In, 0), where

G : Rn ×Mn(R) → Rn−e × Sn(R)× Rn−d
(x,A) 7→ (g(x), tAA, f(Ax)),

and where g is a definable submersion such that S is locally defined by g(x) = 0 in
a neighborhood of p and f is a definable submersion such that T is locally defined
by f(x) = 0 in a neighborhood of γp.

Since p belongs to U ′, γp ∈ UT ∩ T and so dim(TγpT ∩ (γp)⊥) ≤ d − 1, which
implies that Df(γp)|(γp)⊥ : (γp)⊥ → Rn−d is a surjection. By Lemma 4.8, the
mapping

F : Mn(R) → Sn(R)× Rn−d
A 7→ (tAA, f(Ap))

is a submersion at γ. Therefore the submatrix of the jacobian matrix of G at (p, γ)
formed by the partial derivatives of F with respect A has maximal rank. But the
submatrix of the jacobian matrix of G at (p, γ) formed by the partial derivatives of
g with respect to x has also maximal rank. We conclude that G is a submersion at
(p, γ) and that M is a definable submanifold of dimension

n+ n2 − 2n− n(n+ 1)

2
+ (e+ d) =

n(n− 1)

2
+ (e+ d)− n.

Let π : M → O(n) be the natural projection. By Sard’s theorem (see [5]), its
discriminant ∆ is a definable subset of positive codimension. Let T : O(n)→ O(n)
be the definable diffeomorphism given by T (A) = tA. It is enough to take ΣS,T =
T (∆) ∩ SO(n). �

Lemma 4.11. Assume that X and Y satisfy Condition (1). There exists a definable
subset ΓX,Y ⊂ Sn−1 of positive codimension such that for v /∈ ΓX,Y , v satisfies
Condition (2).
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Proof. Let S be a stratum of X and let T be a stratum of Y . We have to prove
that there exists a definable subset ΓS,T ⊂ Sn−1 of positive codimension such that

Ŝ and T̂v intersect transversally outside (0, 0), in a neighborhood of (0, 0).

If S = {0} and T = {0}, then Ŝ ∩ T̂v = {(0, 0)} and there is nothing to prove.
If dimS = n or dimT = n, there is nothing to prove neither. Let us treat first the
case 0 < e := dimS ≤ n − 1 and 0 < d := dimT ≤ n − 1. Let M be the following
definable set:

M =
{

(p, τ, ν) ∈ U × R× (Rn \ {0}) | (p, τ) ∈ Ŝ ∩ T̂ν
}
.

Let us prove that M is a definable submanifold. Let (p, τ, ν) be a point in M . There
is an open neighborhood V of (p, τ, ν) ∈ U × R × (Rn \ {0}) such that in V, M is
defined by g(x) = 0 and f(x−tv) = 0, where g is a definable submersion such that S
is locally defined by g(x) = 0 in a neighborhood of p and f is a definable submersion
such that T is locally defined by f(x) = 0 in a neighborhood of p− τν. It is easy to
check that the Jacobian matrix of the mapping (g, f) has maximal rank at (p, τ, ν)
if τ 6= 0. If τ = 0 this is also the case by Condition (1). Therefore M is a definable
submanifold of dimension 2n+ 1− 2n+ (e+ d) = (e+ d) + 1. Let π : M → Rn be
the projection π(p, τ, ν) = ν. By Sard’s theorem (see [5]), its discriminant ∆ is a
definable subset of positive codimension. We take ΓS,T = Sn−1 \∆. The remaining
two cases are proved with the same method. �

4.4. The link of Zv ∩ {t ≥ 0}. We study the link of the set Zv ∩ {t ≥ 0}. We still
assume that X and Y satisfy Condition (1) and that v satisfies Condition (2). For
(x, t) ∈ Rn+1, we set ω(x, t) = |x|. Let ε0 > 0 be such that Bnε0 ⊂ U . We set

ΓY =

{
(
1

u
y, u) | y ∈ Y, u ∈]0, ε0[

}
⊂ Rn+1.

We recall that the tangent cone of Y at 0 is C0Y = ΓY ∩ (Rn × {0}). It is a closed
and conic definable set in Rn.

Lemma 4.12. If v /∈ (−C0(Y ))∩ Sn−1 then there exist εv > 0 and a > 0 such that
the inclusion

Ŷv ∩ {t ≥ 0} ∩ Bn+1
εv ⊂

{
(x, t) ∈ Rn+1 | |x| ≥ at

}
∩ Bn+1

εv

holds.

Proof. If it is not the case then we can find a sequence of points (xn, tn)n∈N in

Ŷv \ {t = 0} such that (xn, tn)→ (0, 0) and limn→+∞
|xn|
tn

= 0. We have

|xn − tnv|2 = |xn|2 + t2n − 2tn〈xn, v〉,
and so

|xn − tnv|2

t2n
=
|xn|2

t2n
+ 1− 2〈xn

tn
, v〉.

Since |〈xntn , v〉| ≤
|xn|
tn

, we find that limn→+∞
|xn−tnv|

tn
= 1. Since |xn|

|xn−tnv| = |xn|
tn
×

tn
|xn−tnv| , we find that limn→+∞

|xn|
|xn−tnv| = 0. Therefore we see that

lim
n→+∞

xn − tnv
|xn − tnv|

= −v,

which implies that −v belongs to C0(Y ) ∩ Sn−1. �
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Corollary 4.13. If v /∈ (−C0(Y ))∩Sn−1 then for 0 < ε� 1, the link of Ẑv∩{t ≥ 0}
is homemorphic to Ẑv ∩ {t ≥ 0} ∩ {(x, t) | |x| = ε}.

Proof. It is enough to show the implication{
(y0, t0) ∈ Ŷv ∩ {t ≥ 0} ∩ Bn+1

εv
ω(y0, t0) = 0

⇒ (y0, t0) = (0, 0).

But if ω(y0, t0) = 0 then |y0| = 0 and, by the previous lemma, |y0| ≥ at0 for some
a > 0. �

If dimC0(Y ) ≤ n − 1 then the previous corollary holds for almost all v in Sn−1

since dimC0(Y ) ∩ Sn−1 < n− 1.
In the rest of this subsection, we assume that dimC0(Y ) = n. This implies that

dimY = n. Let us denote by Y ′ the union of the strata of Y of dimension less than
or equal to n − 1. It is a closed definable set of dimension less than or equal to
n− 1, if not empty. We need auxiliary lemmas.

Lemma 4.14. Let S ⊂ Rn be a definable open subset such that 0 ∈ S and that
dimC0S = n. If v is in C0S \C0(S \S) then there is α > 0 such that ]0, α] · v ⊂ S.

Proof. We note that C0S \ C0(S \ S) is not empty because dimC0(S) = n. Let
v ∈ C0S \C0(S \S) (note that necessarly v 6= 0). Let us suppose that for all α > 0,
]0, α] · v is not included in S. Hence we can construct a sequence (zn)n∈N in the
complement cS of S such that (zn) tends to 0 and zn

|zn| = v. This implies that v

belongs to C0(cS). Since v belongs to C0(S) as well, there exists a sequence of
points (xn)n∈N in S such that xn

|xn| tends to v.

Let a ∈ S and let b ∈ cS. Let [a, b] be the segment with extremities a and b, i.e.

[a, b] = {z | z = λa+ (1− λ)b, λ ∈ [0, 1]} .

Since S is open, there exists 0 < η ≤ 1 such that [a, a+ η(b− a)[ is included in S.
Let ηa be the supremum of such η’s. The point a+ ηa(b− a) lies in S \S. Actually
if a+ ηa(b−a) is in S then there exists η′ > ηa such that a+ η′(b−a) ∈ S, because
S is open. We conclude that the segment [a, b] intersects S \ S.

For each n ∈ N, let yn be a point in [xn, zn] ∩ (S \ S). If there is a subsequence
yτ(n) such that yτ(n) = 0, then

xτ(n)

|xτ(n)|
= −v, which is not possible for

xτ(n)

|xτ(n)|
tends

to v. Therefore we can assume that yn 6= 0 for n ∈ N, and write

yn
|yn|

=
λn|zn|
|yn|

· v +
(1− λn)|xn|
|yn|

· xn
|xn|

,

where λn ∈ [0, 1]. For simplicity we rewrite this equality in the following way:

yn
|yn|

= αn · v + βn ·
xn
|xn|

,

with αn, βn ≥ 0. Since 〈v, xn|xn| 〉 → 1, there is n0 such that for n ≥ n0, 〈v, xn|xn| 〉 ≥
1
2 .

This implies that for n ≥ n0, 0 ≤ α2
n + β2

n + αnβn ≤ 1 and so the sequences
(αn)n∈N and (βn)n∈N are bounded. Therefore, taking a subsequence if necessary,
we can assume that αn tends to α ≥ 0 and βn tends to β ≥ 0. Hence yn

|yn| tends

to (α + β)v, where α + β = 1 for the limit of yn
|yn| is a unit vector. We see that v

belongs to C0(S \ S), which is not possible by hypothesis. We conclude that there
is α > 0 such that ]0, α] · v ⊂ S. �
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Lemma 4.15. Let W ⊂ Rn be a closed definable set equipped with a Whitney
stratification. Suppose that 0 ∈W and that 0 lies in a stratum of dimension greater
than or equal to 1. Let g : W → R be a definable function, restriction of a C2

definable function, such that 0 is not a stratified critical point of g. Let f : W ∩{g ≤
0} → R be a definable function, restriction of a C2 definable function, such that
f(0) = 0 and 0 is a local strict maximum of f . Then ind(f,W ∩ {g ≤ 0}, 0) = 0.

Proof. By Lemma 3.3 in [18], χ (Lk(W ∩ {g ≤ 0})) = 1. Since −f|W∩{g≤0} is a
distance function to the origin, we can write

ind(f,W ∩ {g ≤ 0}, 0) = 1− χ (W ∩ {g ≤ 0} ∩ {−f ≤ ε} ∩ {f = −δ}) ,

with 0 < δ < ε� 1. But W ∩ {g ≤ 0} ∩ {−f ≤ ε} ∩ {f = −δ} is homeomorphic to
the link of W ∩ {g ≤ 0} at 0. �

Let us choose v in (−C0(Y ))∩Sn−1 such that v /∈ (−C0(Y ′))∩Sn−1. By Lemma
4.12, there exists εv > 0 and a > 0 such that

Ŷ ′v ∩ {t ≥ 0} ∩ Bn+1
εv ⊂ {(x, t) | |x| ≥ at} ∩ Bn+1

εv .

Lemma 4.16. Under these assumptions, we have

χ

(
X ∩ (Y +

2ε

a
v) ∩ Bnε

)
= 1,

for 0 < ε� 1.

Proof. For 0 < ε � 1, we set rε =

√
ε2 +

(
2ε
a

)2
. The set X ∩ (Y + 2ε

a ) ∩ Bnε is

the intersection Zv ∩ {t = 2ε
a } ∩ Bn+1

rε . If (x0, t0) lies in Zv ∩ {t ≥ 2ε
a } ∩ Bn+1

rε then

|x0|2 ≤ ε2 +
(

2ε
a

)2 − t20 and |x0|2
t20
≤ ε2

t20
≤
(
a
2

)2
. Therefore if ε is sufficiently small,

Zv ∩ {t ≥ 2ε
a } ∩ Bn+1

rε ∩ Ŷ ′v = ∅.
The function t|Zv has an isolated stratified critical value at 0. If ε is small

enough, the stratified critical points of t|Zv∩{t> 2ε
a }∩B

n+1
rε

lie in Zv ∩ {t > 2ε
a } ∩ Snrε .

But Ŷ ′v does not intersect Zv ∩ {t > 2ε
a } ∩ Bn+1

rε , so Zv ∩ {t > 2ε
a } ∩

˚Bn+1
rε (resp.

Zv ∩ {t > 2ε
a } ∩ Snrε) is stratified by strata of the form Ŝ ∩ T̂v ∩ {t > 2ε

a } ∩
˚Bn+1
rε

(resp. Ŝ ∩ T̂v ∩ {t > 2ε
a } ∩ S

n
rε), where S is a stratum of X and T is a stratum of Y

of dimension n. This means that Zv ∩ {t > 2ε
a } ∩

˚Bn+1
rε (resp. Zv ∩ {t > 2ε

a } ∩ Snrε)
is stratified by open subsets of strata of the form Ŝ ∩ {t > 2ε

a } ∩
˚Bn+1
rε (resp.

Ŝ ∩ {t > 2ε
a } ∩ Snrε).

Such a stratum Ŝ is a product S×]− ε′, ε”[ where ε′, ε” > 0 are small and S is a
stratum of X. A point (x0, t0) is a critical point of t|Ŝ∩Snrε

if and only if x0 ∈ S and

rank


N1(x0) 0

...
...

Ncs(x0) 0
x0 t0
0 1

 < cS + 2,
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where (N1(x0), . . . , NcS (x0)) is a basis of the normal space to S at x0, that is if and
only if

rank


N1(x0)

...
Ncs(x0)
x0

 < cS + 1.

But if x0 is a point of S close to 0 but distinct from 0, the sphere Sn−1
|x0| intersects

the stratum S transversally. We conclude that the unique possible critical point of
t|Ŝ∩Snrε

is the point (0, rε). But v is in (−C0Y \−C0Y
′)∩ Sn−1, so by Lemma 4.14,

there is α > 0 such that ]0, α] · (−v) ⊂ T where T is a stratum of Y of dimension

n. Hence {0}×]0, α] is included in T̂v. We conclude that for 0 < ε � 1, (0, rε) is
the only critical point of t|Zv∩{t> 2ε

a }∩B
n+1
rε

. Moreover it is a strict local maximum.

Applying Theorem 3.1 in [13] and Lemma 4.15, we get

χ

(
Zv ∩ {t ≥

2ε

a
} ∩ Bn+1

rε

)
− χ

(
Zv ∩ {t =

2ε

a
} ∩ Bn+1

rε

)
= 0,

and

χ

(
Zv ∩ {t ≥

2ε

a
} ∩ Bn+1

rε

)
= ind(−t, Zv ∩ Bn+1

rε , (0, rε)) = 1,

because −t|Zv∩Bn+1
rε

has a strict local minimum at the point (0, rε). �

Corollary 4.17. Under the same assumptions, we have

χ (Lk(Zv ∩ {t ≥ 0})) = χc

(
Zv ∩ {t ≥ 0} ∩ {(x, t) | |x| = ε, t <

2ε

a
}
)

+ 1.

Proof. Let h(x, t) be the semi-algebraic function defined by

h(x, t) = max
(
|x|, a

2
t
)
.

As explained by Durfee in [11], Section 3, the link of Zv ∩{t ≥ 0} is homeomorphic
to Zv ∩ {t ≥ 0} ∩ {h = ε} for 0 < ε� 1. We have

Zv ∩ {t ≥ 0} ∩ {h = ε} = Zv ∩ {t ≥ 0} ∩ {|x| = ε,
at

2
≤ ε}⋃

Zv ∩ {t ≥ 0} ∩ {|x| ≤ ε, at
2

= ε}.

It is enough to use the previous lemma and the additivity of χc. �

4.5. On the two sides of the kinematic formulas. We prove the existence
of the left-hand sides of the kinematic formulas, and we show that both sides of
the formulas are symmetric in X and Y . We also give a relation with the polar
invariants.

Let (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂ (Rn, 0) be two germs of closed definable sets.
We assume that X and Y are included in an open set U . Let ε0 > 0 be such that
Bnε0 ⊂ U .

1) Let us fix (ε, δ) such that 0 ≤ ε ≤ ε0 and 0 ≤ δ ≤ ε. Let

A =
{

(x, γ, v) ∈ Rn × SO(n)× Sn−1 | x ∈ X,x− δv ∈ γY, |x| ≤ ε
}
.

It is a closed definable set. By Hardt’s theorem applied to the projection π : A →
SO(n)× Sn−1, the function (γ, v) 7→ χ (X ∩ (γY + δv) ∩ Bnε ) takes a finite number
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of values. As in [3] we equip SO(n) with the Haar measure dγ, normalized in such a
way that the volume of SO(n) is sn−1. We equip Sn−1 with the usual Riemanniann
measure (or density) dv and SO(n)× Sn−1 with the product measure dγdv. With
this measure, the function (γ, v) 7→ χ (X ∩ (γY + δv) ∩ Bnε ) is integrable and so the
integral ∫

SO(n)×Sn−1

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv

exists and is finite. Moreover the function

γ 7→
∫
Sn−1

χ (X ∩ (γY + δv) ∩ Bnε ) dv

is integrable and the function

v 7→
∫
SO(n)

χ (X ∩ (γY + δv) ∩ Bnε ) dγ

is integrable and we have∫
SO(n)×Sn−1

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv

=

∫
SO(n)

[

∫
Sn−1

χ (X ∩ (γY + δv) ∩ Bnε ) dv]dγ

=

∫
Sn−1

[

∫
SO(n)

χ (X ∩ (γY + δv) ∩ Bnε ) dγ]dv.

Now let us fix ε > 0 such that 0 < ε ≤ ε0. By Hardt’s theorem, for every
(γ, v) ∈ SO(n) × Sn−1, there is a small interval ]0, δε[ such that the function δ 7→
χ (X ∩ (γY + δv) ∩ Bnε ) is constant on ]0, δε[ and so limδ→0+ χ (X ∩ (γY + δv) ∩ Bnε )
exists and is this constant value. Similarly as above, the function (γ, v, δ) 7→
χ (X ∩ (γY + δv) ∩ Bnε ) takes a finite number of values and so, by Lebesgue’s the-
orem, the function (γ, v) 7→ limδ→0+ χ (X ∩ (γY + δv) ∩ Bnε ) is integrable and we
have

lim
δ→0+

∫
SO(n)×Sn−1

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv

=

∫
SO(n)×Sn−1

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv. (∗)

Let us fix (γ, v) ∈ SO(n)× Sn−1 and let

B =
{

(x, ε, δ) ∈ Rn × {(ε, δ) | 0 < ε ≤ ε0, 0 < δ ≤ ε} | x ∈ X,x− δv ∈ Y, |x| ≤ ε
}
.

It is a closed definable set. Applying the argument of the proof of Lemma 3.1, we
see that there exists 0 < ε1 ≤ ε0 and a definable function r :]0, ε1]→ R continuous,
monotone and strictly positive such that the function

(ε′, δ′) 7→ χ (X ∩ (γY + δv) ∩ Bnε′)
is constant on {(ε′, δ′) | 0 < ε′ < ε1, 0 < δ′ < r(ε′)}. But we see that for ε′ ∈]0, ε1[
and 0 < δ′ < r(ε′),

χ (X ∩ (γY + δ′v) ∩ Bnε′) = lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε′) .

Therefore the limit limε→0 limδ→0+ χ (X ∩ (γY + δv) ∩ Bnε ) exists and equals the
above constant value. Always by Hardt’s theorem, the function (γ, v, ε, δ) 7→



PRINCIPAL KINEMATIC FORMULAS FOR GERMS OF CLOSED DEFINABLE SETS 21

χ (X ∩ (γY + δv) ∩ Bnε ) takes a finite number of values and so does the function
(γ, v, ε) 7→ limδ→0+ χ (X ∩ (γY + δv) ∩ Bnε ). By Lebesgue’s theorem, the function
(γ, v) 7→ limε→0 limδ→0+ χ (X ∩ (γY + δv) ∩ Bnε ) is integrable and

lim
ε→0

∫
SO(n)×Sn−1

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv

=

∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv.

Finally, by Equality (∗) above, we have that

lim
ε→0

[ lim
δ→0+

∫
SO(n)×Sn−1

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv]

exists and equals∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv.

Definition 4.18. For two germs of closed definable sets (X, 0) ⊂ (Rn, 0) and
(Y, 0) ⊂ (Rn, 0), we set

σ(X,Y, 0) =
1

s2
n−1

∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) dγdv.

2) Let us fix ε such that 0 ≤ ε ≤ ε0. Let

C =
{

(x, γ,H) ∈ Rn × SO(n)×Gn−1
n | x ∈ X ∩ γY ∩H, |x| = ε

}
.

It is a closed definable set. By Hardt’s theorem applied to the projection π : C →
SO(n)×Gnn−1, the function (γ,H) 7→ χ

(
X ∩ γY ∩H ∩ Sn−1

ε

)
takes a finite number

of values. As above, we deduce that the function (γ,H) 7→ χ (Lk(X ∩ γY ∩H))
takes a finite number of values. We equip Gn−1

n with the SO(n)-invariant mea-
sure (or density) dH and SO(n) × Gn−1

n with the product measure. With this
measure, the function (γ,H) 7→ χ (Lk(X ∩ γY ∩H)) is integrable and so the in-
tegral

∫
SO(n)×Gn−1

n
χ (Lk(X ∩ γY ∩H)) dγdH exists. Moreover the function γ 7→∫

Gn−1
n

χ (Lk(X ∩ γY ∩H)) dH is integrable and so is the function

(γ, v) 7→
∫
Gn−1
n

χ (Lk(X ∩ γY ∩H)) dH

on SO(n)×Sn−1. Similarly it is easy to see that the function γ 7→ χ (Lk(X ∩ γY ))
is integrable on SO(n) and so is the function (γ, v) 7→ χ (Lk(X ∩ γY )) on SO(n)×
Sn−1.

3) By Lemmas 4.10 and 4.11, there exists a definable subset ∆ ⊂ SO(n)× Sn−1

of positive codimension such that for (γ, v) /∈ ∆,

lim
ε→0

lim
δ→0+

Λ0 (X ∩ (γY + δv), X ∩ (γY + δv) ∩ Bnε ) =

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε )

−1

2
χ (Lk(X ∩ γY ))− 1

2sn−1

∫
Sn−1

χ (Lk(X ∩ γY ∩ {u∗ = 0})) du.

Therefore the function

(γ, v) 7→ lim
ε→0

lim
δ→0+

Λ0 (X ∩ (γY + δv), X ∩ (γY + δv) ∩ Bnε )
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is integrable on SO(n)× Sn−1.

Definition 4.19. For two germs of closed definable set (X, 0) ⊂ (Rn, 0) and
(Y, 0) ⊂ (Rn, 0), we set

Λlim
0 (X,Y, 0)

=
1

s2
n−1

∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

Λ0 (X ∩ (γY + δv), X ∩ (γY + δv) ∩ Bnε ) dγdv.

We note that

Λlim
0 (X,Y, 0) = σ(X,Y, 0)− 1

2sn−1

∫
SO(n)

χ (Lk(X ∩ γY )) dγ

− 1

s2
n−1

∫
SO(n)

∫
Sn−1

χ (Lk(X ∩ γY ∩ {u∗ = 0})) dudγ.

The two limits σ(X,Y, 0) and Λlim
0 (X,Y, 0) are symmetric in X and Y , as explained

in the next proposition.

Proposition 4.20. For two germs of closed definable sets (X, 0) ⊂ (Rn, 0) and
(Y, 0) ⊂ (Rn, 0), we have

σ(X,Y, 0) = σ(Y,X, 0) and Λlim
0 (X,Y, 0) = Λlim

0 (Y,X, 0).

Proof. By Lemma 4.6, we know that

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) = lim
ε→0

lim
δ→0+

χ ((X − δv) ∩ γY ∩ Bnε ) .

The change of variables v 7→ −v gives that∫
Sn−1

χ ((X − δv) ∩ γY ∩ Bnε ) dv =

∫
Sn−1

χ ((X + δv) ∩ γY ∩ Bnε ) dv,

and so∫
Sn−1

χ ((X − δv) ∩ γY ∩ Bnε ) dv =

∫
Sn−1

χ
(
γ−1(X + δv) ∩ Y ∩ Bnε

)
dv.

Hence, by the change of variables γ 7→ γ−1 on SO(n), we are lead to compute∫
SO(n)

[

∫
Sn−1

χ (γ(X + δv) ∩ Y ∩ Bnε ) dv]dγ.

But for γ ∈ SO(n), the change of variables u 7→ γu gives that∫
Sn−1

χ (γ(X + δu) ∩ Y ∩ Bnε ) du =

∫
Sn−1

χ ((γX + δv) ∩ Y ∩ Bnε ) dv.

Finally we get that∫
SO(n)

∫
Sn−1

χ (γ(X + δv) ∩ Y ∩ Bnε ) dvdγ =∫
SO(n)

∫
Sn−1

χ ((γX + δv) ∩ Y ∩ Bnε ) dvdγ.

It is enough to pass to the limits to get the equality σ(X,Y, 0) = σ(Y,X, 0). The
result for Λlim

0 (X,Y, 0) is obtained applying the relation between σ(X,Y, 0) and
Λlim

0 (X,Y, 0). �

Now let us relate σ(X,Y, 0) with the polar invariants of Comte and Merle [9].
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Proposition 4.21. If H ∈ Gn−kn , k ∈ {0, . . . , n}, then we have

σ(X,H, 0) = σk(X, 0).

Proof. The proof is straightforward for k = 0, because in this case σ(X,Rn, 0) =
limε→0 χ(X ∩ Bnε ) = 1.

Let us assume that k > 0. First we note that

σ(X,H, 0) =
1

gn−kn

∫
Gn−kn

(
1

sn−1

∫
Sn−1

lim
ε→0

lim
δ→0+

χ (X ∩ (H + δv) ∩ Bnε ) dv

)
dH.

For H ∈ Gn−kn , we recall that Sk−1
H⊥

is the unit sphere in H⊥ and we denote by

pH⊥ the orthogonal projection onto H⊥. If v ∈ Sk−1
H⊥

and w ∈ Sn−1 are such that
p
H⊥ (w)

|p
H⊥ (w)| = v, then

lim
ε→0

lim
δ→0+

χ (X ∩ (H + δv) ∩ Bnε ) = lim
ε→0

lim
δ→0+

χ (X ∩ (H + δw) ∩ Bnε ) .

This implies that

σ(X,H, 0) =
1

gn−kn

∫
Gn−kn

(
1

sk−1

∫
Sk−1

H⊥

lim
ε→0

lim
δ→0+

χ (X ∩ (H + δv) ∩ Bnε ) dv

)
dH,

(see the proof of Corollary 5.7 in [12] for a similar argument or use the co-area
formula). To end the proof, it is enough to show, with the notations of Section 3,
that

NP∑
i=1

χPi ·Θ(Kp
i , 0) =

1

sk−1

∫
Sk−1
P

lim
ε→0

lim
δ→0+

χ
(
X ∩ (P⊥ + δv) ∩ Bnε

)
dv.

By Lemma 4.14, we know that if v ∈ C0K
P
i \ C0(KP

i \ KP
i ), there is δ > 0 such

that ]0, δ] · v ⊂ KP
i . Hence

1

sk−1

∫
Sk−1
P

lim
ε→0

lim
δ→0+

χ
(
X ∩ (P⊥ + δv) ∩ Bnε

)
dv =

NP∑
i=1

χPi ·
vol(C0K

P
i ∩ Sk−1

P )

sk−1
.

By [26] Lemma 2.1,
vol(C0K

P
i ∩S

k−1
P )

sk−1
is exactly Θk(KP

i , 0). �

Remark 4.22. The equality

σk(X, 0) =
1

gn−kn

∫
Gn−kn

(
1

sk−1

∫
Sk−1

H⊥

lim
ε→0

lim
δ→0+

χ (X ∩ (H + δv) ∩ Bnε ) dv

)
dH,

is natural because the two sides of the equality coincide for they measure the same
mean-value of Euler characteristics. It already appeared in [9] page 244 in the conic
case, and we used it in [15, 16, 17] as a definition for the polar invariants. We prove
it here for completeness.

We end this subsection with another symmetry result.

Lemma 4.23. For two germs of closed definable sets (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂
(Rn, 0), we have

n∑
i=0

Λlim
i (X, 0) · σn−i(Y, 0) =

n∑
i=0

σi(X, 0) · Λlim
n−i(Y, 0).
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Proof. By Theorem 3.8, we get

n∑
i=0

Λlim
i (X, 0) · σn−i(Y, 0) =

n−1∑
i=0

(σi(X, 0)− σi+1(X, 0)) · σn−i(Y, 0)

+σn(X, 0) · σ0(Y, 0) =

n−1∑
i=0

σi(X, 0) · σn−i(Y, 0)

−
n−1∑
i=0

σi+1(X, 0) · σn−i(Y, 0) + σn(X, 0) · σ0(Y, 0).

Therefore we obtain
n∑
i=0

Λlim
i (X, 0) · σn−i(Y, 0) = σ0(X, 0) · σn(Y, 0)

+

n−1∑
i=1

σi(X, 0) · (σn−i(Y, 0)− σn−i+1(Y, 0)) + σn(X, 0) · (σ0(Y, 0)− σ1(Y, 0))

Another application of Theorem 3.8 gives the result. �

5. A new spherical kinematic formula

We give a new spherical kinematic formula for two definable subsets of the unit
sphere.

Let X ⊂ Sn−1 be a compact definable set and let Y ⊂ Sn−1 be a definable
set, not necessarly compact. We recall that the Λ̃i’s, i = 0, . . . , n − 1, denote the
spherical Lipschitz-Killing measures.

Proposition 5.1. The following kinematic formula holds:

1

sn−1

∫
SO(n)

χc(X ∩ γY )dγ =

n−1∑
i=0

Λ̃i(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

χc(Y ∩H)dH.

Proof. First step: We study the case Y compact. Applying the generalized spher-
ical Gauss-Bonnet formula (see Theorem 1.2 in [3]) to χ(X ∩ γY ), we obtain∫

SO(n)

χ(X ∩ γY )dγ =

n−1∑
i=0,2,...

2

si

∫
SO(n)

Λ̃i(X ∩ γY,X ∩ γY )dγ.

Then we apply the generalized spherical kinematic formula (see [3, 21]) to each

Λ̃i(X ∩ γY,X ∩ γY ) and we get∫
SO(n)

χ(X ∩ γY )dγ =

n−1∑
i=0,2,...

2

si

∑
p+q=i+n−1

sisn−1

spsq
Λ̃p(X,X)Λ̃q(Y, Y ).

Therefore we have

1

sn−1

∫
SO(n)

χ(X ∩ γY )dγ =

n−1∑
i=0,2,...

∑
p+q=i+n−1

Λ̃p(X,X)

sp

2Λ̃q(Y, Y )

sq

=
∑

p+q=n−1

Λ̃p(X,X)

sp

2Λ̃q(Y, Y )

sq
+

∑
p+q=n+1

Λ̃p(X,X)

sp

2Λ̃q(Y, Y )

sq



PRINCIPAL KINEMATIC FORMULAS FOR GERMS OF CLOSED DEFINABLE SETS 25

+ · · ·+
∑

p+q=e(n)

Λ̃p(X,X)

sp

2Λ̃q(Y, Y )

sq
,

where e(n) = 2n− 2 if n− 1 is even or 2n− 3 if n− 1 is odd. This equality can be
rewritten in the following way:

1

sn−1

∫
SO(n)

χ(X ∩ γY )dγ =
Λ̃n−1(X,X)

sn−1

( ∑
q=0,2,...

2Λ̃q(Y, Y )

sq

)

+
Λ̃n−2(X,X)

sn−2

( ∑
q=1,3,...

2Λ̃q(Y, Y )

sq

)
+ · · ·+ Λ̃0(X,X)

2

(
2Λ̃n−1(Y, Y )

sn−1

)
.

In [14] pages 175-176, we proved that

1

g1
n

∫
G1
n

χ(Y ∩H)dH =
2Λ̃n−1(Y, Y )

sn−1
,

1

g2
n

∫
G2
n

χ(Y ∩H)dH =
2Λ̃n−2(Y, Y )

sn−2
,

and for k ≥ 3,

1

gk−2
n

∫
Gk−2
n

χ(Y ∩H)dH =
∑

i=2,4,...

2Λ̃n−k+i(Y, Y )

sn−k+i

=
∑

q=n−k+2,n−k+4,...

2Λ̃q(Y, Y )

sq
.

Applying these relations, we get that

1

sn−1

∫
SO(n)

χ(X∩γY )dγ =
Λ̃n−1(X,X)

sn−1
χ(Y )+

Λ̃n−2(X,X)

sn−2

1

gn−1
n

∫
Gn−1
n

χ(Y ∩H)dH

+
Λ̃n−3(X,X)

sn−3

1

gn−2
n

∫
Gn−2
n

χ(Y ∩H)dH + · · ·+ Λ̃0(X,X)

s0

1

g1
n

∫
G1
n

χ(Y ∩H)dH.

Second step: Let Y ⊂ Sn−1 be compact and let K ( Y be a compact definable
set. By the first step, we have

1

sn−1

∫
SO(n)

χ(X ∩ γY )dγ =
n−1∑
i=0

Λ̃(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

χ(Y ∩H)dH,

and

1

sn−1

∫
SO(n)

χ(X ∩ γK)dγ =

n−1∑
i=0

Λ̃(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

χ(K ∩H)dH.

For each γ ∈ SO(n), γY = (γY \γK)tγK = γ(Y \K)tγK because γ is bijective.
Hence χ(X ∩ γY ) = χc (X ∩ γ(Y \K)) + χ(X ∩ γK) and

1

sn−1

∫
SO(n)

χc (X ∩ γ(Y \K)) dγ

=

n−1∑
i=0

Λ̃i(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

[χ(Y ∩H)− χ(K ∩H)] dH

=

n−1∑
i=0

Λ̃i(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

χc ((Y \K) ∩H) dH.
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This gives the result for the set Y \K.
Third step: We prove the general case. Since Y is definable, it admits the

following cell decomposition Y = trj=1Cj , where each Cj is a definable subset

homeomorphic to a unit cube ]0, 1[dj . By the second step, the result is valid for
each cell Cj , because Cj and Cj \ Cj are compact and definable. By additivity of
χc, we have

1

sn−1

∫
SO(n)

χc(X ∩ γY )dγ =
1

sn−1

∫
SO(n)

χc
(
X ∩ γ(trj=1Cj)

)
dγ

=
1

sn−1

∫
SO(n)

χc
(
X ∩ (trj=1γCj)

)
dγ =

1

sn−1

∫
SO(n)

χc
(
trj=1(X ∩ γCj)

)
dγ

=

r∑
j=1

1

sn−1

∫
SO(n)

χc(X ∩ γCj)dγ.

Applying the second step, we obtain

1

sn−1

∫
SO(n)

χc(X ∩ γY )dγ =

r∑
j=1

n−1∑
i=0

Λ̃i(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

χc(Cj ∩H)dH

=

n−1∑
i=0

Λ̃i(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

r∑
j=1

χc(Cj ∩H)dH

=

n−1∑
i=0

Λ̃i(X,X)

si
· 1

gi+1
n

∫
Gi+1
n

χc(Y ∩H)dH.

�

6. A second kinematic formula in the unit ball

We deduce from the previous spherical kinematic a new kinematic formula for
definable subsets of the unit ball.

Let X ⊂ Rn be a closed conic definable set. Let Y ⊂ Bn be another definable
set.

Proposition 6.1. The following kinematic formula holds:

1

sn−1

∫
SO(n)

χc(X ∩ γY )dγ =

n∑
i=0

Λi(X,X ∩ Bn)

bi
· 1

gin

∫
Gin

χc(Y ∩H)dH.

Proof. Let us assume first that 0 /∈ Y and let φ be the following definable mapping:

φ : Bn \ {0} → Sn−1

x 7→ x
|x| .

By Hardt’s theorem, there exists a definable partition of φ(Y ), φ(Y ) = trj=1Wj ,

such that for j ∈ {1, . . . , r}, the mapping φ|Y ∩φ−1(Wj) : φ−1(Wj)∩Y →Wj is trivial.

By additivity and multiplicity of χc, we can write χc(Y ) =
∑r
j=1 αjχc(Wj), where

αj = χc(Fj) with Fj the fibre of φ|Y ∩φ−1(Wj). Let us set X∗ = (X ∩ Bn) \ {0}.
If w belongs to φ(Y ) ∩ φ(X∗) then w = φ(y) = φ(x) with y ∈ Y and x ∈ X∗.

Since X is conic, y belongs to X∗ and so φ(Y ∩ X∗) = φ(Y ) ∩ φ(X∗). Therefore
φ(Y ∩X∗) = trj=1Wj ∩ φ(X∗). Note that if w ∈ φ(X∗) then φ−1(w) ⊂ X∗ by the

conic structure of X. Hence if wj ∈Wj ∩ φ(X∗), φ−1(wj) ∩ Y ∩X = φ−1(wj) ∩ Y
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and χc(φ
−1(wj)∩Y ∩X) = αj . Applying again Hardt’s theorem to each Wj∩φ(X∗)

if necessary, one can conclude as above that

χc(Y ∩X) =

r∑
j=1

αjχc(Wj ∩ φ(X∗)).

Let γ ∈ SO(n). Since φ ◦ γ = γ ◦ φ and γ is a definable homeomorphism, φ(γY ) =
trj=1γWj and for j ∈ {1, . . . , r}, the mapping

φ|γY ∩φ−1(γWj) : γY ∩ φ−1 (γWj)→ γWj

is trivial, with fibre homeomorphic to Fj . As above, we can write

χc (X ∩ γY ) =

r∑
j=1

αjχc (γWj ∩ φ(X∗)) .

We can apply Proposition 5.1 to the sets Wj and φ(X∗). We get

1

sn−1

∫
SO(n)

χc (X ∩ γY ) dγ =

r∑
j=1

αj
1

sn−1

∫
SO(n)

χc(γWj ∩ φ(X∗))dγ

=

r∑
j=1

αj

(
n−1∑
i=1

Λ̃i(φ(X∗), φ(X∗))

si
· 1

gi+1
n

∫
Gi+1
n

χc(Wj ∩H)dH

)

=

n−1∑
i=1

Λ̃i(φ(X∗), φ(X∗))

si
· 1

gi+1
n

∫
Gi+1
n

r∑
j=1

αjχc(Wj ∩H)dH.

SinceH is conic,
∑r
j=1 αjχc(Wj∩H) = χc(Y ∩H) by the above argument. Applying

Corollary 3.5 in [14], we obtain the following equality:

1

sn−1

∫
SO(n)

χc(X ∩ γY )dγ =

n−1∑
i=0

Λi+1(X,X ∩ Bn)

bi+1
· 1

gi+1
n

∫
Gi+1
n

χc(Y ∩H)dH

=

n∑
i=1

Λi(X,X ∩ Bn)

bi
· 1

gin

∫
Gin

χc(Y ∩H)dH,

which is the expected one when 0 /∈ Y .
If 0 ∈ Y then χc(X ∩ γY ) = χc(X ∩ γY ∗) + 1 and χc(Y ∩H) = χc(Y

∗ ∩H) + 1
where Y ∗ = Y \ {0}. Therefore we have

1

sn−1

∫
SO(n)

χc(X ∩ γY )dγ = 1 +
1

sn−1

∫
SO(n)

χc(X ∩ γY ∗)dγ

= 1 +

n∑
i=1

Λi(X,X ∩ Bn)

bi
· 1

gin

∫
Gin

χc(Y
∗ ∩H)dH

= 1 +

n∑
i=1

Λi(X,X ∩ Bn)

bi
· 1

gin

∫
Gin

χc(Y ∩H)dH −
n∑
i=1

Λi(X,X ∩ Bn)

bi
.

But by Corollary 5.2 in [14], we know that 1 −
∑n
i=1

Λi(X,X∩Bn)
bi

= Λ0(X,X ∩
Bn). �
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7. A infinitesimal kinematic formula for conic sets

We prove a first version of the infinitesimal principal kinematic formula for closed
conic definable sets.

Let X,Y ⊂ Rn be two closed conic definable sets. We keep the notations used
in Section 4.

Lemma 7.1. There exists δ1 > 0 such that for 0 < δ ≤ δ1, the topological types of
Zv,δ ∩ Bn does not depend on the choice δ. Moreover, we have

lim
δ→0

χ(Zv,δ ∩ Bn) = lim
ε→0

lim
δ→0

χ(Zv,δ ∩ Bnε ).

Proof. By Lemma 4.4, we know that there exists ε0 > 0 such that for 0 < ε ≤ ε0,
there exits δε such that for 0 < δ ≤ δε, the topological type of Zv,δ ∩ Bnε does
not depend on the choice of the couple (ε, δ). Let us fix such a couple (ε, δ). Let
θε : Rn → Rn be the diffeomorphism θε(x) = 1

εx. Then θε(Zv,δ ∩ Bnε ) = Zv, δε
∩ Bn.

Since limδ→0
δ
ε = 0, we get the result. �

We are in position to state a first infinitesimal kinematic formula in the conic
setting.

Proposition 7.2. Let X,Y ⊂ Rn be two closed conic definable sets. The following
kinematic formula holds:

1

s2
n−1

∫
SO(n)×Sn−1

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bn) dγdv

=

n∑
i=0

Λi(X,X ∩ Bn)

bi
· σn−i(Y, 0).

Proof. Let us fix δ > 0. By the change of variable u = γv, we have that for
γ ∈ SO(n)∫

Sn−1

χ (X ∩ (γY + δu) ∩ Bn) du =

∫
Sn−1

χ (X ∩ γ(Y + δv) ∩ Bn) dv.

Applying Proposition 6.1 to X ∩ Bn and (Y + δv) ∩ Bn, we get that

1

s2
n−1

∫
SO(n)×Sn−1

χ (X ∩ γ(Y + δv) ∩ Bn) dγdv

=
1

s2
n−1

∫
Sn−1

∫
SO(n)

χ (X ∩ γ(Y + δv) ∩ Bn) dγdv

=

n∑
i=1

Λi(X,X ∩ Bn)

bi
· 1

ginsn−1

∫
Sn−1

∫
Gin

χ ((Y + δv) ∩ Bn ∩H) dHdv,

and so that
1

s2
n−1

∫
SO(n)×Sn−1

χ (X ∩ γ(Y + δv) ∩ Bn) dvdγ

=

n∑
i=1

Λi(X,X ∩ Bn)

bi
· 1

gin

∫
Gin

1

sn−1

∫
Sn−1

χ ((Y + δv) ∩ Bn ∩H) dvdH.

Passing to the limit as δ → 0+ and using Lebesgue’s theorem, we obtain that

1

s2
n−1

∫
SO(n)×Sn−1

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bn) dvdγ



PRINCIPAL KINEMATIC FORMULAS FOR GERMS OF CLOSED DEFINABLE SETS 29

=

n∑
i=1

Λi(X,X ∩ Bn)

bi
· 1

gin

∫
Gin

1

sn−1

∫
Sn−1

lim
δ→0+

χ ((Y + δv) ∩ Bn ∩H) dvdH.

By Lemmas 4.6 and 7.1 applied to Y and H, we have that

lim
δ→0+

χ ((Y + δv) ∩ Bn ∩H) = lim
δ→0+

χ (Y ∩ Bn ∩ (H − δv)) ,

and so
1

gin

∫
Gin

1

sn−1

∫
Sn−1

lim
δ→0+

χ ((Y + δv) ∩ Bn ∩H) dvdH = σn−i(Y, 0),

by Proposition 4.21. �

8. The principal kinematic formulas

We prove our main results : the principal kinematic formulas for germs of closed
definable sets. We will use the kinematic formula for closed conic definable sets
proved in the previous section. We will proceed in several steps.

We keep the notations used in Section 4. For convenience, we also use the
notation ω(x) for |x|, if x is in Rn.

First step: (X, 0) ⊂ (Rn, 0) is a germ of closed definable set, Y ⊂ Rn is a closed
conic definable set.

We assume that X is included in an open neighborhood U of 0. Let ε0 > 0 be
such that Bnε0 ⊂ U . For 0 < u ≤ ε0, we set Xu = X ∩ Sn−1

u and we denote by CXu

the cone over Xu, i.e.:

CXu =
{
x ∈ Rn | ∃λ ∈ R+ and z ∈ Xu such that x = λz

}
.

Lemma 8.1. There exists a definable subset ∆Y ⊂ Sn−1 of positive codimension
such that for v /∈ ∆Y ,

lim
u→0

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)
.

Proof. If v /∈ (−Y ) ∩ Sn−1, then by Corollary 4.13, we have

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= lim
ε→0

χ
(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε}

)
and

χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)

= lim
ε→0

χ
(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε}

)
.

Let us choose ε1 ≥ 0 such that for 0 < u ≤ ε1,

χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}

)
.

But X̂ ∩ {ω = u} = ĈXu ∩ {ω = u} and so

χ
(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}

)
= χ

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}

)
.

For any ε > 0, the mapping

ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε} → ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}
(x, t) 7→ (uε x,

u
ε t)

is a homemorphism, since ĈXu ∩ Ŷv ∩{t ≥ 0} is conic and ω(λ(x, t)) = λω(x, t) for
any λ > 0. Therefore

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}

)
.
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If dimY ≤ n− 1 then we can put ∆Y = Sn−1 ∩ (−Y ).
If dimY = n then let Y ′ be the union of the strata of Y of dimension less than

or equal to n− 1. If v ∈ (−Y ) \ (−Y ′), then by Corollary 4.17, we have

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε, t <

2

a
ε}
)
,

χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε, t <

2

a
ε}
)
,

for 0 < ε � 1 and where a is such that Ŷ ′v ∩ {t ≥ 0} ⊂ {(x, t) | ω(x) ≥ at} in a
neighborhood of (0, 0).

As above let us choose ε1 ≥ 0 such that for 0 < u ≤ ε1,

χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)
,

and

χc

(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)

=

χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)
.

Using the same homeomorphism as above, we can conclude that

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)
.

So if dimY = n, we put ∆Y = Sn−1 ∩ (−Y ′). �

Proposition 8.2. If Y ⊂ Rn is a closed conic definable set, then for any germ
of closed definable set (X, 0) ⊂ (Rn, 0), the following principal kinematic formula
holds:

σ(X,Y, 0) =

n∑
i=0

Λlim
i (X,Y, 0) · σn−i(Y, 0).

Proof. By Lemma 4.10, there exists a definable subset ΣX,Y ⊂ SO(n) of positive
codimension such that for γ /∈ ΣX,Y , X and γY satisfy Condition (1). Let us
fix γ /∈ ΣX,Y . By Lemma 4.11, there exists a definable subset ΓX,γY ⊂ Sn−1 of
positive codimension such that for v /∈ ΓX,γY , v satisfies Condition (2). Let us

choose v /∈ ΓX,γY . By Lemma 4.2, the function t : X̂ ∩ (̂γY )v → R has an isolated
stratified critical point at (0, 0).

Applying Lemma 3.1 in [18] and Lemma 4.4, we obtain that

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) = χ
(

Lk(X̂ ∩ (̂γY )v ∩ {t ≥ 0})
)
,

and

σ(X,Y, 0) =
1

s2
n−1

∫
SO(n)×Sn−1

χ
(

Lk(X̂ ∩ (̂γY )v ∩ {t ≥ 0})
)
dγdv.

Of course the same equality is true if we replace X with CXu. By Proposition 7.2
for 0 < u ≤ ε0, we have

σ(CXu, Y, 0) =

n∑
i=0

Λi(CXu, CXu ∩ Bn)

bi
· σn−i(Y, 0).
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By Lemma 8.1, for γ ∈ SO(n) and v /∈ ∆γY ,

lim
u→0

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)
.

Hence, by Hardt’s theorem and Lebesgue’s theorem,

lim
u→0

σ(CXu, Y, 0) = σ(X,Y, 0).

Moreover using Proposition 3.6 in [14], for i ∈ {1, . . . , n− 2}, we have

Λi(CXu, CXu ∩ Bn)

bi
= − 1

2gn−i−1
n

∫
Gn−i−1
n

χ(CXu ∩ Sn−1 ∩H)dH

+
1

2gn−i+1
n

∫
Gn−i+1
n

χ(CXu ∩ Sn−1 ∩H)dH.

But
χ(CXu ∩ Sn−1 ∩H) = χ(CXu ∩ Sn−1

u ∩H) = χ(X ∩ Sn−1
u ∩H),

for H ∈ Gn−i+1
n or H ∈ Gn−i−1

n , and limu→0 χ(CXu∩Sn−1∩H) = χ (Lk(X ∩H)).
Passing to the limit as u→ 0 and applying Theorem 5.1 in [14], we get that

lim
u→0

Λi(CXu, CXu ∩ Bn)

bi
= lim
ε→0

Λi(X,X ∩ Bnε )

biεi
.

The same proof works for i = n− 1 and i = n. Combining all these equalities, we
get the result. �

Second step: X ⊂ Rn is a closed conic definable set, (Y, 0) ⊂ (Rn, 0) is a germ
of closed definable set.

Corollary 8.3. Let X ⊂ Rn be a closed conic definable set. For any germ of closed
definable set (Y, 0) ⊂ (Rn, 0), the following principal kinematic formula holds:

σ(X,Y, 0) =

n∑
i=0

Λlim
i (X, 0) · σn−i(Y, 0).

Proof. By Proposition 4.20, we know that σ(X,Y, 0) = σ(Y,X, 0), and by Lemma
4.23 that

∑n
i=0 Λlim

i (X, 0)·σn−i(Y, 0) =
∑n
i=0 Λlim

i (Y, 0)·σn−i(X, 0). Then we apply
the previous proposition. �

Third step: (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂ (Rn, 0) are germs of closed definable
sets.

We assume that X and Y are included in an open neighborhood U of 0. Let
ε0 > 0 be such that Bnε0 ⊂ U . We set

ΓX =

{
(
1

u
x, u) | x ∈ X,u ∈]0, ε0[

}
⊂ Rn+1

and

ΓY =

{
(
1

u
y, u) | y ∈ Y, u ∈]0, ε0[

}
⊂ Rn+1.

We recall that the tangent cones of X and Y are C0X = ΓX ∩ Rn × {0} and

C0Y = ΓY ∩ Rn × {0}. We will now define two tangent cones associated with X̂

and Ŷv and will relate them to C0X and C0Y . Let

Γ̂X =

{
(
1

u
x, t, u) | x ∈ X,u ∈]0, ε0[

}
⊂ Rn+2.



32 NICOLAS DUTERTRE

The following lemma is easy to prove.

Lemma 8.4. A point (x, t) belongs to Γ̂X ∩ (Rn+1 × {0}) if and only if there is a

sequence of points (xn, tn)n∈N in X̂ and a sequence of positive real numbers (un)n∈N
such that un → 0 and (xnun , tn)→ (x, t).

Corollary 8.5. We have Ĉ0X = Γ̂X ∩ (Rn+1 × {0}).

Proof. If (x, t) ∈ Ĉ0X then there is a sequence of points (xn)n∈N in X and a
sequence of positive real numbers (un)n∈N such that un → 0 and xn

un
→ x. Applying

the previous lemma to the sequences (xn, t) and (un), we see that (x, t) ∈ Γ̂X ∩
(Rn+1 × {0}).

Conversely if (x, t) ∈ Γ̂X ∩ (Rn+1 × {0}), then there is a sequence of points
(xn, tn)n∈N in X × R and a sequence of positive real numbers (un)n∈N such that
un → 0 and (xnun , tn) → (x, t). This implies that x ∈ C0X and so that (x, t) ∈
Ĉ0X. �

Let v ∈ Sn−1 and let

(̂ΓY )v =

{
(
1

u
y,

1

u
t, u) | (y, t) ∈ Ŷv, u ∈]0, ε0[

}
⊂ Rn+2.

Lemma 8.6. A point (y, t) belongs to (̂ΓY )v ∩ (Rn+1 × {0}) if and only if there

is a sequence of points (yn, tn)n∈N in Ŷv and a sequence of positive real numbers
(un)n∈N such that un → 0 and ( ynun ,

tn
un

)→ (y, t).

Corollary 8.7. We have ̂(C0Y )v = (̂ΓY )v ∩ (Rn+1 × {0}).

Proof. If (y, t) ∈ ̂(C0Y )v then there is a sequence of points (yn)n∈N in Y and a
sequence of positive real numbers (un)n∈N such that un → 0 and yn

un
→ y− tv. For

n ∈ N, (yn + untv, untv) is in Ŷv and (yn+untv
un

, untun
) tends to (y, t). Therefore (y, t)

is in (̂ΓY )v ∩ (Rn+1 × {0}).
Conversely if (y, t) is in (̂ΓY )v ∩ (Rn+1×{0}), then there is a sequence of points

(yn, tn)n∈N in Ŷv and a sequence of positive real numbers (un)n∈N such that un → 0
and ( ynun ,

tn
un

) → (y, t). Then yn − tnv ∈ Y and yn−tnv
un

tends to y − tv. So y − tv
belongs to C0Y . �

We note that C0X = Ĉ0X ∩ (Rn × {0}), C0Y = ̂(C0Y )v ∩ (Rn × {0}) and that

Ĉ0X and ̂(C0Y )v are closed conic definable sets.
Let us assume that X is equipped with a Whitney stratification S = {Si}li=0

with S0 = {0} and 0 ∈ Si for i = 1, . . . , l. We set

ΓSi =
{

(
x

u
, u) | x ∈ Si, u ∈]0, ε0[

}
⊂ Rn+1

for i = 0, . . . , s.

Lemma 8.8. The partition ΓX = ∪si=0ΓSi is a Whitney stratification of ΓX .
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Proof. The partition ∪si=0Si×]0, ε0[ gives a Whitney stratification of X×]0, ε0[. Let
φ be the diffeomorphism φ(x, u) = ( 1

ux, u). We have ΓSi = φ(Si×]0, ε0[) for i =
0, . . . , s and ΓX = φ(X×]0, ε0[). This gives the result for Whitney’s conditions are
C1-invariant. �

We can equip C0X with a definable stratification (Σk)l
′

k=0 where Σ0 = {0} and
Σk is conic. This is possible for example by considering a Whitney stratification of
C0X ∩ Sn−1 and extending it to C0X using the conic structure.

Lemma 8.9. Let ΓS be a stratum of ΓX and let Σ be a stratum of C0X such that
Σ ⊂ ΓS \ ΓS. The set of points x in Σ such that the Thom (au)-condition is not
satisfied at x for the pair (ΓS ,Σ) is a conic definable set of positive codimension.

Proof. By [1] and [27], we already know that this set is definable of positive codi-
mension in Σ. If x is in this set, then there exists a sequence of points pn = (yn, un)
in ΓS such that pn → (x, 0) and TxΣ * limn→+∞ Tpn(ΓS ∩ {u = un}). Let λ > 0,
by the conic structure of Σ, TλxΣ = TxΣ. Moreover qn = (λyn,

un
λ ) ∈ ΓS and

Tpn(ΓS ∩ {u = un}) = Tqn(ΓS ∩ {u = un
λ }). �

Since the Thom (au)-condition is stratifying and taking a refinement if necessary,
we can assume that the Thom (au)-condition is satisfied for any pair of strata

(ΓS ,Σ) (see [30] for the argument). This induces a Whitney stratification of Γ̂X
compatible with Ĉ0X × {0}. Namely if S′ ⊂ Rn+1 is a stratum ΓX then Ŝ′ =

{(x, t, u) | (x, u) ∈ S′} is a stratum of Γ̂X .

Lemma 8.10. This induced stratification of Γ̂X satisfies the Thom (au)-condition.

Proof. Let (xn, tn, un)n∈N be a sequence of points in Γ̂X that tends to (x, t, 0). We

can assume that (xn, tn, un) lies in a stratum Ŝ′1 = {(x′, t′, u′) | (x′, u′) ∈ S′1} and

that (x, t, 0) ∈ Ŝ′0, where Ŝ′0 = {(x′, t′, 0) | (x′, 0) ∈ S′0}. Since the pair (S′1, S
′
0)

satisfies the Thom (au)-condition, T(x,0)S
′
0 ⊂ limn→+∞ T(xn,un)(S

′
1 ∩ {u = un}).

But

T(xn,tn,un)Ŝ
′
1 =

{
(ν, τ, ξ) | (ν, ξ) ∈ T(xn,un)S

′
1

}
,

and

T(x,t,0)Ŝ
′
0 =

{
(ν, τ, 0) | (ν, 0) ∈ T(x,0)S

′
0

}
.

It is straightforward to conclude using the fact that T(xn,un)(S
′
1 ∩ {u = un}) =

(T(xn,un)S
′
1) ∩ {u = 0} and T(xn,tn,un)(Ŝ

′
1 ∩ {u = un}) = (T(xn,tn,un)Ŝ

′
1) ∩ {u = 0}

if n is sufficiently big. �

Similarly we can equip ΓY with a Whitney definable stratification compatible
with C0Y × {0}, that satisfies the Thom (au)-condition and such that the strata

of C0Y are conic. This induces a Whitney stratification of (̂ΓY )v compatible with
̂(C0Y )v × {0}. Namely if T ′ ⊂ Rn+1 is a stratum of ΓY then T̂ ′v = {(y, t, u) | (y −
tv, u) ∈ T ′} is a stratum of (̂ΓY )v (see Section 4).

Lemma 8.11. This induced stratification of (̂ΓY )v satisfies the Thom (au)-condition.
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Proof. The proof is the same as in the previous lemma, taking into account the

following remark: if T̂ ′v = {(y, t, u) | (y − tv, u) ∈ T ′} is a stratum of (̂Γy)v then

T(y,t,u)T̂ ′v = {(ν, τ, ξ) | (ν − τv, ξ) ∈ T(y−tv,u)T
′}.

�

For 0 < u ≤ ε0, we set Xu = X ∩Sn−1
u and we denote by CXu the cone over Xu,

i.e.

CXu = {x ∈ Rn | ∃λ ∈ R+ and z ∈ Xu such that x = λz}.

Lemma 8.12. Let us assume that C0X and C0Y satisfy Condition (1). There
exists a definable subset ∆X,Y ⊂ Sn−1 of positive codimension such that for v /∈
∆X,Y ,

lim
u→0

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)
.

Proof. As in Lemma 8.1, we have to prove that

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}

)
,

if u is small enough, taking into account that Ŷv is not conic.
First let us fix v /∈ (−C0Y ) ∩ Sn−1. There exist εv > 0 and a > 0 such that

Ŷv ∩ {t ≥ 0} ∩ Bn+1
εv ⊂ {(x, t) | ω(x) ≥ at} ∩ Bn+1

εv ,

which implies that there exists u0 > 0 such that

Ŷv ∩ {t ≥ 0} ∩ {ω ≤ u0} ∩ Bn+1
εv ⊂ ˚Bn+1

εv .

We have assumed that C0X and C0Y satisfy Condition (1). This means that
two strata W and W ′ of C0X and C0Y (different from {0}) intersect transversally.
Since these strata are conic, W ∩ {ω = 1} and W ′ intersect transversally as well
and so C0X ∩ {ω = 1} and C0Y intersect transversally (in the stratified sense).
As in Lemma 4.11, there exists a definable subset ΓC0X∩{ω=1},C0Y ⊂ Sn−1 of pos-

itive codimension such that for v /∈ ΓC0X∩{ω=1},C0Y , ̂C0X ∩ {ω = 1} and ̂(C0Y )v
intersect transversally (in the stratified sense).

We need a first auxiliary lemma.

Lemma 8.13. If v /∈ ΓC0X∩{ω=1},C0Y , then there exists 0 < u1 ≤ u0 such that

for 0 < u ≤ u1 and for (x, t) ∈ ĈXu ∩ Ŷv ∩ {t > 0} ∩ {0 < ω ≤ u} ∩ Bn+1
εv , the

sets ĈXu ∩ {t > 0} ∩ {ω = ω(x)} and Ŷv ∩ {t > 0} intersect transversally (in the
stratified sense) at (x, t).

Proof. Let us specify the stratifications we are working with. The set Y is equipped

with a Whitney stratification {Tj}mj=0, which induces a stratification {(̂Tj)v}mj=0 of

Ŷv. Hence Ŷv ∩{t > 0} is stratified by {(̂Tj)v ∩{t > 0}}mj=0. The set X is equipped

with a Whitney stratification {Si}li=0. Hence for u small, CXu is stratified by

{0} ∪ {C(Si ∩ Sn−1
u )}li=1. As above this induces a stratification of ĈXu ∩ {t > 0}.

We note that by the conic structure, the intersection ĈXu ∩ {t > 0} ∩ {ω = ω(x)}
is always transverse (in the stratified sense) and the stratification of ĈXu ∩ {t >
0} ∩ {ω = ω(x)} is clear.
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Assume that the above result is not true. Then we can find a sequence of
positive real numbers (un)n∈N that tends to 0 and a sequence of points (xn, tn)n∈N
in ĈXun ∩ Ŷv ∩{t > 0}∩ {0 < ω ≤ un}∩Bn+1

ε such that ĈXun ∩{ω = ω(xn)} and

Ŷv do not intersect transversally at (xn, tn).
We can assume that the sequence (xn, tn)n∈N is included in a unique stratum

T̂v, where T is a stratum of Y . Moreover we can assume that there is a stratum

S 6= {0} of X such that for each n ∈ N, (xn, tn) ∈ ĈSun . Since tn
ω(xn) ≤

1
a , taking

a subsequence if necessary, we can assume that ( xn
ω(xn) ,

tn
ω(xn) ) tends to (x, t). Let

wn = un
xn

ω(xn) , then wn ∈ CSun ∩ {ω = un} and so wn ∈ S ⊂ X. Therefore

(wn,
tn

ω(xn) ) belongs to X̂ and ( 1
un
wn,

tn
ω(xn) ) tends to (x, t). By Lemma 8.4 and

Corollary 8.5, this implies that (x, t) is in Ĉ0X. Moreover since ω(wnun ) = 1, (x, t)

belongs to Ĉ0X ∩ {ω = 1}. On the other hand, (xn, tn) ∈ Ŷv and so by Lemma 8.6

and Corollary 8.7, (x, t) belongs to ̂(C0Y )v.

The points pn := ( 1
un
wn,

tn
ω(xn) , un) belong to the stratum Γ̂S of Γ̂X and the

point (x, t) belongs to a stratum Σ̂ of Ĉ0X. By the Thom (au)-condition, we have

T(x,t)Σ̂ ⊂ limn→+∞ Tpn(Γ̂S ∩ {u = un}).
Since Σ̂ is Σ×R and Σ is conic, Σ̂ intersects {ω = 1} transversally. By the Thom

(au)-condition, {ω = 1} intersects Γ̂S ∩ {u = un} transversally for n big enough,
and so

T(x,t)(Σ̂ ∩ {ω = 1}) ⊂ lim
n→+∞

Tpn(Γ̂S ∩ {ω = 1} ∩ {u = un}).

But Tpn(Γ̂S ∩ {ω = 1} ∩ {u = un}) = T(wn,
tn

ω(xn)
)(Ŝ ∩ {ω = un}) and so

T(x,t)(Σ̂ ∩ {ω = 1}) ⊂ lim
n→+∞

T(wn,
tn

ω(xn)
)(Ŝ ∩ {ω = un}).

We note that

T(wn,
tn

ω(xn)
)(Ŝ ∩ {ω = un}) = T(xn,tn)(ĈSun ∩ {ω = ω(xn)}),

by the conic structure of CSun .

The points qn := ( xn
ω(xn) ,

tn
ω(xn) , ω(xn)) are in the stratum (̂ΓT )v of (̂ΓY )v and

the point (x, t) is in a stratum Σ̂′v of ̂(C0Y )v. By the Thom (au)-condition, we have

T(x,t)Σ̂′v ⊂ limn→+∞ Tqn((̂ΓT )v ∩ {u = ω(xn)}). But Tqn((̂ΓT )v ∩ {u = ω(xn)}) =

T(xn,tn)T̂v and so T(x,t)Σ̂′v ⊂ limn→+∞ T(xn,tn)T̂v.

Since v /∈ ΓC0X∩{ω=1},C0Y , ̂C0X ∩ {ω = 1} and ̂(C0Y )v intersect transversally

(in the stratified sense). But ̂C0X ∩ {ω = 1} = Ĉ0X ∩ {ω = 1}, and we conclude
that

T(x,t)(Σ̂ ∩ {ω = 1}) + T(x,t)Σ̂′v = Rn+1.

Therefore

lim
n→+∞

T(xn,tn)(ĈSun ∩ {ω = ω(xn)}) + lim
n→+∞

T(xn,tn)T̂v = Rn+1,

and so, for n big enough

T(xn,tn)(ĈSun ∩ {ω = ω(xn)}) + T(xn,tn)T̂v = Rn+1.
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This contradicts the construction of the sequence (xn, tn) and ends the proof of this
auxiliary lemma. �

Similarly the following second auxiliary lemma holds.

Lemma 8.14. There exists 0 < u2 ≤ u0 such that for 0 < u ≤ u2 and for
x ∈ CXu ∩ Y ∩ {0 < ω ≤ u} ∩ Bnεv , the sets CXu ∩ {ω = ω(x)} and Y intersect
transversally (in the stratified sense) in Rn at x.

Let us choose u > 0 such that u ≤ min{ε1, u1, u2}, where ε1 is such that for
0 < u ≤ ε1,

χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}

)
.

Then for (x, t) ∈ ĈXu∩Ŷv∩{0 < ω ≤ u}∩{t > 0}∩Bn+1
εv , ĈXu∩{ω = ω(x)}∩{t >

0} and Ŷv ∩ {t > 0} intersect transversally (in the stratified sense) at (x, t). This

implies that ĈXu∩{t > 0} and Ŷv∩{t > 0} intersect transversally at (x, t) and that

{ω = ω(x)} intersects ĈXu∩ Ŷv ∩{t > 0} transversally at (x, t), and so (x, t) is not

a stratified critical point of ω|ĈXu∩Ŷv∩{t>0}. Similarly if (x, 0) ∈ ĈXu ∩ Ŷv ∩ {0 <
ω ≤ u}∩Bn+1

εv , then (x, 0) is not a stratified critical point of ω|ĈXu∩Ŷv∩{t=0}. Hence

we conclude that ω : ĈXu ∩ Ŷv ∩ {0 < ω ≤ u} ∩ {t ≥ 0} ∩ Bn+1
εv → R is a stratified

submersion and so that

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= χ
(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u}

)
.

Therefore if dimC0Y ≤ n− 1, we can take

∆X,Y =
(
(−C0Y ) ∩ Sn−1

)
∪ ΓC0X∩{ω=1},C0Y .

If dimC0Y = n then dimY = n. Let Y ′ be the union of the strata of Y of
dimension less than or equal to n− 1. If v ∈ (−C0Y ) \ (−C0Y

′), we know that

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε, t <

2

a
ε}
)
,

χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε, t <

2

a
ε}
)
,

for 0 < ε� 1 and where a > 0 is such that Ŷ ′v ∩ {t ≥ 0} ⊂ {(x, t) | ω(x) ≥ at} in a
neighborhood of (0, 0).

As above let us choose ε1 > 0 such that for 0 < u ≤ ε1,

χ
(

Lk(X̂ ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)
.

Since

χc

(
X̂ ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)

= χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)
,

we have to prove that

χ
(

Lk(ĈXu ∩ Ŷv ∩ {t ≥ 0})
)

= 1 + χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)
,



PRINCIPAL KINEMATIC FORMULAS FOR GERMS OF CLOSED DEFINABLE SETS 37

if u is small enough. By the previous case, we know that for u small enough and
for v /∈ ΓC0X∩{ω=1},C0Y ′ ,

ω : ĈXu ∩ Ŷ ′v ∩ {0 < ω ≤ u} ∩ {t ≥ 0} ∩ Bn+1
ε → R

is a stratified submersion, for an appropriate ε > 0. Since the strata of Ŷv \ Ŷ ′v have
dimension n+ 1 and the strata of Y \ Y ′ have dimension n,

ω : ĈXu ∩ Ŷv ∩ {0 < ω ≤ u} ∩ {t ≥ 0} ∩ Bn+1
ε → R

is a stratified submersion by the conic structure of CXu. For the same reason and

because Ŷ ′v ∩ {t ≥ 0} ∩ {t = 2
aω(x)} = {(0, 0)}, we see that

ω : ĈXu ∩ Ŷv ∩ {0 < ω ≤ u} ∩ {t =
2

a
ω(x)} → R

is a stratified submersion. Hence for 0 < ε ≤ u,

χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = u, t <

2

a
u}
)

=

χc

(
ĈXu ∩ Ŷv ∩ {t ≥ 0} ∩ {ω = ε, t <

2

a
ε}
)
.

If dimC0Y = n, we take

∆X,Y =
(
(−C0Y

′) ∩ Sn−1
)
∪ ΓC0X∩{ω=1},C0Y ′ .

�

Theorem 8.15. Let (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂ (Rn, 0) be two germs of closed
definable sets. The following principal kinematic formula holds:

σ(X,Y, 0) =

n∑
i=0

Λlim
i (X, 0) · σn−i(Y, 0).

Proof. By Lemma 4.10, there exists a definable subset ΣX,Y ⊂ SO(n) of positive
codimension such that for γ /∈ ΣX,Y , X and γY satisfy Condition (1). Let us
fix γ /∈ ΣX,Y . By Lemma 4.11, there exists a definable subset ΓX,γY ⊂ Sn−1 of
positive codimension such that for v /∈ ΓX,γY , v satisfies Condition (2). Let us

choose v /∈ ΓX,γY . By Lemma 4.2, the function t : X̂ ∩ (̂γY )v → R has an isolated
stratified critical point at (0, 0).

Applying Lemma 3.1 in [18] and Lemma 4.4, we obtain that

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) = χ
(

Lk(X̂ ∩ (̂γY )v ∩ {t ≥ 0})
)
,

and so

σ(X,Y, 0) =
1

s2
n−1

∫
SO(n)×Sn−1

χ
(

Lk(X̂ ∩ (̂γY )v ∩ {t ≥ 0})
)
dvdγ.

Of course the same equality is true if we replace X with CXu. By Corollary 8.3,
for 0 < u ≤ ε0, we have

σ(CXu, Y, 0) =

n∑
i=0

Λi(CXu, CXu ∩ Bn)

bi
· σn−i(Y, 0).
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Since C0(γY ) = γ(C0Y ), by Lemma 4.10 there exists a definable subset ΣC0X,C0Y ⊂
SO(n) of positive codimension such that for γ /∈ ΣC0X,C0Y , C0X and C0(γY ) satisfy
Condition (1). For γ /∈ ΣC0X,C0Y and v /∈ ∆X,γY ,

lim
u→0

χ
(

Lk(ĈXu ∩ (̂γY )v ∩ {t ≥ 0})
)

= χ
(

Lk(X̂ ∩ (̂γY )v ∩ {t ≥ 0})
)
.

Hence, by Hardt’s theorem and Lebesgue’s theorem,

lim
u→0

σ(CXu, Y, 0) = σ(X,Y, 0).

We end the proof as in Proposition 8.2. �

Let us specify this kinematic formula when d+ e = n, d = dimX and e = dimY .
We denote by Xd (resp. Y e) the union of the top-dimensional strata of X (resp.
Y ).

Corollary 8.16. Let (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂ (Rn, 0) be two germs of closed
definable sets such that d + e = n, where d = dimX and e = dimY .The following
formula holds:

1

s2
n−1

∫
SO(n)×Sn−1

lim
ε→0

lim
δ→0+

#
(
Xd ∩ (γY e + δv) ∩ Bnε

)
dγdv = Θd(X) ·Θe(Y ).

Proof. For γ generic in SO(n) and v generic in Sn−1,

lim
ε→0

lim
δ→0+

χ (X ∩ (γY + δv) ∩ Bnε ) = lim
ε→0

lim
δ→0+

#
(
Xd ∩ (γY e + δv) ∩ Bnε

)
.

�

Let us formulate now the second principal kinematic formula.

Theorem 8.17. Let (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂ (Rn, 0) be two germs of closed
definable sets. The following principal kinematic formula holds:

Λlim
0 (X,Y, 0) =

n∑
i=0

Λlim
i (X, 0) · Λlim

n−i(Y, 0).

Proof. Let us compute the integrals

1

sn−1

∫
SO(n)

χ (Lk(X ∩ γY )) dγ,

and
1

s2
n−1

∫
SO(n)

∫
Sn−1

χ (Lk(X ∩ γY ∩ {u∗ = 0})) dudγ.

Let us assume first that X and Y are conic closed definable sets. We have already
computed the first integral in the proof of Proposition 5.1 and we have found that

1

sn−1

∫
SO(n)

χ (Lk(X ∩ γY )) dγ

=

n−1∑
i=0

Λ̃i (Lk(X),Lk(X))

si
· 1

gi+1
n

∫
Gi+1
n

χ (Lk(Y ∩H)) dH,

which can be rewritten in the following way:

1

sn−1

∫
SO(n)

χ (Lk(X ∩ γY )) dγ
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=

n∑
i=1

Λi(X,X ∩ Bn)

bi
· 1

gin

∫
Gin

χ (Lk(Y ∩H)) dH.

The same computation applied to X ∩ {u∗ = 0} yields

1

s2
n−1

∫
SO(n)

∫
Sn−1

χ (Lk(X ∩ γY ∩ {u∗ = 0})) dudγ

=

n−1∑
i=0

( 1

sn−1

∫
Sn−1

Λ̃i (Lk(X ∩ {u∗ = 0}),Lk(X ∩ {u∗ = 0}))
si

du

× 1

gi+1
n

∫
Gi+1
n

χ (Lk(Y ∩H)) dH
)

=

n−1∑
i=0

( 1

gn−1
n

∫
Gn−1
n

Λ̃i (Lk(X ∩ L),Lk(X ∩ L))

si
dL

× 1

gi+1
n

∫
Gi+1
n

χ (Lk(Y ∩H)) dH.
)

Using the notations and normalizations of [3], Theorem 4.4, we can write

1

gn−1
n

∫
Gn−1
n

Λ̃i (Lk(X ∩ L),Lk(X ∩ L))

si
dL

=
1

sn−1

∫
SO(n)

Λ̃i (Lk(X ∩ γE),Lk(X ∩ γE))

si
dγ,

where E is a (n− 2)-dimensional unit sphere in Sn−1. By the spherical kinematic
formula, we find that

1

sn−1

∫
SO(n)

Λ̃i(Lk (X ∩ γE),Lk(X ∩ γE))

si
dγ =

1

si+1
Λ̃i+1(Lk(X),Lk(X))

=
1

bi+2
Λi+2(X,X ∩ Bn).

Hence we get that

1

s2
n−1

∫
SO(n)

∫
Sn−1

χ (Lk(X ∩ γY ∩ {u∗ = 0})) dvdγ

=

n∑
i=2

Λ̃i(X,X ∩ Bn)

bi
· 1

gi−1
n

∫
Gi−1
n

χ (Lk(Y ∩H)) dH.

Then we apply this result to CXu and CYu whereXu = X∩Sn−1
u and Yu = Y ∩Sn−1

u ,
and make u→ 0 and obtain

1

sn−1

∫
SO(n)

χ (Lk(X ∩ γY )) dγ =

n∑
i=1

lim
ε→0

Λi(X,X ∩ Bnε )

biεi
· 1

gin

∫
Gin

χ (Lk(Y ∩H)) dH,

and

1

s2
n−1

∫
SO(n)

∫
Sn−1

χ (Lk(X ∩ γY ∩ {u∗ = 0})) dudγ

=

n∑
i=2

lim
ε→0

Λi(X,X ∩ Bnε )

biεi
· 1

gi−1
n

∫
Gi−1
n

χ (Lk(Y ∩H)) dH.
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Therefore by the relation between σ(X,Y, 0) and Λ0(X,Y, 0) and by Theorem 8.15,
we get

Λ0(X,Y, 0) = Λlim
0 (X, 0)σn(Y, 0)+

Λlim
1 (X, 0)

(
σn−1(Y, 0)− 1

2g1
n

∫
G1
n

χ (Lk(Y ∩H)) dH

)

+

n∑
i=2

Λlim
i (X, 0) ·Ai,

where

Ai = σn−i(Y, 0)− 1

2gin

∫
Gin

χ (Lk(Y ∩H)) dH − 1

2gi−1
n

∫
Gi−1
n

χ (Lk(Y ∩H)) dH.

By [15], Theorem 5.6 and its proof, we have that σn(Y, 0) = Λlim
n (Y, 0) and for

i ≥ 1,

σn−i(Y, 0) =
1

2gi+1
n

∫
Gi+1
n

χ (Lk(Y ∩H)) dH +
1

2gin

∫
Gin

χ (Lk(Y ∩H)) dH.

Moreover by [14], Theorem 5.1, we have that

Λlim
n−1(Y, 0) =

1

2g2
n

∫
G2
n

χ (Lk(Y ∩H)) dH

and for i ≥ 2,

Λlim
n−i(Y, 0) =

1

2gi+1
n

∫
Gi+1
n

χ (Lk(Y ∩H)) dH − 1

2gi−1
n

∫
Gi−1
n

χ (Lk(Y ∩H)) dH.

These equalities enable us to end the proof. �

For Y = H, where H ∈ Gn−kn and k ∈ {1, . . . , n}, the above kinematic formula
writes

σ(X,H, 0) = Λlim
k (X, 0).

Hence we recover our Theorem 3.7, because for H ∈ Gn−kn ,

β0(H) =
1

sn−1

∫
Sn−1

lim
ε→0

lim
δ→0+

Λ0(Hδ,v ∩X,Hδ,v ∩X ∩ Bnε )dv,

by the co-area formula.

9. More kinematic formulas

In view of Theorem 8.17, a natural question is to express the following sums∑
i+j=p+n

Λi(X, 0) · Λj(X, 0),

for k = 1, . . . , n as the right-hand side of a kinematic formula. The answer is quite
simple and explained briefly in the next proposition.

Proposition 9.1. Let (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂ (Rn, 0) be two germs of closed
definable sets. For k ∈ {1, . . . , n}, the following kinematic formula holds:∫

SO(n)

lim
ε→0

Λk(X ∩ γY,X ∩ γY ∩ Bnε )

bkεk
dγ =

∑
i+j=k+n

Λlim
i (X, 0) · Λlim

j (Y, 0).
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Proof. When X and Y are conic, it enough to apply the spherical kinematic formu-
las. The general case can be deduced as we have already done in several previous
proofs. �

Corollary 9.2. Let (X, 0) ⊂ (Rn, 0) and (Y, 0) ⊂ (Rn, 0) be two germs of closed
definable sets. The following principal kinematic formula holds:∫

SO(n)

lim
ε→0

Λ0(X ∩ γY,X ∩ γY ∩ Bnε )dγ =

n∑
i=0

Λlim
i (X, 0) ·

n−i∑
j=0

Λlim
j (Y, 0)

 .

Proof. Apply Proposition 9.1 and Corollary 3.6. �
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[9] G. Comte, M. Merle, Equisingularité réelle II : invariants locaux et conditions de
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