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Abstract
Representing networks in a low dimensional latent space is
a crucial task with many interesting applications in graph
learning problems, such as link prediction and node classi-
fication. A widely applied network representation learning
paradigm is based on the combination of random walks for
sampling context nodes and the traditional Skip-Gram model
to capture center-context node relationships. In this paper,
we emphasize on exponential family distributions to capture
rich interaction patterns between nodes in random walk se-
quences. We introduce the generic exponential family graph
embedding model, that generalizes random walk-based net-
work representation learning techniques to exponential fam-
ily conditional distributions. We study three particular in-
stances of this model, analyzing their properties and showing
their relationship to existing unsupervised learning models.
Our experimental evaluation on real-world datasets demon-
strates that the proposed techniques outperform well-known
baseline methods in two downstream machine learning tasks.

Introduction
Graphs or networks have become ubiquitous as data from di-
verse disciplines can naturally be represented as graph struc-
tures. Characteristics examples include social, collaboration,
information and biological networks, or even networks that
are generated by textual information. Besides, graphs are
not only useful as models for data representation but can
be proven valuable in prediction and learning tasks. For ex-
ample, one might wish to recommend new friendship rela-
tionships in social networks such as Facebook and LinkedIn,
predict the missing structure or the role of a protein in a
protein-protein interaction graph, or even to discover miss-
ing relations between entities in a knowledge graph. To that
end, the tasks of learning and analyzing large-scale real-
world graph data drive several important applications, but
also pose a plethora of challenges.

The major challenge in machine learning on graphs is how
to incorporate information about its structure in the learning
model. For example, in the case of friendship recommen-
dations in social networks (also known as the link predic-
tion problem), in order to determine whether two unlinked
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users are similar, we need to obtain an informative repre-
sentation of the users and their proximity — that potentially
is not fully captured by graph statistics (e.g., centrality cri-
teria) (Chakrabarti, Faloutsos, and McGlohon 2010), ker-
nel functions (Vishwanathan et al. 2010), or more generally
other handcrafted features extracted from the graph (Liben-
Nowell and Kleinberg 2007). To deal with these challenges,
a recent paradigm in network analysis, known as network
representation learning (NRL), aims at finding vector rep-
resentations of nodes (i.e., node embeddings), in such a way
that the structure of the network and its various properties
are preserved in lower-dimensional representation space.
The problem is typically expressed as an optimization task,
where the goal is to optimize the mapping function from
the graph space to a low-dimensional space, so that prox-
imity relationships in the learned space reflect the structure
of the original graph (Hamilton, Ying, and Leskovec 2017;
Goyal and Ferrara 2018; Cai, Zheng, and Chang 2018). Fur-
thermore, in most cases, the feature learning approach is
purely unsupervised. That way, after obtaining embeddings,
the learned features can further be used in any downstream
machine learning task, such as classification and prediction.

Initial studies in network representation learning mostly
focused on classical dimensionality reduction techniques via
matrix factorization (e.g., (Cao, Lu, and Xu 2015; Tang and
Liu 2009)). Although the success of such approaches in
capturing the structural properties of a network, they tend
to be, unfortunately, not efficient for large scale networks.
Therefore, the community has concentrated on developing
alternative approaches, and inspired by the field of natural
language processing (NLP) (Mikolov et al. 2013), random-
walk based methods have become a prominent line of re-
search for network representation learning. Characteristic
examples of such approaches constitute DEEPWALK (Per-
ozzi, Al-Rfou, and Skiena 2014) and NODE2VEC (Grover
and Leskovec 2016) models. Typically, those methods sam-
ple a set of random walks from the input graph, treating them
as the equivalent of sentences in natural language, while the
nodes visited by the walk are considered as the equivalent of
words. The point that essentially differentiates these meth-
ods, concerns the strategy that is followed to generate (i.e.,
sample) node sequences. The idea mainly aims to model



center-context node relationships, examining the occurrence
of a node within a certain distance with respect to another
node (as indicated by the random walk); this information is
then utilized to represent the relationship between a pair of
nodes. Then, widely used NLP models, such as the Skip-
Gram model (Mikolov et al. 2013), are used to learn node
latent representations, examining simple co-occurrence rela-
tionships of nodes within the set of random walk sequences.

Nevertheless, Skip-Gram models the conditional distri-
bution of nodes within a random walk based on the soft-
max function, which might prohibit to capture richer types
of interaction patterns among nodes that co-occur within a
random walk. Motivated by the aforementioned limitation
of current random walk-based NRL methodologies, we ar-
gue that considering more expressive conditional probabil-
ity models to relate nodes within a random walk sequence,
might lead to more informative latent node representations.

In particular, we capitalize on exponential family distribu-
tion models to capture interactions between nodes in random
walks. Exponential families correspond to a mathematically
convenient parametric set of probability distributions, which
is flexible in representing relationships among entities. More
precisely, we introduce the concept of exponential family
graph embeddings (EFGE), that generalizes random walk
NRL techniques to exponential family conditional distribu-
tions. We study three particular instances of the proposed
EFGE model that correspond to widely known exponen-
tial family distributions, namely the Bernoulli, Poisson and
Normal distributions. The extensive experimental evaluation
of the proposed models in the tasks of node classification
and link prediction suggests that, the proposed EFGE mod-
els can further improve the predictive capabilities of node
embeddings, compared to traditional Skip-Gram-based and
other baseline methods. In addition, we further study the ob-
jective function of the proposed parametric models, provid-
ing connections to well-known unsupervised graph learning
models under appropriate parameter settings.

Contributions. The main contributions of the paper can be
summarized as follows:

• We introduce a novel representation learning model,
called EFGE, which generalizes classical Skip-Gram-
based approaches to exponential family distributions, to-
wards more expressive NRL methods that rely on random
walks. We study three instances of the model, namely the
EFGE-BERN, EFGE-POIS and EFGE-NORM models,
that correspond to well-known distributions.

• We show that the objective functions of existing unsuper-
vised and representation learning models, including word
embedding in NLP (Mikolov et al. 2013) and overlapping
community detection (Yang and Leskovec 2013), can be
re-interpreted under the EFGE model.

• In a thorough experimental evaluation, we demonstrate
that the proposed exponential family graph embedding
models generally outperform widely used baseline ap-
proaches in various learning tasks on graphs. In addition,
the running time to learn the representations is similar to
other Skip-Gram-based models.

Source code. The implementation of the proposed models
is provided in the following website: https://abdcelikkanat.
github.io/projects/EFGE/.

Preliminary Concepts
Random Walk-based Node Embeddings
Let G = (V, E) be a graph, where V and E ⊆ V × V denote
the vertex and edge sets respectively. Random-walk based
node embedding methods (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016; Çelikkanat and Malliaros
2018; Çelikkanat and Malliaros 2019) generate a set of node
sequences by simulating random walks that can follow var-
ious strategies; node representations are then learned rely-
ing on these generated sequences. We use an ordered se-
quence of nodes w = (w1, ..., wL) ∈ W to denote a walk,
if every pair (wl, wl+1) belongs to the edge set E for all
1 ≤ l < L. Then, the notation W will represent the set
of walks of length L.

Being inspired from the the field of natural language pro-
cessing and the Skip-Gram model (Mikolov et al. 2013) for
word embeddings, each walk is considered as a sentence in
a document and similarly the surrounding vertices appear-
ing at a certain distance from each node in a walk are de-
fined as the context set of this particular node, which is also
called center in our description. More formally, we will use
Nw
γ (wl) := {wl+j ∈ V : −γ ≤ j ≤ γ, j 6= 0} to de-

note the context sequence of node wl in the random walk
w ∈ W . Representations of nodes are learned by optimizing
the relationship between these center and context node pairs
under a certain model. More formally, the objective func-
tion of Skip-Gram based models for network representation
learning is defined in the following way:

arg max
Ω

1

N ·L
∑

w∈W

∑
1≤l≤L

∑
v∈Nγ(wl)

log p(ywl,v; Ω), (1)

where ywl,vj represents the relationship between the center
wl and context node v in the walk w ∈ W , N is the number
of walks, L is length of walks and Ω = (α, β). Note that,
we typically learn two embedding vectors α[v] and β[v] for
each node v ∈ V , where β[v] corresponds to the vector if
the node is interpreted as a center node and α[v] denotes
the vector if v is considered as the context of other nodes.
In all downstream machine learning applications, we only
consider α[v] to represent the embedding vector of v.

Generally speaking, random walk-based network repre-
sentation learning methods can use different approaches to
sample the context of a particular node. For instance, DEEP-
WALK performs uniform truncated random walks, while
NODE2VEC is based on second order random walks to cap-
ture context information. Another crucial point related to
Skip-Gram based models, has to do with the way that the re-
lationship among center and context nodes in Eq. (1) is mod-
eled. In particular, DEEPWALK uses the softmax function to
model the conditional distribution p(·) of a context node for
a given center, in such a way that nodes occurring in similar
contexts tend to get close to each other in the latent repre-
sentation space. In a similar way, NODE2VEC adopts the
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negative sampling strategy, where it implicitly models co-
occurrence relationships of context and center node pairs.
As we will present shortly, in our work we rely on expo-
nential family distributions, in order to further extend and
generalize random-walk NRL models to conditional proba-
bility distribution beyond the softmax function — towards
capturing richer types of node interaction patterns.

Exponential Families
In this paragraph, we introduce the exponential family dis-
tributions, a parametric set of probability distributions that
includes among others the Gaussian, Binomial and Poisson
distributions. A class of probability distributions is called
exponential family distributions if they can be expressed as

p(y) = h(y) exp
(
ηT (y)−A(η)

)
, (2)

where h is the base measure, η are the natural param-
eters, T is the sufficient statistic of the distribution and
A(η) is the log-normalizer or log-partition function (Ander-
sen 1970). Different choices of base measure and sufficient
statistics lead us to obtain different probability distributions.
For instance, the base measure and sufficient statistic of the
Bernoulli distribution are h(y) = 1 and T (y) = y respec-
tively, while for the Poisson distribution we have h(y) =
1/y! and T (y) = y.

As we mentioned above, exponential families contain a
wide range of commonly used distributions, providing a
general class of models by re-parameterizing distributions in
terms of the natural parameters η. That way, we will use the
natural parameter η to design a set of network representation
learning models, defining ηv,u as the product of context and
center vectors in the following way:

ηv,u := f
(
β[v]> ·α[u]

)
,

where f is called the link function. As we will present shortly
in the following section, we have many alternative options
for the form of the link function f(·).

Proposed Approach
In this section, we will introduce the proposed exponential
family graph embedding models, referred to as EFGE. The
main idea behind this family of models is to utilize the ex-
pressive power of exponential family distribution towards
conditioning context nodes with respect to the center node
of interest. Initially, we will describe the formulation of the
general objective function of the EFGE model, and then we
will present particular instances of the model based on dif-
ferent exponential family distributions.

Let W be a collection of node sequences generated by
following a random walk strategy over a given graph G, as
defined in the previous section. Based on that, we can define
a generic objective function to learn node embeddings in the
following way:

L(α, β) := arg max
Ω

∑
w∈W

∑
1≤l≤L

∑
v∈V

log p(ylwl,v; Ω), (3)

where ylwl,v is the observed value indicating the relationship
between the center wl and context node v. Here, we aim to
find embedding vectors Ω = (α, β) by maximizing the log-
likelihood function in Eq. (3). Note that, the objective func-
tion in Eq. (3) is quite similar to the one of the Skip-gram
model (Mikolov et al. 2013) presented in Eq. (1), except that
we also include nodes that are not belonging to context sets.

Instead of restricting ourselves to the Sigmoid or Softmax
functions in order to model the probability in the objective
function of Eq. (3), we provide a generalization assuming
that each ywl,v follows an exponential family distribution.
That way, the objective function used to learn node embed-
ding vector sets Ω = (α, β) can be rewritten as follows:

arg max
Ω

∑
w∈W

∑
1≤l≤L

∑
v∈V

log h(ywl,v) + ηwl,vT (ywl,v)

−A(ηwl,v). (4)

As we can observe, Eq. (4) which is the objective function
of the generic EFGE graph embeddings model, generalizes
Skip-Gram-based models to exponential family conditional
distributions described in Eq. (2). That way, EFGE models
have the additional flexibility to utilize a wide range of ex-
ponential distributions, allowing them to capture more com-
plex types of node interactions beyond simple co-occurrence
relationships. It is also important to stress out that, the first
term of Eq. (4) does not depend on parameter ηwl,v; this will
bring an advantage during the optimization process.

Initially, we sample a set of N random walks based on
a chosen walk strategy. This strategy can be any context
sampling process, such as uniform random walks (as in
DEEPWALK) or biased random walks (as in NODE2VEC).
Then, based on the chosen instance of the EFGE model, we
learn center and context embedding vectors. In this paper,
we have examined three particular instances of the EFGE
model, that represent well known exponential family distri-
butions. In particular, we utilize the Bernoulli, Poisson, and
Normal distributions leading to the corresponding EFGE-
BERN, EFGE-POIS and EFGE-NORM models. For illus-
tration purposes, Fig. 1 depicts the Dolphins network com-
posed by two communities and the embeddings in two di-
mensions as computed by different models. As we can ob-
serve, for this particular toy example, the proposed EFGE-
BERN and EFGE-POIS models learn representations that
are able to differentiate nodes with respect to their commu-
nities. In the following sections, we analyze the properties
of these models in detail.

The EFGE-BERN Model
Our first model is the EFGE-BERN model, in which we as-
sume that each ywl,v follows a Bernoulli distribution which
is equal to 1 if node v appears in the context set of wl in
the walk w ∈ W . It can be written as ywl,v = xl−γwl,v

∨ · · ·
∨xl−1

wl,v
∨ xl+1

wl,v
∨ · · · ∨xl+γwl,v

, where xl+jwl,v
indicates the ap-

pearance of v in the context of wl at the specific position
l + j (−γ ≤ j ≤ γ). We can express the objective function
of the EFGE-BERN model, LB(α, β), by dividing Eq. (4)
into two parts with respect to the values of ywl,v and xl+jwl,v

:



(a) Network (b) DEEPWALK (c) EFGE-BERN (d) EFGE-POIS (e) EFGE-NORM

Figure 1: The Dolphins network composed by 2 communities and the corresponding embeddings for d = 2.

LB =
∑

w∈W

∑
1≤l≤L

 ∑
v∈Nγ(wl)

log p(ywl,v) +
∑

v 6∈Nγ(wl)

log p(ywl,v)



=
∑

w∈W

∑
1≤l≤L

 ∑
|j|≤γ
u+:=wj

log p(xl+jwl,u+)+
∑
|j|≤γ
u−: 6=wj

log p(xl+jwl,u−)


Note that, the exponential form of a Bernoulli distribu-
tion with a parameter π is exp (ηx−A(η)), where the log-
normalizer A(η) is log(1 + exp(η)) and the parameter π is
the sigmoid function σ(η) = 1/

(
1− exp(−η))

)
. Therefore,

we can rewrite the objective function LB(α, β) as follows:

∑
w∈W

∑
1≤l≤L

 ∑
|j|≤γ
u+:=wj

log σ(ηwl,u+) +
∑
|j|≤γ
u−:6=wj

log σ(−ηwl,u−)


We choose the identity map for the link function f(·), so
ηv,u becomes equal to the product of vectors α[v] and β[u].

Relationship to negative sampling. Although the nega-
tive sampling strategy (Mikolov et al. 2013) was proposed
to approximate the objective function of the Skip-Gram
model for node representation, any rigorous theoretical ar-
gument showing the connection between them has not been
provided. In Lemma 1, we show that the log-likelihood
LB(α, β) of the EFGE-BERN model in fact converges to
the objective function of negative sampling given in Eq. (5).
In our implementation, we adopt negative sampling in order
to improve the efficiency of the computation.

Lemma 1. The log-likelihood function LB converges to

∑
w∈W

∑
1≤l≤L

∑
|j|≤γ

[
log p

(
xl+jwl,wl+j

)
+

k∑
s=1

E
u∼q−

log p
(
xl+jwl,u

)]
(5)

for large values of k.

Proof. Please see the appendix.

The EFGE-POIS Model
In this model, we will use the Poisson distribution to cap-
ture the relationship between context and center nodes in a
random walk sequence. Let ywl,v be a value indicating the
number of occurrences of node v in the context ofwl. We as-
sume that ywl,v follows a Poisson distribution, with the mean
value λ̃wl,v being the number of appearances of node v in the
contextNw

γ (wl). Similar to the previous model, it can be ex-
pressed as ywl,v = xl−γwl,v

+ · · · + xl−1
wl,v

+xl+1
wl,v

+ · · · + xl+γwl,v
,

where xl+jwl,v
∼ Pois(λwl,v) for −γ ≤ j ≤ γ. That way, we

obtain λ̃wl,v =
∑γ
j=−γ λ

l+j
wl,v

, since the sum of independent
Poisson random variables is also Poisson. By plugging the
exponential form of the Poisson distribution into Eq. (3), we
can derive the objective function LP (α, β) of the model as:

∑
w∈W

∑
1≤l≤L

∑
v∈V

[
log h(ywl,v)+

(
ηwl,vywl,v− exp(ηwl,v)

)]
,

where the base measure h(ywl,v) is equal to 1/ywl,v!. Note
that, the number of occurrence ywl,v is equal to 0 if v does
not appear in the context of wl ∈ V . Following a simi-
lar strategy as in the EFGE-BERN model, the equation can
be split into two parts for the cases where ywl,v > 0 and
ywl,v = 0. That way, we can adopt the negative sampling
strategy (given in Eq. (5)) as follows:

∑
w∈W

∑
1≤l≤L

∑
|j|≤γ
u:=wj

[
−log(xl+jwl,u

!)+ηwl,ux
l+j
wl,u
−exp(ηwl,u)

]

+
∑
|j|≤γ
u: 6=wj

[
− exp(ηwl,u)

]
.

Note that, in the EFGE-POIS model, we do not specify
any particular link function — thus, the natural parameter
is equal to the product of the embeddings vectors.

Relationship to overlapping community detection. It can
be seen that the objective function of the widely used BIG-
CLAM overlapping community detection method by Yang
and Leskovec (Yang and Leskovec 2013), can be obtained
by unifying the objectives of the EFGE-BERN and EFGE-
POIS models. The relationship is shown in Lemma 2. Be-
sides, one can say that each entry of the embedding vectors
correspond to a value indicating the membership of a node to



a community — in this case, BIGCLAM restricts the vectors
to non-negative values.
Lemma 2. Let Zwl,v be independent random variables fol-
lowing Poisson distribution with natural parameter ηwl,v
defined by log(β[wl] · α[v]). Then, the objective function of
EFGE-BERN model becomes equal to∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1− exp
(
− β[wl]

> · α[v]
))

−
∑

v 6∈Nγ(wl)

β[wl]
> · α[v]

]
if the model parameter πwl,v defined by p(Zwl,v > 0).

Proof. Please see the appendix.

The EFGE-NORM Model
If a node v appears in the context of wl more frequently with
respect to other nodes, we can say that v has a higher interac-
tion with wl than the rest ones. Therefore, we will consider
each ywl,v in this model as an edge weight indicating the
relationship between the nodes wl and v. We assume that
xl+jwl,v

∼ N (1, σ2
+) if v ∈ Nγ(wl), and xl+jwl,v

∼ N (0, σ2
−)

otherwise. Hence, we obtain that ywl,v ∼ N (µ̃, σ̃2), where
µ̃ is the number of occurrences of v in the context if we
follow a similar assumption ywl,v =

∑γ
j=−γ x

l+j
wl,v

as in
the previous model. The definition of the objective function,
LN (α, β), for the EFGE-NORM model is defined as fol-
lows:

∑
w∈W

∑
1≤l≤L

∑
|j|≤γ
u:=wj

[
log h(xl+jwl,u

)+
(
xl+jwl,u

ηwl,u
σ+
−
η2
wl,u

2

)]

+
∑
|j|≤γ
u: 6=wj

[
log h(xl+jwl,u

) +
(
xl+jwl,u

ηwl,u
σ−
−
η2
wl,u

2

)]
,

where the base measure h(xwl,u) is
exp(−x2

wl,u
/2σ2)/

√
2πσ for known variance. In this

model, we choose the link function as f(x) = exp(−x), so
ηwl,u is defined as exp(−β[wl]

>α[u]).

Optimization
For the optimization we use Stochastic Gradient Descent
(SGD) (Bottou 1991) to learn representations Ω = (α, β).
Since we use exponential family distributions, we have a
general form of the objective function given in Eq. (4).
As it is computationally very expensive to compute gradi-
ents for each node pair, we take advantage of the fact that
we have formulated the objective function of each model
in such a way that it could be divided into two parts ac-
cording to the values of xl+jwl,u

; thus, we adopt the neg-
ative sampling strategy, setting sampling size to k = 5
in all the experiments. For the update of learning param-
eters and for generating negative samples, we follow the
approach described in (Perozzi, Al-Rfou, and Skiena 2014;
Mikolov et al. 2013).

|V| |E| |K| |C| Avg. Degree Density
CiteSeer 3,312 4,660 6 438 2.814 0.0009

Cora 2,708 5,278 7 78 3.898 0.0014
DBLP 27,199 66,832 4 2,115 4.914 0.0002

AstroPh 17,903 19,7031 - 1 22.010 0.0012
HepTh 8,638 24,827 - 1 5.7483 0.0007

Facebook 4,039 88,234 - 1 43.6910 0.0108
GrQc 4,158 13,428 - 1 6.4589 0.0016

Table 1: Statistics of network datasets used in the exper-
iments. |V|: number of nodes, |E|: number of edges, |K|:
number of labels and |C|: number of connected components.

Experimental Evaluation
In this section, we evaluate the performance of the pro-
posed models with respect to several node embedding base-
line techniques in the node classification and link prediction
tasks over various networks shown in Table 1.

Baseline methods. We evaluate the three proposed EFGE
models against five state-of-the-art NRL techniques. (i)
DEEPWALK (Perozzi, Al-Rfou, and Skiena 2014) generates
a set of node sequences by choosing a node uniformly at
random from the neighbours of the node it currently resides.
(ii) NODE2VEC (Grover and Leskovec 2016) relies on a
biased random walk strategy, introducing two additional pa-
rameters which are used to determine the behaviour of the
random walk in visiting nodes close to the one currently
residing at. We simply set these parameters to 1.0. (iii)
LINE (Tang et al. 2015) learns embeddings that are based on
first-order and second-order proximity (each one of length
d/2). (iv) HOPE (Ou et al. 2016) is a matrix factorization
method which aims at extracting feature vectors by preserv-
ing higher order patterns of the network (in our experiments,
we have used the Katz index). (v) NETMF (Qiu et al. 2018)
aims at factorizing the matrix approximated by the point-
wise mutual information of center and context pairs. In our
experiments, we have used walk length L = 10, number
of walks N = 80 and window size γ = 10 for all models
and the variants of EFGE model are fed with the same node
sequences produced by NODE2VEC.

Node Classification
Experimental setup. In the classification task, we aim to
predict the correct labels of nodes having access to a lim-
ited number of training labels (i.e., nodes with known label).
In our experiments, we split the nodes into varying train-
ing ratios, from 2% up to 90% in order to better evaluate
the models. We perform our experiments applying an one-
vs-rest logistic regression classifier with L2 regularization1,
computing the Micro-F1 score (the Macro-F1 score over a
wide range of training ratios is also presented in the Ap-
pendix). We repeat the experiments for 50 times and report
the average score for each network.

Experiment results. Table 2a shows the classification per-
formance on the CiteSeer network. In all cases, the pro-
posed models outperform the baselines, with the EFGE-

1We have used the scikit-learn package in the implementation.



2% 4% 6% 8% 10% 30% 50% 70% 90%
DEEPWALK 0.416 0.460 0.489 0.505 0.517 0.566 0.584 0.595 0.592
NODE2VEC 0.450 0.491 0.517 0.530 0.541 0.585 0.597 0.601 0.599

LINE 0.323 0.387 0.423 0.451 0.466 0.532 0.551 0.560 0.564
HOPE 0.196 0.205 0.210 0.204 0.219 0.256 0.277 0.299 0.320

NETMF 0.451 0.496 0.526 0.540 0.552 0.590 0.603 0.604 0.608

EFGE-BERN 0.461 0.493 0.517 0.536 0.549 0.588 0.603 0.609 0.609
EFGE-POIS 0.484 0.514 0.537 0.551 0.562 0.595 0.606 0.611 0.613

EFGE-NORM 0.493 0.525 0.542 0.553 0.561 0.596 0.606 0.612 0.616

(a) CiteSeer
2% 4% 6% 8% 10% 30% 50% 70% 90%

DEEPWALK 0.621 0.689 0.715 0.732 0.747 0.802 0.819 0.826 0.833
NODE2VEC 0.656 0.714 0.743 0.757 0.769 0.815 0.831 0.839 0.841

LINE 0.450 0.544 0.590 0.633 0.661 0.746 0.765 0.774 0.775
HOPE 0.277 0.302 0.299 0.302 0.302 0.301 0.302 0.303 0.302

NETMF 0.636 0.716 0.748 0.767 0.773 0.821 0.834 0.841 0.844
EFGE-BERN 0.668 0.720 0.743 0.759 0.767 0.808 0.823 0.834 0.838
EFGE-POIS 0.680 0.733 0.746 0.759 0.765 0.802 0.814 0.820 0.825

EFGE-NORM 0.682 0.743 0.760 0.770 0.780 0.810 0.824 0.827 0.839

(b) Cora
2% 4% 6% 8% 10% 30% 50% 70% 90%

DEEPWALK 0.545 0.585 0.600 0.608 0.613 0.626 0.628 0.628 0.633
NODE2VEC 0.575 0.600 0.611 0.619 0.622 0.636 0.638 0.639 0.639

LINE 0.554 0.580 0.590 0.597 0.603 0.618 0.621 0.623 0.623
HOPE 0.379 0.378 0.379 0.379 0.379 0.379 0.379 0.378 0.380

NETMF 0.577 0.589 0.596 0.601 0.605 0.617 0.620 0.623 0.623

EFGE-BERN 0.573 0.598 0.610 0.617 0.622 0.634 0.638 0.638 0.638
EFGE-POIS 0.588 0.605 0.614 0.620 0.624 0.635 0.637 0.636 0.638

EFGE-NORM 0.603 0.614 0.622 0.624 0.628 0.637 0.640 0.642 0.641

(c) DBLP

Table 2: Micro-F1 scores for the node classification experi-
ment for varying training sizes of networks.

NORM and EFGE-POIS models being the best perform-
ing ones. The EFGE-NORM model shows the best perfor-
mance among the three EFGE models, for most training
sizes. The percentage gain for Micro-F1 score of our best
model with respect to the highest baseline score, is vary-
ing from 0.61% up to 9.33%. For the results on the Cora
network shown in Table 2b, the EFGE-NORM model out-
performs the baseline methods for small training set sizes of
up to 10%. The EFGE-POIS also shows similar characteris-
tics, while the EFGE-BERN model has comparable perfor-
mance to NODE2VEC. The EFGE-NORM model has a gain
of 4.0% against the best of baselines. For large training sets
above 30%, NETMF is the best performing model over the
Cora network. Lastly, moving on the results on the DBLP
network shown in Table 2c, the EFGE-NORM model shows
the best performance in all cases under the Micro-F1 scores.
The highest Micro-F1 gain of our proposed models against
the best performing baseline is around 4.51%.

Overall, the classification experiments show that the
proposed EFGE-POIS and EFGE-NORM models perform
quite well, outperforming most baselines especially on a
limited number of training data. This can qualitatively be
explained by the fact that, those exponential family distribu-
tion models enable to capture the number of occurrences of
a node within the context of another one, while learning the
embedding vectors. Of course, the structural properties of
the network, such as the existence of community structure,
might affect the performance of these models. For instance,
as we have seen in the toy example of Fig. 1, the existence of
well defined communities at the Dolphins network, allows
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Citeseer 0.770 0.780 0.717 0.744 0.742 0.815 0.834 0.828
Cora 0.739 0.757 0.686 0.712 0.755 0.769 0.797 0.807

DBLP 0.919 0.954 0.933 0.873 0.930 0.950 0.950 0.955
AstroPh 0.911 0.969 0.971 0.931 0.897 0.963 0.922 0.973

HepTh 0.843 0.896 0.854 0.836 0.882 0.898 0.885 0.896
Facebook 0.980 0.992 0.986 0.975 0.987 0.991 0.991 0.992

GrQc 0.921 0.940 0.909 0.902 0.928 0.938 0.937 0.940

Table 3: Area Under Curve (AUC) scores for link prediction.

the EFGE-POIS model to learn more discriminative embed-
dings with respect to the underlying communities (as we ex-
pect to have repetitions of nodes that belong to the same
community while sampling the context of a node based on
random walks).

Link Prediction
Experimental set-up. In the link prediction task, the goal is
to predict the missing edges or to estimate possible future
connections between nodes. For this experiment, we ran-
domly remove half of the edges of a given network, keeping
the residual network connected. Then, we learn node repre-
sentations using the residual network. The removed edges
as well as a randomly chosen set of the same number of
node pairs form the testing set. For the training set, we sam-
ple the same number of non-existing edges following the
same strategy to have negative samples, and the edges in the
residual network are used as positive instances. Since we
learn embedding vectors for the nodes of the graph, we use
the extracted node representations to build edge feature vec-
tors using the Hadamard product operator. Let a, b ∈ Rd
be the embeddings of two nodes u, v ∈ V respectively.
Then, under the Hadamard operator, the embedding of the
corresponding edge between u and v will be computed as:
[a1 ∗ b1, · · · , ad ∗ bd]. In all experiments, we have used the
logistic regression classifier with L2 regularization over the
networks listed in Table 1.

Experiment results. Table 3 shows the area under curve
(AUC) scores for the link prediction task. Since the net-
works used in the node classification experiments consist
of disconnected components, we perform the link predic-
tion experiments on the largest connected component. As it
can be seen in Table 3, the EFGE-NORM model is perform-
ing quite well on almost all different types of networks. Al-
though NODE2VEC is quite effective having similar perfor-
mance in two datasets, it is outperformed by EFGE-NORM
from 0.04% up to 18.29% in the remaining networks.

Parameter Sensitivity
In this subsection, we evaluate how the performance of our
models is affected under different parameter settings. In par-
ticular, we mainly examine the effect of embedding dimen-
sion d and the effect of the window size γ used to sample
context nodes. More detailed analysis including the effect



of the standard deviation σ of the EFGE-NORM model is
provided in the Appendix.

The effect of dimension size. The dimension size d of em-
bedding vectors is a crucial parameter that can affect the
performance of a model. We have conducted experiments
examining the effect of embedding dimension d on the Cite-
seer network. As it can be seen in Fig. 2a, the increase in
the dimension size has positive affect for all models over
Micro-F1 scores. When the dimension size increases from
32 up to 224, we observe a gain of around 18% for training
set constructed from 50% of the network.
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Figure 2: Influence of dimension d and window size γ on the
CiteSeer network for the training set ratio of 50%.

The effect of window size. Since the appearance or the
number of occurrences of a node in the context of a cen-
ter node is of importance for the EFGE models, we ana-
lyze their sensitivity under different window sizes γ on the
CiteSeer network. Figure 2b depicts the Micro-F1 scores
for training set composed by 50% of the network. As we
can observe, both the EFGE-NORM and EFGE-POIS mod-
els have the tendency to show better performance for large
window sizes, since they directly model the number of oc-
currences of nodes within a random walk sequence — and
potentially are benefited by a large γ value. On the con-
trary, the performance of the EFGE-BERN model (which
in fact captures simple co-occurrence relationships, resem-
bling NODE2VEC) deteriorates for large window sizes.

Related Work
Network representation learning. The traditional unsuper-
vised feature learning methods aim at factorizing some ma-
trix representation of the graph, which has been designed
by taking into account the properties of a given network
(Hamilton, Ying, and Leskovec 2017). Laplacian Eigenmaps
(Belkin and Niyogi 2001) and IsoMap (Tenenbaum, Silva,
and Langford 2000) are just some of those approaches tar-
geting to preserve first-order proximity of nodes. More re-
cently, proposed algorithms including GRAREP (Cao, Lu,
and Xu 2015) and HOPE (Ou et al. 2016), aim at pre-
serving higher order proximities. Nevertheless, despite the
fact that matrix factorization approaches offer an elegant
way to capture the desired properties, they mainly suffer
from their time complexity. LINE (Tang et al. 2015) and

SDNE (Wang, Cui, and Zhu 2016) both optimize more so-
phisticated objective functions that preserve both first- and
second-order proximities at the cost of an increased com-
putational complexity, while VERSE (Tsitsulin et al. 2018)
utilizes node similarity measures to learn node representa-
tions. In addition, community structure properties can also
be taken into account in the NRL process. The authors of
(Wang et al. 2017), proposed a matrix factorization algo-
rithm that incorporates the community structure into the em-
bedding process, implicitly focusing on the quantity of mod-
ularity.

Random walk-based methods (Hamilton, Ying, and
Leskovec 2017) have gained considerable attention, mainly
due the efficiency of the Skip-Gram model. DEEPWALK per-
forms uniform random walks to sample context nodes, while
NODE2VEC and its extensions (Grover and Leskovec 2016;
Nguyen and Malliaros 2018) simulate biased-random walks
that provide a trade-off between breadth-first and depth-first
graph traversals. Following this line of research, distinct ran-
dom sampling strategies have been proposed and various
methods have emerged (Ribeiro, Saverese, and Figueiredo
2017). In all those cases though, the softmax function is used
model center-context relationships, something that might re-
strict the performance of the models. More recently, Skip-
Gram-based methods were extended to multiple vector rep-
resentations, aiming at capturing multiple roles of nodes in
the case of inherent overlapping communities (Epasto and
Perozzi 2019). In addition, it was recently shown that DEEP-
WALK and NODE2VEC implicitly perform matrix factoriza-
tions (Qiu et al. 2018; Qiu et al. 2019).

Recently, there is an intense research effort on Graph Neu-
ral Network (GNN) architectures (Wu et al. 2019), including
graph convolutional networks, autoencoders and diffusion
models. Most of these approaches are supervised or semi-
supervised, requiring labeled data in the training step, while
here we are interested in unsupervised models.

Exponential families. In the related literature, exponen-
tial family distributions have been utilized to learn embed-
dings for high-dimensional data of different types (e.g., mar-
ket basket analysis) (Rudolph et al. 2016; Liu et al. 2017;
Rudolph et al. 2017). As we have presented, our approach
generalizes exponential family embedding models to graphs.

Conclusions
In this paper, we introduced exponential family graph
embeddings (EFGE), proposing three instances (EFGE-
BERN, EFGE-POIS and EFGE-NORM) that generalize ran-
dom walk approaches to exponential families. The benefit of
these models stems from the fact that they allow to utilize
exponential family distributions over center-context node
pairs, going beyond simple co-occurrence relationships. We
have also examined how the objective functions of the mod-
els can be expressed in a way that negative sampling can be
applied to scale the learning process. The experimental re-
sults have demonstrated that instances of the EFGE model
are able to outperform widely used baseline methods. As fu-
ture work, we plan to further generalize the model to other
exponential family distributions.
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Appendix

Proofs of Lemmas
Lemma 1. The log-likelihood function LB converges to

∑
w∈W

∑
1≤l≤L

∑
|j|≤γ

[
log p(xl+jwl,wl+j

)+

k∑
s=1

E
u∼q−

[
log p(xl+jwl,u

)
]]

for large values of k.

Proof. Let q−(·|wl) be the true conditional distribution of a
random walk method for generating context nodes defined
over V . Then, it can be written that

∑
w∈W

∑
1≤l≤L

∑
|j|≤γ

[
log p(xl+jwl,vl+j

)+

k∑
s=1

E
u∼q−

log p(xl+jwl,u
)

]

≈
∑

w∈W

∑
1≤l≤L

∑
|j|≤γ

log p(xl+jwl,vl+j
)+k

1

k

k∑
s=1

us∼q−

log p(xl+jwl,us
)



=
∑

w∈W

∑
1≤l≤L

∑
|j|≤γ

log p(xl+jwl,vl+j
) +

k∑
s=1

us∼q−

log p(xl+jwl,us
)


≈
∑

w∈W

∑
1≤l≤L

∑
|j|≤γ
u:=vl+j

log p(xl+jwl,u
) +

∑
|j|≤γ

u:6=wl+j

log p(xl+jwl,u
)

=LB(α, β),

where the second line follows from the law of large numbers
for the sample size of k, and k is set to |V| − 1 in the fourth
line.

Lemma 2. Let Zwl,v be independent random variables fol-
lowing Poisson distribution with natural parameter ηwl,v
defined by log(β[wl] · α[v]). Then the objective function of
EFGE-BERN model becomes equal to

∑
w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1− exp
(
− β[wl]

> ·α[v]
))

−
∑

v 6∈Nγ(wl)

β[wl]
> ·α[v]

]
,

if the model parameter πwl,v is defined by p(Zwl,v > 0).

Proof. Let ywl,v follow a Bernoulli distribution with param-
eter πwl,v and it is equal to 1 if v ∈ Nγ(wl), and 0 other-
wise. Then, the objective function LB(α, β) can be divided
into parts as follows:

LB =
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log p(ywl,v)+
∑

v 6∈Nγ(wl)

log p(ywl,v)

]

=
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(
1− p(zwl,v = 0)

)
+
∑

v 6∈Nγ(vi)

log p(zwl,v = 0)

]

=
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1− exp
(
− exp(ηwl,v)

))

−
∑

v 6∈Nγ(wl)

exp(ηwl,v)

]

=
∑

w∈W

∑
1≤l≤L

[ ∑
v∈Nγ(wl)

log
(

1−exp
(
− β[wl]

>·α[v]
))

−
∑

v 6∈Nγ(wl)

β[wl]
> ·α[v]

]

Dataset Description
Here we provide a detailed description of the graph datasets2

used in our study.

• CiteSeer is a citation network obtained from the CiteSeer
library, in which each node corresponds to a paper and the
edges indicate reference relationships among papers. The
labels represent the subjects of the paper.

• Cora is another citation network constructed from the
publications in the machine learning area; the documents
are classified into seven categories.

• DBLP is a co-authorship graph, where an edge exists be-
tween nodes if two authors have co-authored at least one
paper. The labels represent the research areas.

• AstroPh is another collaboration network built from the
papers submitted to the ArXiv repository for the Astro
Physics subject area, from January 1993 to April 2003.

• HepTh network is constructed in a similar way from the
papers submitted to ArXiv for the High Energy Physics -
Theory category.

• GrQc is our last collaboration network which has been
constructed from the e-prints submitted to the category of
General Relativity and Quantum Cosmology.

• Facebook is a social network extracted from a survey con-
ducted via a Facebook application.

2The datasets can be found at: https://snap.stanford.edu/data
and https://github.com/GTmac/HARP

https://snap.stanford.edu/data
https://github.com/GTmac/HARP
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Figure 3: Influence of dimension size over CiteSeer network.
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Figure 4: Influence of window size γ for the CiteSeer network.
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Figure 5: Effect of standard deviation for EFGE-NORM.

Complementary Experimental Results for
Node Classification

In this section we present complementary experimental re-
sults for node classification by reporting the Micro-F1 and
Macro-F1 scores for training size ratios varying from 1% up
to 90%. The scores are presented in Tables 4, 5 and 6.

Parameter Sensitivity
In this section, we perform some further sensitivity analysis
experiments. In particular, we present complementary exper-
iments where we examine the effect of embedding dimen-
sion d and the effect of the window size γ used to sample
context nodes for the different models over different train-
ing set ratios. The results are depicted in Figures 3 and 4.
Effect of standard deviation of EFGE-NORM model
The EFGE-NORM model has an extra parameter σ which
can influence the performance of the method. To examine
the impact of σ, we have chosen six different values, per-
forming experiments over CiteSeer network. Figure 5 de-
picts how the Micro-F1 scores change for various training
set ratios. The results clearly indicate that the model per-
forms well for small values of σ — with the best results
obtained for σ = 1. For this reason, we have set this value
for all the experiments conducted in the node classification
and link prediction tasks.



1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50% 60% 70% 80% 90%
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DEEPWALK
0.373 0.416 0.443 0.460 0.471 0.489 0.496 0.505 0.506 0.517 0.548 0.566 0.576 0.584 0.590 0.595 0.591 0.592
0.318 0.367 0.403 0.418 0.429 0.446 0.454 0.463 0.464 0.474 0.505 0.521 0.529 0.537 0.542 0.547 0.541 0.543

NODE2VEC
0.405 0.450 0.475 0.491 0.500 0.517 0.524 0.530 0.537 0.541 0.570 0.585 0.590 0.597 0.598 0.601 0.596 0.599
0.339 0.396 0.424 0.441 0.452 0.470 0.478 0.483 0.491 0.494 0.525 0.537 0.542 0.549 0.550 0.553 0.548 0.551

LINE 0.273 0.323 0.362 0.387 0.406 0.423 0.440 0.451 0.456 0.466 0.513 0.532 0.543 0.551 0.556 0.560 0.568 0.564
0.204 0.268 0.311 0.338 0.360 0.372 0.390 0.399 0.407 0.414 0.459 0.480 0.492 0.498 0.505 0.505 0.514 0.513

HOPE 0.194 0.196 0.202 0.205 0.208 0.210 0.216 0.204 0.216 0.219 0.228 0.256 0.267 0.277 0.293 0.299 0.300 0.320
0.060 0.060 0.063 0.062 0.066 0.068 0.079 0.064 0.075 0.078 0.094 0.127 0.136 0.150 0.168 0.178 0.183 0.205

NETMF 0.379 0.451 0.472 0.496 0.515 0.526 0.533 0.540 0.544 0.552 0.578 0.590 0.596 0.603 0.605 0.604 0.611 0.608
0.315 0.400 0.423 0.445 0.464 0.477 0.486 0.490 0.497 0.503 0.529 0.542 0.546 0.553 0.554 0.552 0.560 0.554

E
F

G
E EFGE-BERN

0.411 0.461 0.487 0.493 0.513 0.517 0.528 0.536 0.543 0.549 0.574 0.588 0.594 0.603 0.606 0.609 0.606 0.609
0.345 0.410 0.436 0.446 0.462 0.468 0.481 0.489 0.496 0.502 0.530 0.545 0.549 0.558 0.563 0.564 0.561 0.563

EFGE-POIS
0.449 0.484 0.500 0.514 0.530 0.537 0.544 0.551 0.555 0.562 0.583 0.595 0.601 0.606 0.608 0.611 0.609 0.613
0.384 0.425 0.445 0.461 0.477 0.482 0.491 0.500 0.504 0.512 0.533 0.547 0.552 0.558 0.559 0.563 0.560 0.564

EFGE-NORM
0.434 0.493 0.510 0.525 0.531 0.542 0.546 0.553 0.557 0.561 0.585 0.596 0.605 0.606 0.610 0.612 0.616 0.616
0.361 0.431 0.450 0.467 0.474 0.485 0.492 0.500 0.501 0.509 0.534 0.547 0.558 0.560 0.566 0.567 0.572 0.575

Table 4: Node classification for varying training sizes for the Citeseer network. For each method, the first row indicates the
Micro-F1 scores and the second one shows the Macro-F1 scores.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50% 60% 70% 80% 90%

B
A

S
E

L
IN

E
S

DEEPWALK
0.531 0.621 0.667 0.689 0.703 0.715 0.727 0.732 0.744 0.747 0.784 0.802 0.810 0.819 0.822 0.826 0.826 0.833
0.455 0.571 0.638 0.666 0.681 0.698 0.711 0.717 0.730 0.734 0.774 0.792 0.800 0.809 0.813 0.816 0.815 0.825

NODE2VEC
0.575 0.656 0.696 0.714 0.731 0.743 0.746 0.757 0.764 0.769 0.799 0.815 0.824 0.831 0.835 0.839 0.842 0.841
0.501 0.605 0.665 0.687 0.713 0.723 0.730 0.741 0.750 0.755 0.786 0.803 0.812 0.819 0.823 0.826 0.830 0.825

LINE 0.384 0.450 0.506 0.544 0.568 0.590 0.618 0.633 0.648 0.661 0.723 0.746 0.758 0.765 0.770 0.774 0.775 0.775
0.272 0.364 0.435 0.491 0.523 0.555 0.588 0.607 0.626 0.642 0.713 0.736 0.747 0.755 0.759 0.762 0.766 0.764

HOPE 0.260 0.277 0.297 0.302 0.304 0.299 0.302 0.302 0.302 0.302 0.303 0.301 0.303 0.302 0.303 0.303 0.303 0.302
0.065 0.068 0.067 0.066 0.068 0.066 0.066 0.066 0.066 0.066 0.067 0.067 0.067 0.067 0.067 0.068 0.070 0.072

NETMF 0.534 0.636 0.693 0.716 0.735 0.748 0.757 0.767 0.770 0.773 0.807 0.821 0.828 0.834 0.839 0.841 0.839 0.844
0.461 0.591 0.667 0.694 0.717 0.731 0.741 0.751 0.757 0.760 0.797 0.811 0.819 0.824 0.830 0.832 0.831 0.835

E
F

G
E

EFGE-BERN
0.593 0.668 0.703 0.720 0.738 0.743 0.751 0.759 0.760 0.767 0.792 0.808 0.815 0.823 0.828 0.834 0.837 0.838
0.507 0.622 0.672 0.695 0.718 0.723 0.735 0.744 0.743 0.754 0.780 0.798 0.806 0.814 0.819 0.823 0.825 0.824

EFGE-POIS
0.605 0.680 0.714 0.733 0.739 0.746 0.752 0.759 0.761 0.765 0.791 0.802 0.809 0.814 0.817 0.820 0.824 0.825
0.512 0.630 0.685 0.709 0.715 0.731 0.737 0.744 0.748 0.752 0.780 0.792 0.798 0.803 0.807 0.810 0.815 0.813

EFGE-NORM
0.601 0.682 0.720 0.743 0.754 0.760 0.765 0.770 0.776 0.780 0.799 0.810 0.814 0.824 0.824 0.827 0.832 0.839
0.512 0.626 0.685 0.711 0.730 0.741 0.746 0.754 0.760 0.766 0.785 0.796 0.800 0.810 0.810 0.812 0.818 0.824

Table 5: Node classification for varying training sizes for the Cora network. For each method, the first row indicates the Micro-
F1 scores and the second one shows the Macro-F1 scores.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50% 60% 70% 80% 90%

B
A

S
E

L
IN

E
S

DEEPWALK
0.517 0.545 0.569 0.585 0.593 0.600 0.604 0.608 0.610 0.613 0.622 0.626 0.627 0.628 0.627 0.628 0.629 0.633
0.462 0.492 0.510 0.522 0.529 0.535 0.537 0.542 0.543 0.545 0.552 0.555 0.556 0.556 0.555 0.556 0.557 0.559

NODE2VEC
0.557 0.575 0.590 0.600 0.605 0.611 0.615 0.619 0.621 0.622 0.632 0.636 0.638 0.638 0.640 0.639 0.640 0.639
0.497 0.517 0.532 0.541 0.545 0.552 0.554 0.558 0.558 0.560 0.569 0.571 0.572 0.572 0.574 0.573 0.574 0.573

LINE 0.525 0.554 0.570 0.580 0.587 0.590 0.594 0.597 0.600 0.603 0.613 0.618 0.619 0.621 0.621 0.623 0.623 0.623
0.434 0.475 0.499 0.510 0.519 0.521 0.526 0.530 0.533 0.535 0.548 0.552 0.554 0.556 0.555 0.557 0.558 0.559

HOPE 0.376 0.379 0.379 0.378 0.378 0.379 0.379 0.379 0.378 0.379 0.378 0.379 0.379 0.379 0.379 0.378 0.379 0.380
0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.137 0.138 0.138

NETMF 0.564 0.577 0.586 0.589 0.593 0.596 0.599 0.601 0.604 0.605 0.613 0.617 0.619 0.620 0.620 0.623 0.623 0.623
0.463 0.490 0.503 0.506 0.510 0.513 0.517 0.518 0.521 0.522 0.528 0.530 0.532 0.531 0.531 0.533 0.533 0.533

E
F

G
E

EFGE-BERN
0.554 0.573 0.586 0.598 0.604 0.610 0.615 0.617 0.618 0.622 0.631 0.634 0.635 0.638 0.637 0.638 0.638 0.638
0.494 0.514 0.526 0.539 0.542 0.547 0.551 0.553 0.553 0.556 0.563 0.566 0.566 0.569 0.568 0.569 0.570 0.570

EFGE-POIS
0.574 0.588 0.598 0.605 0.611 0.614 0.618 0.620 0.623 0.624 0.631 0.635 0.636 0.637 0.638 0.636 0.638 0.638
0.509 0.528 0.538 0.544 0.549 0.552 0.554 0.556 0.559 0.559 0.565 0.568 0.569 0.569 0.570 0.569 0.570 0.570

EFGE-NORM
0.596 0.603 0.610 0.614 0.618 0.622 0.622 0.624 0.627 0.628 0.635 0.637 0.640 0.640 0.641 0.642 0.642 0.641
0.520 0.533 0.544 0.548 0.552 0.556 0.555 0.558 0.560 0.562 0.568 0.569 0.572 0.573 0.572 0.574 0.573 0.572

Table 6: Node classification for varying training sizes for the DBLP network. For each method, the first row indicates the
Micro-F1 scores and the second one shows the Macro-F1 scores.
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