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Abstract 

 It is now firmly established that long-term memory knowledge, such as semantic 

knowledge, supports the temporary maintenance of verbal information in Working Memory 

(WM). This support from semantic knowledge is well-explained by models assuming that verbal 

items are directly activated in long-term memory, and that this activation provides the 

representational basis for WM maintenance. However, the exact mechanisms underlying 

semantic influence on WM performance remain poorly understood. We manipulated the 

presence of between-item semantic relatedness in an immediate serial recall task, by mixing 

triplets composed of semantically related and unrelated items (e.g. leaf – tree – branch – wall – 

beer – dog; hand – father – truck – cloud – sky – rain). Compared to unrelated items, related 

items were better recalled, as had been classically observed. Critically, semantic relatedness also 

impacted WM maintenance in a complex manner, as observed by the presence of proactive 

benefit effects on subsequent unrelated items, and the absence of retroactive effects. The 

complexity of these interactions is well-captured by TBRS*-S, a decay-based computational 

architecture in which the activation occurring in long-term memory is described. The present 

study suggests that semantic knowledge can be used to free up WM resources that can be 

reallocated for maintenance purposes, and supports models postulating that long-term memory 

knowledge constrains WM maintenance processes. 

 

Keywords: Working Memory, Semantic knowledge, Computational models, TBRS 
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Introduction 

 Verbal Working Memory (WM) is the ability to maintain verbal information over a short 

period of time. It has been shown to be influenced by several semantic factors (Poirier & Saint-

Aubin, 1995; Walker & Hulme, 1999), suggesting the existence of close interactions between 

WM and the long-term memory linguistic system. These interactions are now well-established, 

but the mechanisms through which they occur are poorly specified. This is an important 

theoretical question, because many contemporary models assume that WM relies on direct 

activation within the long-term memory system (Acheson & MacDonald, 2009; Cowan, 1995, 

2001; Majerus, 2019; Martin et al., 1996; Oberauer, 2009). Importantly, there had been little 

attempt previously to model these influences within a formal computational architecture. In the 

present study, we took advantage of a convergent approach involving behavioral and 

computational methods to assess the hypothesis that semantic knowledge can be used in an 

efficient manner to free-up WM resources that can then be reallocated to maintain more 

information. 

Many studies have shown that semantic knowledge supports the short-term maintenance 

of verbal information. For instance, this is demonstrated by the presence of so-called 

psycholinguistic effects in immediate serial recall tasks. A recall advantage is observed in the 

semantic relatedness effect for lists composed of semantically related words (e.g. leaf – tree – 

branch) over semantically unrelated words (e.g. wall – sky – dog) (Kowialiewski & Majerus, 

2018; Monnier & Bonthoux, 2011; Poirier & Saint-Aubin, 1995; Tse, 2009; Tse et al., 2011). 

Similarly, verbal items associated with concrete or highly imageable semantic features (e.g. table 

– car – hand) are better recalled than verbal items characterized by abstract or low imageable 

semantic features (e.g. phase – doubt – link). This is known as the concreteness or imageability 
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effect (Acheson et al., 2010; Campoy et al., 2015; Castellà & Campoy, 2018; Chubala et al., 

2018; Kowialiewski & Majerus, 2018; Miller & Roodenrys, 2009; Romani et al., 2008; Walker 

& Hulme, 1999). Other studies also demonstrated the importance of semantic knowledge during 

WM maintenance. The classical deleterious impacts of phonological similarity (Baddeley, 1966) 

and word length (Baddeley et al., 1975) on WM performance can be strongly reduced when 

participants are explicitly instructed to use a semantic maintenance strategy (Campoy & 

Baddeley, 2008; Logie et al., 1996). Likewise, WM performance increases when such a 

maintenance strategy is required (Hanley & Bakopoulou, 2003), or when participants are 

instructed to perform semantic judgements concerning the memoranda (Savill et al., 2015). 

Overall, these studies add to the empirical evidence showing an influence of long-term memory 

knowledge on WM performance, which has been shown to occur both in the verbal (Brener, 

1940) and the visual (Oberauer et al., 2017; Xie & Zhang, 2017) domains. 

Theoretically, semantic effects in WM can be explained by models presuming a close 

interaction between WM and long-term memory knowledge (Acheson & MacDonald, 2009; 

Cowan, 1995, 2001; Majerus, 2013, 2019; Martin et al., 1996; Oberauer, 2002, 2009). For 

instance, the Embedded-Processes model (Cowan, 1995, 2001) is an influential theoretical 

framework. This framework assumes that WM processing relies on direct activation in long-term 

memory, and that this activation provides the representational basis for WM maintenance. In the 

verbal domain, it has been proposed that the maintenance of verbal information may rely on 

direct activation within the linguistic system itself (Acheson & MacDonald, 2009; Jefferies et al., 

2006; Majerus, 2013, 2019; Martin et al., 1996; Patterson et al., 1994). Semantic effects can be 

explained by assuming that verbal items receive feedback from higher levels of representations 

through interactive activation principles (McClelland & Rumelhart, 1981). In interactive 
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activation models, the semantic relatedness effect is explained by considering that words related 

at the semantic level share a higher number of common semantic features than unrelated words 

do (Dell et al., 1997). Alternatively, semantically related words may have direct lateral excitatory 

connections between each other, due to lexical co-occurrence effects (Hofmann & Jacobs, 2014). 

Thanks to these shared semantic features and/or lateral excitatory connections, semantically 

related items are thought to reactivate each other, which increases their activation level and 

makes them easier to maintain. 

Although activation-based models can theoretically account for the presence of semantic 

effects in WM, little effort has been made to build a computational WM model in which long-

term memory activation is taken into account. The architecture proposed by Haarmann and 

Usher (2001) is a two-layer neural network composed of a “posterior system” where the initial 

activation in long-term memory is sent to a limited-capacity “prefrontal cortex system” in which 

each item competes via between-item inhibitions. In this architecture, the semantic relatedness 

effect was modeled by postulating the existence of mutual excitatory connections between 

semantically related items. However, because no mechanism responsible for the maintenance of 

serial order information was implemented, this model was strictly limited to simulate 

performance in free recall paradigms. Recently, Kowialiewski and Majerus (2020) implemented 

Dell’s interactive activation model of language processing (Dell et al., 1997) within a WM 

architecture that takes into account how serial order information may be represented, i.e. the 

Start-End Model (Henson, 1998). These authors showed that the semantic relatedness and 

concreteness/imageability effects could be successfully modeled in immediate serial recall 

paradigms. At the same time, the WM architecture they used is only descriptive, and does not 

model WM maintenance processes in a realistic way. This limits the ability of this model to be 
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extended toward a larger set of WM phenomena and experimental designs. Hence, although 

current computational models make a very good description of how semantic effects may 

influence overall WM performance, they nevertheless make a poor description of how items may 

actually be maintained, and especially how long-term memory knowledge may potentially affect 

and interact with maintenance processes. 

Other models account well for the active maintenance processes taking place over time in 

WM. One such model is the Time-Based Resource Sharing model (TBRS, Barrouillet et al., 

2004). This model considers that WM maintenance is constrained by two temporal factors: (1) 

the constantly decaying WM representations, and (2) the time available to restore such 

representations. In addition, the decaying WM representations are thought to be restored via the 

focus of attention, a central bottleneck limited to one operation at a time. This restoration 

process, called refreshing, supposedly occurs very rapidly, outside of explicit awareness (Camos 

et al., 2018), via constant switching between memoranda (Vergauwe & Cowan, 2015). The 

TBRS model offers an appealing explanation for classical cognitive load effects; when a 

distracting task embedded in the inter-item interval of a list to be remembered has to be 

performed, WM performance decreases proportionally to the attentional capture caused by the 

distractor (Barrouillet et al., 2011). Theoretically, this result is explained by assuming that when 

the attention is occupied by a distractor, decaying WM representations cannot be refreshed and 

are affected by the deleterious effect of decay. A computational implementation of this 

theoretical model, TBRS* (Oberauer & Lewandowsky, 2011) was shown to be able to account 

for several important well-established WM phenomena (Oberauer et al., 2018). These include 

cognitive load effects, serial position curves, omissions and transposition errors. Therefore, the 
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TBRS* model is an excellent potential architecture that can be used to model semantic effects in 

WM more realistically. 

The original TBRS* model does not consider how long-term memory knowledge 

potentially interacts with WM maintenance. However, further studies have progressively 

acknowledged the need to include a rigorous description of long-term memory mechanisms. This 

accounts for a wider range of cognitive phenomena. For instance, Portrat et al. (2016) 

implemented a supplementary searching mechanism in long-term memory within TBRS* to 

model the maintenance and recall of chunks in WM. More recently, Lemaire and Portrat (2018) 

proposed a hybrid version of TBRS* that included an interference mechanism. This accounted 

for several interference effects, such as item-distractor similarity effects (Oberauer, Farrell, et al., 

2012), which the original TBRS* model is unable to simulate. Despite these new refinements, 

the TBRS* model does not account for the presence of semantic effects in WM. 

In this study, we integrated the core assumptions made by interactive activation models of 

language processing to model the semantic relatedness effect in TBRS*1, by considering that 

items are directly activated in long-term memory. Theoretically, since semantically related items 

are supposed to reactivate each other in long-term memory, they should be less susceptible to the 

deleterious effect of decay, leading to a better recall performance than semantically unrelated 

items. Critically, we took advantage of this new integration to assess a hypothesis directly 

derived from those combined principles. Indeed, this new version of the model predicts that 

semantic knowledge should free up attentional WM resources that can be reallocated to maintain 

                                                 

1 It is important to note that the leading cause of forgetting in WM is a matter of intense debate. While we 

chose the TBRS* architecture to account for the resource freeing hypothesis we are developing, we do not deny 

interference as a source of forgetting, but this question is out of the scope of the present paper. 
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more information. More specifically, we predicted that the presence of a semantic triplet within a 

list to be remembered should give a beneficial proactive benefit, by increasing WM performance 

for subsequent, semantically unrelated items. This prediction is derived from the assumption that 

the human cognitive system tries to reallocate attentional resources in an efficient manner 

(Lemaire et al., 2018). Because semantic triplets benefit from strong activation in the long-term 

memory knowledge base, fewer refreshing attempts should be required to keep them active. 

Then more attentional resources will be available for reallocation to maintain subsequent items 

to be remembered. We tested this resource freeing hypothesis directly on human participants, 

before assessing its plausibility using computational simulations. 

Experiment 

In this experiment, the semantic content of a list to be remembered was manipulated via 

the inclusion of a semantic triplet, such that half of the items were semantically related (e.g., leaf 

– tree – branch), while the other half was composed of items that were unrelated at the semantic 

level (e.g., wall – sky – dog). The triplet was presented either at the beginning (i.e. leaf – tree – 

branch – wall – sky – dog) or at the end (i.e. wall – sky – dog – leaf – tree – branch) of the list. 

These conditions were then compared to a neutral condition in which all items were semantically 

unrelated (e.g. hammer – jacket – horn – wall – sky – dog). According to the resource freeing 

hypothesis, we expect that the presence of a semantic triplet at the beginning of the list should 

have a beneficial proactive effect on WM performance. In other words, the presence of a 

semantic triplet in the first half of the list should free up attentional resources that can be 

reallocated to maintain the subsequent items of the list. Recall performance will thus be 

improved for these items, and this can be compared to the same items in the condition without a 

semantic triplet. 
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A similar phenomenon has been observed in previous studies for lists of letters (e.g., 

“PDFCHDL”) (Portrat et al., 2016; Thalmann et al., 2018). However, in these studies, no 

retroactive benefit on WM performance was observed, i.e. an impact on the first half of the list 

when the triplet was presented in the second half. Based on these previous studies, we do not 

expect a retroactive effect upon using semantic triplets. This latter prediction derives from the 

resource freeing hypothesis. Effectively, when the semantic triplet is presented at the end of the 

list, the participants should become aware of the semantic triplet very late (i.e. from the fifth 

item). This may not leave enough time to free up WM resources. 

Method 

Participants. Thirty undergraduate students aged between 18 and 30 years were recruited 

from the university community of the Université Grenoble Alpes. All participants were French-

native speakers, reported no history of neurological disorder or learning difficulty, and gave their 

written informed consent before starting the experiment. The experiment had been approved by 

the ethic committee of CER Grenoble Alpes: Avis-2019-04-09-2. 

Material. We used a pool composed of 120 French words with a lexical frequency (count 

per million) of Mlog = 2.899 and SDlog = 1.689. The words were 1 to 3 syllables long (M = 1.483, 

SD = 0.594) and were composed of 2 to 7 phonemes (M = 4.058, SD = 1.11). The stimuli were 

drawn from 40 different semantic categories, which included taxonomic (e.g., dog – wolf – fox) 

or thematic (e.g., sky – cloud – rain) relationships. Previous studies had shown that both types of 

semantic relationships are likely to impact WM performance in a similar way (Kowialiewski & 

Majerus, 2020; Tse, 2009). All the stimuli were recorded by a French native male speaker using 

a neutral voice. Each word was exported into an individual .wav file, whose average length was 
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M = 455 ms and SD = 64 ms. Background noise was removed via the noise reduction tool 

implemented in Audacity. 

There were 3 different experimental conditions, labeled as follow: 

- In the T1 condition, the semantic triplet was presented in the first half of the list (Triplet 

in 1st half; e.g., leaf – tree – branch – wall – sky – dog). 

- In the T2 condition, the semantic triplet was presented in the second half of the list 

(Triplet in 2nd half; e.g., wall – sky – dog – leaf – tree – branch). 

- In the NT condition, no semantic triplet was presented and all items were semantically 

unrelated (No Triplet; e.g., hammer – jacket – horn – wall – sky – dog). 

The experimental conditions were created by using the 40 semantic categories. Twenty triplets 

were used to create the T1 condition and 20 triplets were used to create the T2 condition. The 40 

semantic categories were used again and randomly combined to create 80 triplets composed of 

unrelated words. Forty unrelated triplets were used to fill the second and first part of the T1 and 

T2 conditions, respectively. The remaining 40 triplets were combined to create the NT condition. 

In the T1 and T2 conditions, special care was taken to avoid the semantically unrelated words 

having an obvious semantic relationship with the semantic triplet itself. More specifically, we 

insured that, within each sequence, each word that composes the semantically unrelated triplet 

had no obvious semantic relationship with any item that belongs to the semantically related 

triplet. Each word appeared three times throughout the entire experiment: once in a semantic 

triplet, and twice in a semantically unrelated triplet. 

The a priori semantic associations between the words were further assessed in an online 

survey, in which an independent group of 80 participants was invited to judge on a scale ranging 

from 0 to 5 to what extent pairs of words were semantically related. The pairs of words were 
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drawn from the experimental lists, by extracting the adjacent words from each trial (e.g. given 

the list “ABCD”, the pairs “AB”, “BC” and “CD” were used). The total number of pairs to be 

judged was 1,018. Due to this large number of pairs of words, the participants were provided 

with only 250 pairs to judge, and were nonetheless free to stop the survey at any moment. Final 

data collection indicated that each pair was judged 12,659 times on average. A Bayesian 

independent samples T-Test (see the statistical analysis section below) confirmed that the a priori 

defined related and unrelated pairs did differ in term of semantic relatedness judgment, this 

difference being associated with decisive evidence (M = 4.463, SD = .5, and M = .427, SD = 

.601, for related and unrelated pairs, respectively, BF10 = 9.809e+387). 

 The immediate serial recall task was composed of sixty trials in total, twenty for each 

experimental condition (T1, T2 and NT). To avoid stimulus list effects, we generated 36 

different versions of the lists to be remembered. We first generated three versions of the 20 trials 

that composed each experimental condition. Each version was then combined in a pairwise 

manner with each version of the other experimental lists to create 9 different versions of the lists. 

Each of these versions were duplicated, but the positions of the triplets within each list were 

exchanged (i.e. the T1 condition became the T2 condition; [1:3, 4:6] => [4:6, 1:3]), resulting in 

18 different versions. Finally, for each version, a new one was created by re-ordering the items 

within each triplet (e.g. leaf – tree – branch – sky – wall – dog => branch – leaf – tree – wall – 

dog – sky). In the NT condition, all items within each list were randomly ordered.  

To randomly order the items within each list or triplet, we avoided as far as possible 

across the entire experiment that the same item would be presented twice in the same position. 

Although this could not be totally avoided, it was nevertheless minimized by testing all possible 

permutations within a given trial. Within each version, the lists were presented in a 
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pseudorandom order, such that the same semantic condition could not be repeated across more 

than three consecutive trials. 

Procedure. Each trial began with the presentation of a white fixation cross displayed on a 

black background for 1000 ms, followed by the six-item memory list. The items were presented 

aurally at a speed of 1 item every 2 seconds. After the presentation of the list to be remembered, 

the participants were asked to recall out loud the items in the order in which they appeared. The 

participants were invited to substitute any item they did not remember by the word “blanc” (the 

French for “blank”). During each recall attempt, the numbers from 1 to 6 were successively 

displayed on the screen. When the first screen displayed the number “1”, the participants were 

invited to synchronize their oral response with a key press. More specifically, the participants 

were told that each time they began to recall an item or a “blank” out loud, they had to press the 

spacebar. The number on the screen was increased after each keypress. Once the last item had 

been recalled, the participants had to press the spacebar to initiate the next trial. Response times 

were automatically recorded by the computer, which allowed us to approximate recall latencies 

corresponding to each recall attempt. 

The experimenter performed one practice trial to demonstrate the exact procedure to 

follow. The participants then performed three practice trials before the beginning of the main 

experiment. None of the stimuli in the practice trials were used in the main experiment. In 

addition, the stimuli in the practice trials were always semantically unrelated. Finally, the 

experiment was divided into two blocks, allowing participants to take a short break. Task 

presentation and timing were controlled using OpenSesame (Mathôt et al., 2012) run on a 

desktop computer. The auditory stimuli were presented via headphones connected to the 

computer, in a soundproof booth at comfortable listening level. Participants’ responses were 
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transcribed online by a research assistant blind to the main theoretical hypothesis, onto an 

electronic spreadsheet, and were also recorded using a digital recorder.  

Scoring procedure. To determine the impact of the different semantic conditions (T1, 

T2, NT) on WM processing, recall performance was first assessed using a strict serial recall 

criterion. By this criterion, an item was considered to be correctly recalled only if it was recalled 

at the correct serial position. For instance, given the target sequence “Item1 – Item2 – Item3 – 

Item4 – Item5 – Item6” and the recall output “Item1 – Item2 – blank – Item3 – blank – Item5”, 

only “Item1” and “Item2” would be considered as correct, resulting in a score of 0.333. Second, 

we used an item recall criterion, in which an item was considered as correct, regardless of its 

serial position. For the previous example, “Item1”, “Item2”, “Item3” and “Item5” would be 

considered as correct, resulting in a score of 0.667. While the strict serial recall criterion takes 

into account the ability to recall the position of a given item in a memory list, the item recall 

criterion is more informative concerning whether the item itself had been maintained in WM or 

not. This is important, because psycholinguistic effects mostly affect the ability to recall item 

information, rather than the serial order in which they had been presented (Majerus, 2009). It 

should be noted that a small but real deleterious effect of semantic relatedness upon memory for 

serial order information is observed (Tse et al., 2011). 

Statistical analysis. We performed a Bayesian analysis, as this reduces Type-1 false error 

probabilities relative to frequentist statistics (Schönbrodt et al., 2017). The Bayesian approach 

has the further advantage of computing continuous values against or in favor of a given model, 

rather than deciding for the presence of an effect based on an arbitrary statistical threshold. 

Evidence in favor of a model is given by the Bayesian Factor (BF). This reflects the likelihood 

ratio of a given model relative to other models, including the null model. The null model and the 
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effect of interest can be tested simultaneously, by directly comparing the alternative hypothesis 

against the null hypothesis, and vice versa. The BF10 is used to determine the likelihood ratio for 

the alternative model (H1) relative to the null model (H0), and the BF01 to determine the 

likelihood ratio for H0 relative to H1. We use the classification of strength of evidence proposed 

in previous studies (Jeffreys, 1998; Wagenmakers et al., 2011): a BF of 1 provides no evidence, 

1 < BF < 3 provides anecdotal evidence, 3 < BF < 10 provides moderate evidence, 10 < BF < 30 

provides strong evidence, 30 < BF < 100 provides very strong evidence and 100 < BF provides 

extreme/decisive evidence. In Bayesian ANOVAs, we performed Bayesian model comparisons 

using a top-down testing procedure, which first computes the BF value for the most complex 

model possible (i.e. the model including all main effects and all possible interactions). The BF 

value for each term is then assessed by directly comparing the full model against the same 

model, but by dropping the term under investigation. To minimize error of model estimation, the 

number of Monte Carlo simulations generated was set to Niterations = 100,000. For some critical 

contrasts of interest, we also report the 95% Bayesian Credible Intervals using the highest 

density intervals of the sampled posterior distribution of the model under investigation (Niterations 

= 100,000). All analyses were performed using the BayesFactor package (Morey & Rouder, 

2014) implemented in R (R Development Core Team, 2008) using the default wide Cauchy prior 

distribution of r = 
√�
� . 

On each graph we report the 95% Confidence Intervals for each mean. We follow the 

recommendations made by (Baguley, 2012). After correcting the data for between-subject 

variability (Cousineau, 2012; Morey, 2008), the confidence intervals of each mean � were 

computed using the following formula: 

(1) �̂� ± �	
�,�

 �⁄ � ��
���
�� �̂′�̂� 
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where �̂� is the ��� mean, �	
�,�

 �⁄  is the two-tailed critical t value with � − 1 degrees of 

freedom, � is the number of means included in the graph, and �̂′�̂� is the standard error of the ��� 

mean. 

Results 

We assessed recall performance as a function of semantic condition (T1, T2, and NT) and 

serial position (1 through 6). Using the strict serial recall criterion, we found decisive evidence 

supporting main effects of both the semantic condition (BF10 = 1.905e+18) and the serial 

position (BF10 = 2.497e+84). Likewise, the interaction term was associated with decisive 

evidence (BF10 = 5.826e+4). Similar results were observed using the item recall criterion, with 

decisive evidence being associated to both main effects of semantic condition (BF10 = 

1.572e+14), serial position (BF10 = 8.743e+50) and the interaction term (BF10 = 5.175e+13).  

The presence of an interaction suggests that the semantic condition impacted recall 

performance differently across serial positions, as shown in Figure 1. This interaction was 

further explored using Bayesian paired-samples T-Tests. To reduce the number of statistical 

contrasts, we averaged recall performance across the first (i.e. positions 1 through 3) and second 

(i.e. positions 4 through 6) halves of the lists, within each semantic condition. 

< INSERT FIGURE 1 ABOUT HERE > 

Semantic relatedness effect. First, the overall impact of the semantic relatedness effect 

was assessed. Recall performance over the first half of the list was higher in T1 than in NT, and 

this difference was associated with decisive evidence (Strict serial recall criterion: BF10 = 

2.604e+5, CI95% = [0.756; 1.75], d = 1.323, Mdiff = 0.122; Item recall criterion: BF10 = 7.179e+4, 

CI95% = [0.693; 1.652], d = 1.228, Mdiff = 0.107). Likewise, recall performance over the second 

part of the list was higher in T2 than in NT, and this difference was associated with decisive 
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evidence (Strict serial recall criterion: BF10 = 1.551e+4, CI95% = [0.586; 1.507], d = 1.117, Mdiff 

= 0.134; Item recall criterion: BF10 = 1.48e+7, CI95% = [1.017; 2.129], d = 1.636, Mdiff = 0.169). 

Hence, as has been classically observed, semantically related words were associated overall with 

better recall performance compared to semantically unrelated words. 

Proactive benefit of the semantic triplet. Next, we assessed whether the semantic triplet 

had a proactive benefit on recall performance, as predicted by the resource freeing hypothesis. 

Critically, recall performance over the second half of the list was higher in T1 than in NT, and 

this difference was associated with decisive evidence (Strict serial recall criterion: BF10 = 

4.178e+4, CI95% = [0.661; 1.608], d = 0.189, Mdiff = 0.139; Item recall criterion: BF10 = 

2.282e+3, CI95% = [0.48; 1.353], d = 0.98, Mdiff = 0.099). Therefore, a proactive benefit of the 

semantic triplet on recall performance has been observed. 

Retroactive effect of the semantic triplet. Finally, the retroactive effect of the semantic 

triplet was assessed. Recall performance over the first half of the list did not improve in T2 

compared to NT, this analysis being associated with anecdotal evidence slightly favoring the null 

hypothesis (Strict serial recall criterion: BF10 = 0.446, BF01 = 2.244, CI95% = [-0.574; 0.122], d = 

-0.248, Mdiff = -0.021; Item recall criterion: BF10 = 0.557, BF01 = 1.794, CI95% = [-0.611; 0.091], 

d = -0.28, Mdiff = -0.019). This analysis suggests that the semantic triplet did not retroactively 

impact recall performance. 

Discussion 

To sum up the results of this experiment, we observed that the presence of a semantic 

triplet enhanced recall performance specifically for the semantically related items that compose 

the triplet, as had been observed classically in immediate serial recall WM tasks (Poirier & Saint-

Aubin, 1996). The novelty of our experiment is that it showed that the presence of this semantic 
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triplet has a proactive benefit on recall performance. In other words, the semantic triplet 

improved recall performance for subsequent, semantically unrelated items of the same list to be 

remembered. Interestingly, no retroactive effect on recall performance was observed. This 

pattern of results is consistent with what has previously been observed in studies using triplets 

composed of letters (e.g. “PDFCHDL”) (Portrat et al., 2016; Thalmann et al., 2018). 

Overall, these results support a resource freeing hypothesis, according to which semantic 

relatedness should free up attentional WM resources. Indeed, since semantically related items 

benefit from the fact that they reactivate each other (Dell et al., 1997; Hofmann & Jacobs, 2014; 

Kowialiewski & Majerus, 2020), their activation level is thought to be very high. Due to this 

high activation level, these items would require fewer refreshing attempts to counteract the 

deleterious effect of decay, thereby freeing up attentional resources that could then be reallocated 

to refresh other, less activated items of the list (i.e. the unrelated items). Notwithstanding the 

support provided by this experiment to the resource freeing hypothesis, the exact mechanisms 

that might be responsible for the proactive benefit of the semantic triplet have yet to be specified. 

In the next section, we described the implementation within TBRS* of some principles derived 

from activation-based models of WM, to investigate to what extent the mechanisms we think 

might be responsible for the resource freeing hypothesis are plausible. 

Computational modeling 

TBRS*: General architecture 

The TBRS* model (Oberauer & Lewandowsky, 2011) is a fully interconnected neural 

network composed of two layers. One layer codes for positional information and the other one 

codes for item information (see Figure 2a). Positional information in the positional layer is 

represented in a distributed fashion across 54 units. Each position is coded by a subset of 9 units, 
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also called a positional marker. Each position inherits a proportion of units from the previous 

adjacent position, defined by a probability �. The remaining units are randomly assigned to the 

positional vector. In other words, adjacent positions overlap to some extent, and this overlap 

decreases exponentially as their separation increases. Item information is represented in a unitary 

fashion within an 81-unit vector. The WM representations are stored within the weight matrix � 

that connects the items to positional units (see Figure 2a). 

Due to this initial choice of implementation, which is potentially problematic as we will 

see later, the nature of the information itself (i.e. the item) and the position cannot be dissociated 

when stored in WM. The two elements can be considered as two faces of the same coin. At the 

beginning of a trial, the weight matrix � that contains the WM representations is empty (i.e. all 

values are set to zero), and the associations are formed through different phases. 

< INSERT FIGURE 2 ABOUT HERE > 

Encoding. Encoding is performed by activating (i.e. setting the values to 1) the nodes in 

the item and position layers. This means that during encoding an item is co-activated with the 

positional marker corresponding to the current position. The values in the weight matrix � are 

then updated following a Hebbian learning rule: 

(2) ∆�!� = #$ − �!�%&'()*'!�+,�  

where $ is an asymptotic value, fixed at 1/9 to obtain values ranging from 0 to 1 during retrieval. 

The term '()*!'!�+,� is the product between activation of unit i in the position layer and 

activation of unit j in the item layer, whose values are either 0 or 1. Hence, a link within the 

weight matrix is created if two units in both layers are co-activated. Each �!� connection is then 

updated by adding ∆�!� to its current value. The learning strength & is a scaling factor: 

(3) & = 1 − -./�−0�� 
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This & parameter follows an exponential function; it increases as the time spent on encoding 

increases, and progressively reaches an asymptote. Encoding lasts until activation reaches 95% 

of the highest value. Since it is assumed that encoding takes about 500 ms (Jolicœur & 

Dell’Acqua, 1998), it gives a mean encoding rate R =  6 (because 1 − -./�−6 ∗ 0.5� = 0.95). 

However, to model some variability, it is not the value R which is used but rather the outcome of 

a random draw from a normal distribution centered at R, with a standard deviation of 1. This 

term is called 0. Implementation details of this procedure can be found in the Matlab code 

associated to Oberauer and Lewandowsky (2011) or in our own Julia code available on the Open 

Science Framework (https://osf.io/y386u/). 

 Maintenance. Immediately after an item is encoded, the model enters a dynamic balance 

state constrained by two phenomena: decay and refreshing. When the focus of attention is driven 

away from the WM content, WM representations decay and all the �!� are updated: 

(4) ∆�!� =  −�!�#1 − -./�−9��%  

Decay is controlled by the decay rate 9, and it depends on the time � during which the central 

bottleneck is occupied, either by encoding or refreshing another item, or by a distracting task. 

Importantly, during the time a WM representation is being encoded or refreshed, all other WM 

representations are affected by decay. During refreshing, the items are first retrieved (see below), 

then re-encoded using the same principles as in Eq. 2. Refreshing occurs through rapid switching 

between memoranda. In the original TBRS* model, each refreshing attempt lasts 80 ms, which is 

close to the empirical estimation of 50 ms (Vergauwe & Cowan, 2015).  

 Retrieval & recall. Before being recalled and/or refreshed, an item first needs to be 

retrieved. Retrieval is performed by cueing the weight matrix using positional markers: 

(5) '!�+,� = ∑ '()* !�!�	!;� + =�0, �� 
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In this formula, the activation '!�+,� of item � is the sum of all the weights that connect item � to 

the positional unit > that correspond to the current position. The item most strongly associated to 

the cued position is then retrieved. In most cases, this is the item that was initially encoded. 

However, for the model to produce transposition errors (i.e. retrieving a wrong item), a zero-

centered random Gaussian noise with a standard deviation � is added to each activation value 

'!�+,�. Modeled this way, items associated to more similar positions (e.g., positions 2 and 3) are 

more likely to be transposed than most distant positions are (e.g., positions 1 and 5). In a second 

step, if the activation value of the retrieved item is below the retrieval threshold ?, an omission is 

produced. 

During recall, retrieval is performed by cueing the required position. While an item is 

being recalled, all other WM representations decay following Eq. 4, but by assuming a recall 

time �@ = 0.5 s. After selection and recall of an item, response suppression is applied to the 

weight matrix using Hebbian anti-learning: 

(6) ∆�!� = −$. '()* !'!�+,� 

When applying Hebbian anti-learning, the '!�+,� vector retrieved from Eq. 5 is used. In the case 

of an omission, no response suppression is applied. Then the model moves on to the next 

position. It should be noted that the WM representations also decay during the production of 

omissions. An example of the time course produced by the model is displayed in Figure 3. 

< INSERT FIGURE 3 ABOUT HERE > 

 Refreshing schedule. There are controversies as regards the refreshing schedule that 

participants may use during maintenance (Vergauwe et al., 2016). For instance, participants 

could refresh items cumulatively (1, 2 – 1, 2, 3 – 1, 2, 3, 4…) just like one rehearses verbal 

information (Tan & Ward, 2008), but they may use other schedules as well. In an extensive 
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investigation of the TBRS* model, Lemaire et al. (2018) tested the ability of several refreshing 

schedules to fit 3 different datasets. Among the different schedules investigated, they found that 

a Least Activated First schedule provided the best fit and outperformed the cumulative refreshing 

one. In this refreshing schedule, the model refreshes in priority the least activated items. The 

rationale behind this mechanism is to consider that the human cognitive system is very efficient, 

and try to use the available resources for optimizing purposes. Accordingly, we used this 

refreshing schedule throughout our simulations. 

Basically, the system performs a series of short refreshing episodes, provided there are no 

external events such as encoding a new item or recalling all items. Each of these episodes is 

devoted to refreshing a single item as mentioned previously. To select this item, the system scans 

each position and retrieves the most associated item for each one. The item to be refreshed is the 

least activated one. Its weights are thus strengthened and the system engages in the next 

refreshing episode. Scanning positions sequentially is probably not cognitively plausible but it is 

the way it is implemented on a von Neumann sequential computer. It does not preclude any 

brain-level parallel mechanism which is outside the level of description of our model. 

TBRS*-S: A new architecture to model semantic relatedness 

As mentioned in the introduction, although recent efforts have been made to model long-

term memory phenomena in TBRS* (Lemaire & Portrat, 2018; Portrat et al., 2016), the model is 

unable to simulate between-item semantic relatedness on recall performance. One reason is that 

the item layer does not incorporate or describe the phenomena that may occur in long-term 

memory, and especially the complexity of interactions occurring in the linguistic knowledge 

base. At a theoretical level, the semantic relatedness effect can be explained by assuming that 

semantically related items reactivate each other, for instance by spreading the activation in a 
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semantic network from one node to another (Hofmann & Jacobs, 2014; Neely, 1977). In the 

following paragraphs, we describe the stages of a first tentative adaption of the TBRS* 

architecture to account for the complex interactions between semantic knowledge and WM 

maintenance. We first adapt the TBRS* architecture by assuming the existence of this basic 

spreading activation principle. We then consider the dissociation between the ability to maintain 

item and serial order information, without which semantic relatedness effects cannot be modeled. 

Finally, a new, more psychologically plausible recall mechanism was implemented. 

Modeling spreading activation. In a first attempt, we tried to keep the architecture as 

close to the original one as possible. We implemented a model in which the encoding and/or 

refreshing of a memorandum leads to the automatic co-activation of all semantically related 

items, with this co-activation being constrained by a new parameter, A. More specifically, we 

assumed that items are represented within a semantic network, with semantically related items 

linked by a connection of strength A2. For instance, consider the two semantically related 

memoranda “item A” and “item B” that need to be encoded in position 1 and 2, respectively. The 

activation of “item A” in position 1 also activates “item B”, scaled by λ, resulting in the creation 

of an association for both items at this current position 1. 

We reasoned that this implementation should enhance recall performance by reducing the 

rate of omissions, because semantically related items would be more strongly encoded overall. 

Indeed, because adjacent positions share in average a proportion � of positional markers, if item 

B is encoded in position 1, it would also be encoded to some extent in position 2, resulting in 

                                                 

2 This way of representing semantic relationships in an all-or-nothing fashion appears to allow the 

description of the semantic effects we are interested in. This could be extended later on to take into account various 

degrees of semantic relationships instead of only one. 
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higher activation levels at the time of retrieval. This intuitive interpretation was met in the model 

in a condition where all the items were semantically related: When λ varied between 0 and 0.5, 

the proportion of omissions decreased linearly from 0.163 to 0.046. However, this reduction of 

omission errors was accompanied by a strongly deleterious impact on the maintenance of order 

information, which produced a dramatic drop of performance when a strict serial recall criterion 

was considered (from 0.652 to 0.262). Increasing λ also slightly increased repetition errors. 

Hence, implemented this way, the presence of semantic relationships at the whole-list level 

decreased recall performance3. 

This drop of performance is inherently linked to the model’s fundamental properties. 

Since there is no way to store item information without also storing positional information, the 

obligatory co-activation of the semantically related items also results in their association to a 

wrong position, leading to a strong increase of transposition errors, far beyond the small 

advantage observed at the item level. The output of this first attempt of modeling semantic 

relatedness in TBRS* is reported in Appendix A. 

Following this first modeling attempt, it appeared that the original TBRS* architecture is 

severely limited due to the lack of dissociation between the item and positional information 

stored in WM. Indeed, although the two pieces of information are coded within distinct layers, 

once encoded they form a unique WM representation (i.e. the weight configuration within the � 

matrix). At a theoretical and empirical level, this is problematic because previous studies have 

shown a dissociation between the ability to recall item and serial order information in WM 

(Gorin et al., 2016; Henson et al., 2003; Majerus, 2009, 2013, 2019), suggesting the existence of 

                                                 

3 We also implemented a distributed version of this model, with semantically related items sharing similar 

nodes at the item level. This model behaved in a similar way. 
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different mechanisms to maintain both type of information. This means that using the original 

TBRS* architecture with a basic spreading activation principle is not suited to capture the 

semantic relatedness effect, as revealed by our first modeling attempt. 

Dissociating item and positional information. To solve this problem, the model must be 

adapted to meet the assumptions made by the Embedded-Processes model of WM (Cowan, 1995, 

2001), which is particularly well-suited to explain the impact of long-term memory knowledge in 

WM, especially within a decay-based architecture. According to this theoretical framework, 

items activated in long-term memory are constantly decaying, unless they can be actively 

maintained using the focus of attention. Hence, the Embedded-Processes model assumes that 

what is maintained via the focus of attention is the sustained temporary activation of the items 

themselves, not a temporary WM representation. This principle is now adopted in the new 

TBRS*-S (S = Semantic) architecture we propose, whose general structure is displayed in 

Figure 2b. More specifically, we assumed that items are associated with their own activation 

values C. Encoding is performed by directly activating the node of the current item: 

(7) ∆C! = �1 − C!�&  

This formula is identical and follows the same rules as for the item-position connections in Eq. 2, 

with the exception that activation of each item > is now represented within the vector C, and the 

activation of each item reaches an asymptote of 1. 

To model the semantic relatedness, we chose to approximate the assumptions made by 

interactive activation models of language processing (Dell et al., 1997; McClelland & 

Rumelhart, 1981), by assuming that semantically related items constantly reactivate each other. 

At a theoretical level, this reactivation process could occur via redundant activation feedbacks 

between the lexical and semantic levels of language processing (Dell et al., 1997), or by 
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postulating the existence of between-item lateral excitatory connections (Hofmann & Jacobs, 

2014). A recent implementation of such interactive activation models showed that both 

phenomena produce similar outcomes on WM recall performance (Kowialiewski & Majerus, 

2020). Accordingly, in the present study we only assumed the existence of lateral excitatory 

connections. This solution is more efficient computationally speaking, and is sufficient for the 

purpose of the present study. Therefore, once an item gains a given amount of activation at the 

moment of encoding and/or refreshing, all other semantically related items C� also receive a 

proportion of this activation via spreading activation: 

(8) C�,� = D>�#E1, #C�,�
� + C!,�
�A%F% 

Where A is the value of the weight that connects the semantically related items C� and C!, and � 

refers to the timestamp of the ongoing iteration. We also included a D>� function to ensure that 

activation values will not exceed 1. This modeling choice is more generally consistent with 

semantic priming effects, whereby the presentation of a prime (e.g., “boat”) facilitates the 

processing of a target (e.g., “captain”), as classically observed in the psycholinguistic domain 

(Zwitserlood, 1989). In addition, in agreement with interactive activation models we 

approximated the persistence of this spreading activation during decay by updating C!: 

(9) ∆C! = �1 − C!�. �'�ℎ#A ∑ C�%  

In this equation, the activation value C! of item > at time � is increased with the activation 

spreading from all its semantically related neighbors C�. The second factor is scaled by a 

hyperbolic tangent, as classically made to ensure that the final activation of C!  will not exceed 1. 

Note that the total activation received by C! at time t is computed before decay is applied, and is 

actually applied to C! after decay. 
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Modeled this way, the new TBRS*-S architecture should be able to handle the influence 

of semantic relatedness on recall performance. However, recent theoretical debates have 

highlighted the fact that WM cannot rely exclusively on activated long-term memory (Norris, 

2017, 2019). It also needs temporary WM representations. One particularly critical aspect is the 

maintenance of serial order information. Without specific mechanisms to maintain the serial 

order of a sequence to be remembered, the model would have no information whatsoever 

regarding the relevant representation to recall at a given position. Therefore, the maintenance of 

serial order information in this new implementation follows the same principles as the original 

TBRS* architecture, i.e. via the creation of item-position connections. These item-position 

connections are automatically created when encoding an item and they are updated during 

maintenance. They are not influenced by activation values in long-term memory. During 

retrieval, these item-position connections are used to select the index of the corresponding item 

in long-term memory. Once the index is selected, retrieval is constrained by the activation level 

of item C! in long-term memory. The item is correctly retrieved if its activation value in the long-

term memory layer is above the retrieval threshold ?. Otherwise an omission is produced. 

This implementation assumes that an item can be recalled in WM with little or no 

knowledge about its position, provided that its temporary activation value in long-term memory 

is sufficiently high. Inversely, knowledge about the position of a given item can be retrieved, 

even with poor information regarding the nature of the information itself. In addition, this 

implementation solves the problem of storing multiple tokens of the same representation, as also 

mentioned by Norris (2017). If item A is presented in the first and fourth positions, it is still 

possible to encode it twice, because the item-position connections can be created multiple times 
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over the same item in long-term memory. Indeed, it is not the long-term memory representation 

itself that is associated to a position, but rather a unique index on that representation. 

 Weighted retrieval mechanism during recall. In addition to these substantial changes at 

the level of WM representations, we considered a new recall mechanism that would significantly 

enhance the model’s behavior. In the original TBRS* architecture, items are recalled one by one 

using the positional markers that represent each position in isolation. Due to this implementation, 

an item can be recalled at a wrong position at the beginning of the list, even though it is more 

strongly associated to its original position. Cognitively speaking, it makes sense that participants 

would notice that items never appear twice in a list. Therefore, they may decide not recall an 

item at one position, because this item is much more associated to another position. For instance, 

consider “item A” and “item B” encoded in positions 1 and 2, respectively. When trying to 

retrieve an item at position 1, the system may sometimes retrieve a wrong item because of noise, 

in this case “item B”. However, because the association between “position 2” and “item B” is so 

strong and unambiguous, it makes sense to consider that “item B” will not compete for selection 

when trying to retrieve “item A” at position 1. 

In TBRS*-S, given a position at which retrieval has to be performed, all items with a 

lower activation value at that position than at another position are excluded from the 

competition. If all items are excluded, the model produces an omission. This implementation 

requires a retrieval to be performed for each of the positions. There are probably more 

cognitively plausible retrieval implementations, in which the existing strong associations directly 

pops up and inhibits it as a candidate, but we stuck to a simple implementation for this retrieval 

mechanism. In addition to being more cognitively plausible, this weighted retrieval mechanism 

enhanced the general model’s behavior via the production of realistic serial position curves 
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across the strict serial recall criterion and the item recall criterion, but also critically the omission 

rate. With the standard recall mechanism, the omission rate was very low over the first three 

positions, and increased substantially across positions 4 through 6, as can be seen in Appendix 

B. This phenomenon is not observed in the empirical data. The most activated item is always 

considered, so in the original model little room is left for omissions at the beginning of the list. 

Indeed, most of the time there will be a very strongly activated item. This weighted retrieval 

mechanism fixed this issue, as we will see in the next section. 

 It is important to note at this point that despite these substantial theoretically-driven 

changes in the original TBRS* architecture, we did not add any extra free parameters, apart from 

A. Without A, it would be impossible to manipulate the between-item semantic relatedness. 

< INSERT TABLE 1 ABOUT HERE > 

 Parameter estimation. To identify the set of parameters that would reproduce basic WM 

behaviors, namely primacy and recency effects as well as the amount of recalled items observed 

in the empirical data, parameters were estimated using a grid search method exploring 81,081 

points of the parameter space. The grid search method considered 5 different free parameters 

across a wide range of plausible values (see Table 1). Each combination of parameters was 

estimated by running the model 1,500 times in the neutral condition only, with no semantic 

relatedness (i.e. the NT condition, with A = 0.0). To reproduce effects and not only magnitudes, 

the objective function used consisted in giving a score to each model. More specifically, each 

configuration was rewarded with a notation system as follows. 

Ten points were attributed if the configuration of parameters correctly produced the primacy 

effect: 

- Four points for Position 1 > Positions 2 through 5 
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- Three points for Position 2 > Positions 3 through 5 

- Two points for Position 3 > Position 4 through 5 

- One point for Position 4 > Position 5 

One point was attributed if the configuration of parameters correctly produced the recency effect: 

- Position 6 > Position 5 

In addition, if the average performance level produced by a specific combination of parameters 

was below 0.4 or above 0.8 (i.e. floor and ceiling effects, respectively) using the strict serial 

recall criterion, this combination was automatically discarded from the selection. 

This notation system resulted in a maximum possible 33 points: 11 points for each recall 

criterion, including strict serial recall, item recall, and omissions. It should be noted that the 

production of omission errors is a particularly critical aspect of the resource freeing hypothesis, 

because this hypothesis predicts that the presence of a semantic triplet should prevent other items 

from being lost (i.e. an activation level below the retrieval threshold). Among all combinations 

of parameters that produced the highest score, we selected the combination that minimized the 

Root Mean Squared Error (RMSE). The RMSE was computed across 18 data points: the 6 serial 

positions across the three recall criteria considered. 

After the set of parameters minimizing the RMSE was identified, we fitted the semantic 

conditions on this set of parameters by systematically varying A across a range of plausible 

values (see Table 1), and this was done by running the model 10,000 times4 for each value of A. 

To select the appropriate value of A, we averaged the recall differences between the NT and T1 

conditions across positions 1 through 3, and between the NT and T2 conditions across positions 

4 through 6. This resulted in a mean difference that represents the overall impact of the semantic 

                                                 

4 Since only 51 values of A were estimated, we increased the number of simulations per estimation. 
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triplet on recall performance5. The value of A that minimized this difference with the empirical 

data was then selected. Hence, the proactive benefit of the semantic triplet was never used during 

the selection of parameters. We reasoned that the presence of a proactive benefit (and the 

equivalent absence of a retroactive effect) should be a direct consequence of the model’s general 

behavior, not the result of a specific combination of parameters across the parameter space. 

Simulation results 

Among the 81,081 sets of parameters estimated in the grid search method, a total of 584 

combinations resulted in a score of 33 points. These models, when fitted against the NT 

experimental data had an average RMSE of 0.130, with SD = 0.037. The set of parameters that 

minimized the error was associated with a RMSE of 0.052 (see Table 1)6. As can be seen in 

Figure 4, the model was nearly indistinguishable from the empirical data, and successfully 

reproduced the pattern of performance observed across the different recall criterion considered, 

including primacy and recency effects. Hence, the model was able to correctly capture recall 

performance in a general manner. To model semantic relatedness, we varied the value of A while 

keeping all other parameters unchanged. We found that a value of 0.013 best fitted the empirical 

data. The evolution of the RMSE as a function of A is provided in Appendix C. 

< INSERT FIGURE 4 ABOUT HERE > 

                                                 

5 With the strict serial recall criterion, the model did not reproduce well the serial recall performance. 

Therefore, the item criterion was used for this fitting (see simulation results). 

6 In this estimation, a very small value of � (.01) minimized the error, suggesting that little noise was 

required to produce transposition errors. In fact, the � parameter is not the sole source of transposition errors. Other 

factors contribute to the production of transpositions, including the stochastic sampling of the H parameter (see 

equation 3) and the overlap P between contextual markers. 
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Semantic relatedness effect. As can be seen in Figure 5 (lower panels), the model 

successfully captured the general impact of semantic relatedness on recall performance. 

Compared to the NT condition, semantically related items were associated with better recall 

performances at the item level. However, when a strict serial recall criterion was considered, the 

pattern of results differed slightly. We will return to this issue below. 

Proactive benefit of the semantic triplet. When omission errors and the item recall 

criterion were considered, the model correctly produced the proactive benefit of the semantic 

triplet. Using the strict serial recall criterion, this was also observed, albeit to a lesser extent. In 

fact, the proactive benefit of the semantic triplet increased in a linear fashion with the value of A 

(see Appendix C). 

Retroactive benefit of the semantic triplet. Similarly, the model successfully predicted an 

absence of retroactive benefit of the semantic triplet on recall performance, and this was 

consistent using the strict serial recall criterion and the item recall criterion. 

< INSERT FIGURE 5 ABOUT HERE > 

Model’s diagnosis 

Overall, the model behaved as expected following the resource freeing hypothesis. In the 

following paragraphs, we propose to describe a deeper investigation of the model’s different 

components to analyse why it produced this behaviour. 

Least Activated First mechanism. One of our main critical assumptions as to why the 

model should behave in agreement with the resource freeing hypothesis involves the Least 

Activated First mechanism. We assumed that since semantically related items have an overall 

higher activation level than unrelated items, the subsequent semantically unrelated items should 

be refreshed more often, with the Least Activated First mechanism being directly responsible for 
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this redistribution of attentional resources. If this supposition is true, the proactive benefit of the 

semantic triplet should no longer be observed when using a cumulative refreshing schedule. This 

prediction was indeed met in the model, as can be seen in Figure 67, suggesting that the Least 

Activated First mechanism played an essential role to free up attentional resources. 

< INSERT FIGURE 6 ABOUT HERE > 

Pattern of refreshing episodes. To understand the impact of the Least Activated First 

mechanism on WM performance as a function of the semantic condition, Figure 7 should be 

examined. This displays the pattern of refreshing episodes that directly follows the encoding 

phase of the last three items, averaged across 10,000 simulations. Each panel represents the 

average number of refreshing episodes (y axis) over each item (x axis) during the free period of 

time directly following the encoding of each newly presented item, starting from item 48. It can 

clearly be seen that the number of refreshing episodes over each item is unevenly distributed 

across the semantic conditions. In the T1 condition, items 4, 5 and 6 progressively benefit from 

more refreshing episodes to the expense of items 1, 2 and 3. In the T2 condition, the pattern is 

reversed: Items 4, 5 and 6 are subject to fewer refreshing episodes, and these refreshing episodes 

are reallocated toward items 1, 2 and 3. 

< INSERT FIGURE 7 ABOUT HERE > 

                                                 

7 We re-estimated the value of λ (= 0.01) when simulating the data using the cumulative refreshing 

schedule. A higher value of λ did not change the absence of proactive benefit. The remaining parameters were kept 

identical. 

8 During the free time that follows the encoding of the first three items, the refreshing episodes are evenly 

distributed, and hence are not informative. 
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Understanding the absence of retroactive effect. These deep investigations of the model’s 

behavior demonstrate the role of the Least Activated First mechanism during the reallocation of 

attentional WM resources, and how this reallocation process interacts in a complex manner with 

semantic relatedness. However, the absence of a retroactive effect of the semantic triplet on 

recall performance seems at odds with the pattern observed in Figure 7. Indeed, in the T2 

condition, once the items that compose the semantic triplet are presented, the attentional 

resources begin to be reallocated toward items 1, 2 and 3. All things being equal, this attentional 

reallocation should have led to a retroactive impact, an absent pattern in the model’s output. To 

understand why, Figure 8 displays the proportion of trials (over 10,000 simulations) for which 

the items were forgotten. These are the activation values for the T2 and NT conditions in long-

term memory below the retrieval threshold, after the end of each maintenance phase (i.e. just 

before encoding the next item). 

During the first maintenance phase, the first item was hardly ever forgotten, a pattern that 

remained relatively constant across the first three maintenance phases. After the fourth 

maintenance phase, WM overload began, and it became difficult to maintain all items. During 

the fifth maintenance phase, most of the items that could potentially be saved through attentional 

reallocation (i.e. those forgotten in the NT condition) were already lost. This is shown in Figure 

8, fifth panel, by the equivalent number of forgotten items in NT compared to T2. At this stage, 

the semantic relatedness only started to affect recall performance. After the last maintenance 

phase (i.e. just before recalling the items, sixth panel), semantic relatedness did not prevent the 

first items of the list from being lost. If the semantic triplet did prevent any item from being lost, 

we would have expected a decrease in T2 compared to NT over items 1-2-3 in the sixth panel, 

which is clearly not the case. This is because there is nothing left to be saved; the only items that 
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may benefit from the reallocation of attentional resources are those that are strongly enough 

activated to survive this far. Put another way, there is no retroactive benefit of the semantic 

triplet, because by the time that the attentional reallocation potentially allows these items to be 

maintained, a large part of them are already lost. The only items that could benefit from this 

reallocation process are those that are already well-above the retrieval threshold. 

< INSERT FIGURE 8 ABOUT HERE > 

Illustrated in a more concrete example, let’s suppose the last author of this study is 

juggling with a bunch of balls, but her lack of expertise only allows her to juggle with 3 balls. In 

this imaginary example, the balls represent the items, throwing a ball in the air is the equivalent 

of refreshing, and gravity represents decay. Each time an item is encoded, the second author is 

throwing a ball at her and she has to deal with a new ball. At the beginning, it is really easy to 

juggle with 1, 2 or even 3 balls. When a new ball is added, it becomes too difficult to follow the 

rhythm, and one ball has to be dropped from the game. Overall, recall performance (i.e. the total 

number of balls one is able to juggle with) will be equivalent to around 3 items, regardless of set 

size. Now let’s suppose she is given a new type of “magic balls”. These balls are lighter and are 

also less subject to gravity. This makes them easier to juggle with. These are the semantically 

related items. If three of these magic balls are introduced at the beginning (i.e. the T1 condition), 

it gets really easy to juggle with them. So easy that this leaves a lot of time to properly juggle 

with a new bunch of three balls. This produces the proactive effect observed in the data. Now 

let’s suppose these magic balls are introduced at the end (i.e. the T2 condition). It is very likely 

that some of the regular balls would have already been dropped at that time. The introduction of 

the new magic balls would not save those that are already dropped. This is very similar to what 

happens in the model. 
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Discussion 

 In these series of simulations, we proposed a new TBRS*-S architecture that integrates 

the core principles assumed by activation-based models of WM. More specifically, we provided 

an item layer in which the decaying long-term memory representations were directly activated. 

This activation was independent from the processes involved in the maintenance of serial order 

information. To model the semantic relatedness effect, we implemented lateral excitatory 

connections between semantically related items, through which items constantly reactivated each 

other in long-term memory. This new integration successfully captured the overall recall 

advantage usually observed for semantically related over semantically unrelated items. 

 Furthermore, when combined with the Least Activated First mechanism which assumes 

that the least activated items are refreshed as a priority, the model handled the proactive benefit 

of semantic triplets very well. A closer inspection within the model’s behavior suggested that 

this proactive benefit was directly caused by the interaction between the Least Activated First 

mechanism and the high activation level of semantically related items. However, this pattern was 

only observed when using an item recall criterion that does not take the model’s ability to recall 

serial order information into account. The proactive benefit of the semantic triplet was also 

accompanied by a deleterious impact to recall serial order of the triplet itself, suggesting that 

there might be an issue in the way serial order information is represented and maintained in the 

current implementation. 

 Finally, the model also successfully captures the absence of retroactive impact of 

semantic triplets. A fine-grained diagnosis of the model explained the reason for this pattern. 

When the semantic triplet began to impact WM maintenance, the items most likely to be 

forgotten were already lost during the inter-item interval because of WM overload. Hence, it was 
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impossible to maintain these items through attentional reallocation. Instead, attentional resources 

benefited items that were active enough to survive. 

 Overall, simulations show the plausibility of the resource freeing hypothesis to account 

for the results collected in the experiment. However, so far this study hinted exclusively at a role 

of the maintenance phase to account for the semantic triplet proactive effect. Alternatively, the 

recall phase may play a role to account for proactive effects (Cowan et al., 1992, 2002). In the 

next section, we described our extensive analysis of participants’ recall latencies, and how these 

may impact WM performance across the different semantic conditions we manipulated. 

A closer inspection of recall latencies 

So far, the recall process was relatively underspecified within current implementations of 

TBRS*. This can be attributed to the fact that researchers neither measured nor took into account 

recall latencies in verbal WM tasks in a systematic manner. However, recall latencies are critical 

for decay-based architectures, including TBRS*. Many errors produced by the model can only be 

attributed to the time it takes to recall the items, during which not only do items decay, but also 

maintenance via refreshing is prevented. Empirically, recall latencies differ across serial 

positions, and researchers in the WM domain even consider recall latencies as a tool that should 

be used to compare different competing computational models (Farrell & Lewandowsky, 2004; 

Hurlstone & Hitch, 2015). It appears that some stimuli take longer to be recalled, such as long 

compared to short words (Cowan et al., 1992), or nonwords compared to word stimuli (Walker & 

Hulme, 1999). In the psycholinguistic domain, studies have shown reliable semantic priming 

effects on response latencies in tasks involving word production or shadowing (Python et al., 

2018; Slowiaczek, 1994). It is therefore very likely that the semantically related items in the 

present experiment were also associated with shorter recall latencies. Critically, any model that 
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assumes the existence of time-based forgetting should also assume that items that take less time 

to be recalled should produce a proactive benefit on recall performance. Indeed, given a 

sequence “ABCDEF” the to be remembered, if “ABC” takes less time to be recalled than a 

control condition does, the items “DEF” are thought to decay to a lesser extent, and should 

therefore be associated with higher recall performance. In this section, we explore whether recall 

latencies can explain the semantic effects observed in the experimental data. 

Empirical data 

Data preprocessing. In the following analysis, recall latencies were first log-transformed 

(natural logarithm) to reduce the skew of the latency distribution, as reported in Appendix D. 

We were first interested in overall recall latencies across serial position and semantic conditions, 

regardless of response type (correct responses, omissions, transpositions). Therefore, for each 

participant we took the median of these log-transformed recall latencies for each position and 

each semantic condition as dependent variables9. Also, cumulative recall latencies across serial 

positions were considered, by applying the log-transformation after summing the data across the 

different serial positions. For illustrative purposes, we used median raw recall latencies when 

plotting the results (see Figure 9), as log-transformed values are likely to be poorly informative 

from a psychological perspective. 

< INSERT FIGURE 9 ABOUT HERE > 

Recall latencies. In a first analysis, we assessed recall latencies as a function of the 

semantic condition (T1, T2, NT) and serial position (1 through 6) using a Bayesian Repeated 

Measures ANOVA. We found decisive evidence supporting both main effects of semantic 

condition (BF10 = 19224.64) and serial position (BF10= 1.532e+55). Likewise, the interaction 

                                                 

9 Using the mean of log-transformed recall latencies did not significantly change the overall results. 
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term was also associated with decisive evidence (BF10 = 598.541). Bayesian Paired-Samples T-

Tests indicate faster recall latencies over the positions that correspond to semantically related 

items (T1: BF10 > 100 over positions 2 and 3; T2: BF10 > 100 and BF10 = 68.944 over positions 5 

and 6, respectively), as is also evidenced by Figure 9 (left panel). 

Cumulative recall latencies. Positions in which semantically related items were presented 

were associated with faster recall than positions of unrelated item. The critical question we ask 

here is whether the proactive benefit of the semantic triplets on recall performance could be 

explained by the fact that when recalling items 4, 5 and 6, less time elapsed before recalling 

these items in T1 compared to NT. To answer this question, we performed Bayesian Paired-

Samples T-Tests over cumulative recall latencies throughout the different positions. Results 

show that the time elapsed in the T1 condition was always shorter than that in NT, and this was 

true throughout the different serial positions (BF10 > 100 for positions 2 through 5, and BF10 = 

79.995 for position 6), as shown in Figure 9 (right panel). This analysis confirms that less time 

elapsed before recalling items 4, 5 and 6 in the T1 condition compared to the NT condition. 

Influence of recall latencies on recall performance. The analyses detailed above show 

that positions 1, 2 and 3 in the T1 condition were associated overall with shorter recall latencies, 

which also shorten the time elapsed when recalling the items that directly followed the semantic 

triplets. However, these analyses do not inform us whether faster recall predicted recall 

performance over the items that followed the semantic triplets. If so, are recall latencies alone 

responsible for the proactive benefit of the semantic triplet, or rather do they have an additive 

effect with the semantic influence during maintenance? 

To explore these questions, we performed a Mixed Effect Bayesian ANOVA using the 

brms R package (Bürkner, 2017). The use of a mixed model approach was motivated by the 
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possibility of performing the analysis on individual trials instead of data averaged across 

participants, while also including participants as a random factor. We reasoned that the time 

elapsed on items 1, 2 and 3 might be informative about recall performance over the second half 

of the list, and this on an individual trial basis, which is a critical variance that aggregate data 

cannot take into account. Parameters of the models were estimated using 4 independent Markov 

Chains, each with 50,000 samples, including 5,000 warmup samples. In the analyses reported 

above, the Markov Chains always converged, as indicated by R-hat < 1.05. Bayes Factors for the 

effects of interest were obtained using the bayes_factor() function implemented in the brms 

package, by directly contrasting the full model against the same model without the effect of 

interest. 

We used mean recall performance (collapsed across positions 4, 5 and 6) as a dependent 

variable. Fixed-effects included the semantic condition (T1, NT), and recall latencies cumulated 

across positions 1, 2 and 3 (then log-transformed) as a predictor. The random effect included the 

by-participant random intercept. We were not able to include the by-participant random slope for 

the effect of cumulative recall latencies and semantic conditions due to convergence problems. 

However, the same analysis performed under a frequentist approach revealed an identical 

outcome when using the maximal random-effect structure (see Appendix E). If the total time 

elapsed before recalling items 4, 5 and 6 was important, then it should be a good predictor of 

recall performance for these items. In addition, if the total time elapsed is responsible alone for 

the proactive benefit of the semantic triplet, then adding complexity in the model by considering 

the effect of semantic conditions should not provide any further evidence. Fixed-level effects 

indicate that both semantic condition (M = -0.09, SD = 0.02, CI95% = [-0.12; -0.05]) and recall 

latencies (M = -0.2, SD = 0.02, CI95% = [-0.24; -0.16]) credibly impacted recall performance over 
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the second half of the list. In addition, using the bayes_factor() function, we found decisive 

evidence supporting both the impact of cumulative recall latencies (BF10 = 9.828e+19) and of 

semantic condition (BF10 = 1.07e+4). Therefore, the results of this analysis showed that the total 

time that elapsed when recalling items 1, 2 and 3 predicted recall performance averaged over 

positions 4, 5 and 6. In addition, the impact of the semantic condition was robust, even after 

considering cumulative recall latencies as a predictor, suggesting that recall latencies alone 

cannot fully explain the proactive benefit of the semantic triplet. 

Response type. The analyses described so far show that the time spent recalling the first 

part of the list was a good predictor of recall performance in the second part of the list. However, 

this observation was based on total recall latencies, regardless of the type of response that may 

have caused the proactive benefit of the semantic triplet. To derive Figure 10, we divided recall 

latencies across three different response types: correct responses associated with unrelated (NT) 

and semantically related (T1) stimuli, and omission errors10. It should be noted that recall 

latencies were considered across position 1, 2 and 3 only, because we were interested in the time 

elapsed before recalling positions 4, 5 and 6. As predicted, correct responses for semantically 

related items were associated with faster recall latencies (Median = 826 ms) compared to correct 

responses for semantically unrelated stimuli (Median = 938 ms), and this difference was 

supported by decisive evidence, as shown by a Bayesian Paired-Samples T-Test on log-

transformed recall latencies (BF10 = 250). However, the most striking difference was of omission 

                                                 

10 There were few omission errors in the T1 condition over positions 1, 2 and 3. We therefore considered 

omission errors regardless of the semantic condition (NT, T1). We also looked at transposition errors, but these 

errors differed only slightly from correct responses, and were therefore poorly informative. We decided not to 

include these errors for the sake of simplicity. 
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errors, which took more than twice the time to be produced compared to correct responses for 

semantically unrelated stimuli (Median = 2,200 ms, BF10 = 1.437e+7). 

< INSERT FIGURE 10 ABOUT HERE > 

Focus on omissions. The previous analysis suggests that if the proactive benefit of the 

semantic triplet is to be explained by recall latencies, then omission errors should be an 

important cause of this proactive benefit. A general prediction derived from this idea is that the 

number of omissions produced at the beginning of a list to be remembered should predict recall 

performance for the subsequent items within the same list11. We explored this possibility using a 

Bayesian Mixed effect regression, with recall performance (using a strict serial recall criterion) 

in the second part of the list as the dependent variable, and omission rate in the first part of the 

list as a predictor. To avoid confounding factors with the semantic triplets themselves, we 

excluded T1 and T2 conditions from the analysis. Random effects included the by-participant 

random intercept and the by-participant random slope for the omission rate in the first part of the 

list. Random-level effects indicate that the number of omissions in the first part of the list 

credibly predicted recall performance over the second half of the list (M = 0.28, SD = 0.12, CI95% 

= [0.06; 0.54]). When comparing this model against the intercept-only model, the Bayes Factor 

was associated with decisive evidence (BF10 = 1.8e+5). Hence, the omission rate produced at the 

beginning of a list to be remembered was a robust predictor of recall performance for the 

remaining items in the list. 

                                                 

11 It is important to note at this point that the Mixed effect analysis is required, because it allows the 

regression analysis to be performed trial by trial, and the consideration that the slope of this influence may vary for 

each participant. A regression analysis on aggregated data would merely show that WM capacity is correlated 

among subjects, which is neither surprising nor the focus of the question under investigation. 
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It appears that the time it takes to recall the items is a good predictor of subsequent recall 

performance. More generally, the proactive benefit of the semantic triplet may stem from a 

decrease of omission errors, as was suggested from previous studies (Lovatt et al., 2002). This 

observation is in agreement with studies showing a strong effect of output interference on WM 

recall performance (Cowan et al., 2002; Oberauer, 2003). In the next section, we discuss the 

theoretical implications of our results. 

General discussion 

In this study, we investigated interactions between attentional maintenance processes in 

WM and semantic long-term memory knowledge. We determined experimentally that the 

presence of a semantic triplet in a list to be remembered freed up WM resources, which in turn 

enhanced recall performance for the other, semantically unrelated items, and this compared to a 

condition without a semantic triplet. Critically, the within-list position of the semantic triplet 

produced strikingly different patterns of recall performance: When the semantic triplet was 

presented at the beginning of the list to be remembered, a proactive benefit of the semantic triplet 

was observed. However, when the semantic triplet was presented at the end of the list to be 

remembered, no retroactive impact was observed. These phenomena were successfully captured 

by a WM architecture integrating a separate long-term memory layer in which we assumed a 

direct activation of items within the long-term memory system. Further exploratory analysis of 

recall latencies suggested that the time spent recalling the items could also be a critical factor to 

proactively impact WM performance. 

Proactive benefit through refreshing 

Using the principles assumed from interactive activation models of language processing, 

and those from the TBRS* architecture, we were able to produce a novel prediction derived from 



42 WM AND SEMANTIC KNOWLEDGE 

 

the integration of both accounts. More specifically, we predicted that the presence of a semantic 

triplet should free up attentional WM resources that could be reallocated to prevent the other 

items of the list from being lost due to time-based forgetting. In this study, not only did we show 

that this prediction was empirically confirmed, but we also demonstrated the plausibility of those 

theoretical principles through their formal implementation in the TBRS*-S computational 

architecture. A fine-grained diagnosis of the model’s behavior showed that this freeing of 

attentional WM resources is a direct consequence of the interaction between the high activation 

level associated with semantically related items, and the Least Activated First mechanism. 

Because semantically related items are the less likely to be forgotten due to their high activation 

level, they are maintained with fewer refreshing episodes. Since these refreshing episodes are not 

dedicated to refresh the semantic triplet, they can be reallocated to refresh other, semantically 

unrelated items. An important aspect of the simulations is that the model using the proactive 

benefit as a criterion was never fitted. Instead, the proactive benefit of the semantic triplet 

naturally emerged after implementing inter-item excitatory connections within the long-term 

memory layer. 

An interesting aspect of the model’s behavior is the fact that it did not produce a 

retroactive impact of the semantic triplet on recall performance. As mentioned by Thalmann et 

al. (2018), an intuitive prediction from decay and rehearsal/refreshing models is that the presence 

of a chunk - semantic or not - should free up attentional WM resources. This would be regardless 

of the chunk’s position, because there would still be room for attentional reallocation, especially 

if the refreshing process operates in a very fast manner, as in TBRS. However, this interpretation 

is based merely on intuition about the theory, not on a formal implementation. The absence of a 

retroactive impact of the semantic triplet was due to the fact that when the semantic triplet started 
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to impact recall performance, all the items that could have been saved through attentional 

reallocation were already lost during the previous between-item maintenance phases. Hence, the 

items that benefited from the attentional reallocation process were those that were robust enough 

to survive, leading to an absence of retroactive impact of the semantic triplet. This phenomenon 

illustrates the fact that computational models are fruitful tools to guide reasoning about a theory, 

which can be biased by our intuitions (Farrell & Lewandowsky, 2010). 

In the model, the proactive benefit of the semantic triplet was accompanied by a 

deleterious impact on the ability to recall order information over the semantic triplet itself, 

leading to an absence of serial recall advantage over positions 1, 2 and 3 in T1 compared to NT. 

This issue is due to a property of our model. Semantically related items reactivate each other and 

need fewer refreshing attempts due to their high activation level in long-term memory, as already 

explained. At the same time, a side-effect of this reallocation process is that during the time spent 

not refreshing these semantically related items, their positional information (i.e. the item-position 

associations) was also lost proportionally, leading to an absence of recall advantage when a strict 

serial recall criterion was considered. However, this only happened in the T1 condition since in 

the T2 condition, the model behaved as expected. Indeed, because the semantic triplet appeared 

later in the list, the reallocation process also appeared much later, leaving less opportunity for the 

serial order information to be lost. Although this issue is symptomatic of a weakness in the 

model, we nevertheless see it as an opportunity for future research to further investigate and gain 

a better comprehension of the interactions between semantic knowledge and the maintenance of 

serial order information, which are still poorly understood. In fact, the question of serial order 

information is critical for WM models, and there is no clear consensus regarding the nature of 

the codes that are actually used to maintain serial order information (Majerus, 2019), proposals 
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ranging from positional/contextual (Burgess & Hitch, 2006; Henson, 1998) to spatial 

(Abrahamse et al., 2014), temporal (Hartley et al., 2016) or even associative (Lewandowsky & 

Murdock, 1989) ones. 

Proactive benefit through recall latencies 

We also explored the possibility that the locus of the proactive benefit of the semantic 

triplet could stem from recall rather than maintenance. A first overall assessment of recall 

latencies demonstrated that the recall latencies were indeed shorter over the positions where 

semantically related items were presented, and this time spent recalling the items was a good 

predictor of recall performance over the remaining items of the list. It was demonstrated in a 

previous systematic investigation of recall latencies that omission errors take twice the time to be 

recalled than correct responses (Haberlandt et al., 2005). Thus, the number of omission errors 

produced should be a critical factor for subsequent recall performance. This latter prediction was 

met when conducting a mixed-effect regression analysis. 

The idea that the time taken to output items should affect recall performance is not new. 

One of the first investigations of this idea is similar to our experimental manipulation, and dates 

back to the study conducted by Cowan et al. (1992). They observed that long words, when 

presented in the first half of a to-be-remembered list, proactively (but not retroactively) impeded 

WM performance as compared to short words, the latter being faster to recall. A further 

investigation of this effect (Lovatt et al., 2002) suggested that this proactive interference effect 

provoked by the word length effect could have been explained by the number of errors produced 

at the beginning of the list to be remembered, results which converge with the observations made 

in the present study. 
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It is important to emphasize that these analyses on recall latencies are merely 

correlational. There are many ways through which recall latencies could have predicted recall 

performance (see Lewandowsky & Oberauer, 2008 for a discussion). More generally, recall 

performance and latencies are two sides of the same coin, and hence they measure the same 

construct (Vandierendonck, 2017). Critically, these analyses on recall latencies should not be 

taken as evidence to support decay-based models. In fact, direct manipulations of response speed 

have sometimes yielded to a complete absence of impact on recall performance (Cowan et al., 

2006). Our results suggest that if time-based forgetting exists, then recall latency is a critical 

factor that proponents of the decay theory should be particularly aware of when conducting 

experiments, taking a special care concerning the production of errors. 

Relationship with other phenomena 

Similar proactive benefits have been observed through the manipulation of word 

frequency. More specifically, Miller and Roodenrys (2012) embedded high frequency words in 

lists composed of low frequency ones (i.e. HHH-LLL or LLL-HHH). Compared to lists 

composed only of low frequency words (i.e. LLL-LLL), these authors observed not only that the 

high frequency words were better recalled, but also that they had a proactive benefit on the 

subsequent low frequency words of the list. In contrast, no retroactive benefit was observed. 

More generally, it appears that proactive effects in WM follow a general rule, as depicted in 

Figure 11. 

< INSERT FIGURE 11 ABOUT HERE > 

To account for the proactive benefit of psycholinguistic variables (i.e. semantic 

relatedness, word length and word frequency), and their lack of retroactive impact, we suggest 

that they may follow this general principle: Highly activated items are less likely to be refreshed, 
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because the focus of attention refreshes the least activated items in priority. This automatically 

leads to a reallocation of attentional resources over the items associated with the lowest 

activation values. Although we already demonstrated the plausibility of this mechanism as 

regards the semantic relatedness in our first simulation, one may wonder how this principle 

would apply to the word frequency and word length effects. 

From the perspective of interactive activation models of language processing, the word 

frequency effect can be explained by presuming that high frequency words have stronger 

connection weights than low frequency words. This would be between their lexical and 

phonological representations (Besner & Risko, 2016), for instance due to a mere exposure effect 

(Zevin & Seidenberg, 2002). Thanks to these stronger connection weights, high frequency words 

receive stronger redundant feedback activation from their phonological representation compared 

to low frequency words, leading to overall stronger activation values. When embedded in a list 

of low frequency words, high frequency words naturally have a stronger activation level than the 

low frequency words. This results in a reallocation of attentional resources toward low frequency 

words and hence a proactive benefit. 

The proactive effect caused by the word length effect can be explained in the same way. 

There has been much debate surrounding the origin of the word length effect, and this is partly 

due to its hypothetical role in distinguishing decay-based forgetting from interference-based 

forgetting (Lewandowsky & Oberauer, 2008), a critical theoretical question in the WM domain. 

One supposed origin of the word length effect is that it arises from a confounding factor: the 

neighborhood density effect. This effect is characterized by better recall performance for words 

that share many phonological neighbors compared to words sharing fewer phonological 

neighbors. For example, the word “cat” which has “fat”, “bat”, “mat”, “rat”, etc. as neighbors has 
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better recall than words with fewer phonological neighbors (Roodenrys et al., 2002). It appears 

that long words are characterized by fewer neighbors than short words (Jalbert et al., 2011). 

Recent evidence suggests that the word length effect might be mostly attributed to this 

confounding factor (Guitard et al., 2018). The neighborhood density effect is explained by 

interactive activation models, by assuming that the phonological neighbors of a target word are 

co-activated. Thus, the activation of “cat” results in the obligatory activation of “fat”, “bat”, 

“mat”, etc. Then, more activation is sent back to the original target via redundant feedbacks 

between the lexical and phonological levels of language processing (Chen & Mirman, 2012; Dell 

et al., 1997; Vitevitch & Luce, 2016). Logically, this results in higher activation levels for short 

words drawn from dense neighborhoods compared to long words found in sparse neighborhoods. 

As for the semantic similarity and lexical frequency effects, this should lead to a reallocation of 

attentional resources toward sparse neighborhood words when dense neighborhood words are 

embedded in the same list. 

Alternative accounts 

 This study is framed by decay-based models of WM. As such, we adapted the original 

TBRS* architecture and supplemented it with a linguistic system according to decay-based 

principles. However, other phenomena have been proposed to account for WM capacity 

limitations, such as interference. For instance, this is hypothesized by the SOB-CS model 

(Oberauer, Lewandowsky, et al., 2012), a direct competing architecture to TBRS*. The SOB-CS 

model already demonstrated an excellent explanatory power to simulate many benchmark 

phenomena observed in WM tasks. Technically, it should be possible to simulate semantic 

effects in SOB-CS by coding the items along a semantic dimension, and by considering that 

semantically related items are represented across a similar set of overlapping semantic features. 
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However, this implementation is likely to lead to a reversed semantic relatedness effect, because 

between-item similarities should always result in poorer recall performance, due to novelty-gated 

encoding (see Chekaf et al., 2016 for a related interpretation), at least in the actual version of 

SOB-CS. It should be noted that this prediction still needs to be formally assessed through a 

computational model, which is beyond the scope of the present study. More generally, over sixty 

years of debate precedes the question of decay versus interference-based forgetting in WM 

(Ricker et al., 2016), and this question remains heavily debated (Dagry & Barrouillet, 2017; 

Farrell et al., 2016; Lemaire & Portrat, 2018; Oberauer, 2019; Oberauer et al., 2016; Ricker et 

al., 2020). Given the strong and robust impact that psycholinguistic variables have on WM 

performance (see Kowialiewski & Majerus, 2018, 2020 for meta-analyses), psycholinguistic 

effects can be systematically modeled in different computational architectures to assess their 

plausibility. This in turn may inform us about the cause of forgetting in WM in a novel, 

refreshing manner. 

 The theoretical account developed by Popov and Reder (2020) could, at least 

theoretically, also explain the results we observed in the present study. This account suggests that 

encoding in WM depletes a limited pool of resources. This depletion is furthermore inversely 

related to item strength: items associated with stronger representations in long-term memory are 

assumed to deplete fewer resources. The amount of available resources in the pool also 

constrains how strongly an item is encoded, with many resources allowing stronger encoding. If 

interactive activation principles are represented in this model, it could be assumed that 

semantically related items would be more easy to encode and would deplete fewer resources. In 

the case where the semantic triplet is presented at the beginning of the to-be-remembered list, 

these resources could be reallocated to encode more strongly the subsequent to-be-remembered 
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items of the list. This should lead to a proactive benefit as compared to a condition in which all 

the items are semantically unrelated. Since encoding strength depends on the amount of 

resources depleted from previous items, it naturally predicts a proactive benefit, but no 

retroactive benefit. The plausibility of this account has been demonstrated through computational 

simulations, and successfully reproduced the word frequency manipulations made by Miller and 

Roodenrys (2012) that we presented above. 

Finally, an obvious alternative mechanism to explain the proactive benefit observed in 

our experiment boils down to a chunking account, as previously observed in studies using 

chunks composed of letters (Norris et al., 2020; Portrat et al., 2016; Thalmann et al., 2018). After 

encoding the words “leaf - tree - branch”, the participants might rapidly become aware of the 

super-ordinate semantic category that characterizes the items. Only “nature” or “forest” may be 

maintained. This semantic category could then be kept on as a single item, and used as retrieval 

cue at the moment of recall (Kowialiewski & Majerus, 2020; Saint-Aubin & Ouellette, 2005). 

This is a highly intuitive explanation. An informal assessment of participants’ strategies at the 

end of the experiment confirms that the use of this strategy was indeed common. Participants 

reported “not carrying” on the semantically related words, because they “knew” that these words 

were - for instance - “about the nature theme”. This chunking account does not change the 

overall conclusions of this study: the maintenance of this semantic triplet should free up 

attentional WM resources, and these resources could then be reallocated to maintain more 

information, as already demonstrated through the use of computational simulations (Portrat et al., 

2016). 
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Conclusion 

 In this study, we used a convergent approach involving behavioral experiments and 

computational modeling to get a better understanding of the mechanisms underlying the 

influence of semantic knowledge on WM performance. We showed that semantic knowledge 

frees up attentional WM resources that can be reallocated for maintenance purpose. This 

suggests that semantic knowledge interacts in a complex manner with WM maintenance 

processes. Furthermore, recall latencies appear to be a potentially critical factor, but it is 

frequently neglected in WM paradigms. This study brings novel evidence supporting strong 

interactions between WM and the long-term memory system. 
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Figure captions 

Figure 1. Recall performance as a function of serial position for each semantic condition. T1 = 

Semantic Triplet in the first half of the list. T2 = Semantic Triplet in the second half of the list. 

NT = No Triplet. Left panel: strict serial recall criterion. Right panel: item recall criterion. 

Figure 2. Illustration of the original TBRS* (a) and new TBRS*-S (b) architectures. Both 

architectures maintain serial order information within a positional layer (����). In the original 

architecture, encoding is performed by creating associations between the positional and the item 

(�����) layers. In the item layer, which makes a minimal description of item information, each 

node represents a given item and can take two possible values: 0 or 1. In the revised architecture, 

encoding is performed by first activating information in the long-term memory, item layer (A). 

Each node in this new layer still represents a given item but takes continuous values between 0 

and 1. During encoding, an association is created between the positional and the index layer 

(��
���) in order to indicate which information in the A layer is being encoded. The semantic 

relatedness is modeled within the A layer using lateral excitatory connections, through which 

activation spreads from one node to another. 

Figure 3. Activation values of the model across the different epochs of one trial. 

Figure 4. Recall performance for the three recall criteria (strict, item and omission errors) as a 

function of the serial position observed in humans (left panel) and produced by the model using 

the Least Activated First mechanism (right panel), NT condition only. 

Figure 5. Recall performance as a function of serial position for each semantic condition (T1, T2 

and NT). From left to right: Strict serial recall, item recall and omissions criteria. Upper panels: 

human subjects. Lower panels: TBRS*-S. 
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Figure 6. Pattern of recall performance produced by the model across the different semantic 

conditions (T1, T2 and NT) when using the Least Activated First mechanism (left panel) or when 

considering a cumulative refreshing schedule (right panel). Item recall criterion only. 

Figure 7. Mean number of refreshing episodes (across 10,000 simulations) over the different 

items for each semantic condition (T1, T2, NT). Each panel (numbered 4, 5 and 6) represents the 

maintenance phase that directly follows the encoding of a given item. For instance, panel 5 

represents the maintenance phase between the encoding of item 5 and item 6. 

Figure 8. Proportion of trials (across 10,000 simulations) for which a given item has been lost, 

shown for the T2 and NT semantic conditions. Each panel represents the maintenance phase that 

directly follows the encoding of an item. 

Figure 9. Median recall latencies as a function of the serial position for each semantic condition 

(T1, T2 and NT). Left panel: raw recall latencies. Right panel: cumulative recall latencies. It 

should be noted that since untransformed response latencies are used for illustrative purposes, 

error bars are potentially misleading. 

Figure 10. Median recall latencies as a function of response type: correct responses in the 

unrelated and related conditions, and omission errors. Only responses across the first three 

positions are considered. Since untransformed response latencies are used for illustrative 

purposes, error bars are potentially misleading. 

Figure 11. Illustration of proactive effects observed in previous studies (left an central panels, 

adapted from Cowan et al., 1992 and Miller & Roodenrys, 2012, respectively) and in our own 

study (right panel).



WM AND SEMANTIC KNOWLEDGE 

 

3 

Figure 1 

 

  



WM AND SEMANTIC KNOWLEDGE 

 

4 

Figure 2 

 

  



WM AND SEMANTIC KNOWLEDGE 

 

5 

Figure 3 
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Figure 4 
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Figure 5 
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Tables 

 

Table 1. Range of values explored within the grid search. Note that lambda (�) has been estimated separately. 

Fixed parameters 

Parameter Meaning Value 

�  Standard deviation of processing rates 1 

��  Mean duration of an encoding episode 0.5 

��  Mean duration of a refreshing episode 0.08 

����  Mean duration of a recall episode 0.5 

�  Number of items in long-term memory 81 

�	�  Inter-stimulus interval 1.5 

Free parameters 

Parameter Meaning Minval Maxval Steps Best 


  Processing rate 1 9 1 3 

�  Noise added at retrieval 0.0 .1 .01 .01 

�  Retrieval threshold 0.0 .3 .025 .25 

D  Decay rate .1 .9 .1 .3 

P Overlap between positions .2 .8 .1 .6 

�  Lateral connections 0.0 .05 .001 .013 

 




