
HAL Id: hal-03088909
https://hal.science/hal-03088909v1

Submitted on 29 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence Maximization using Influence and
Susceptibility Embeddings

George Panagopoulos, Fragkiskos D. Malliaros, Michalis Vazirgiannis

To cite this version:
George Panagopoulos, Fragkiskos D. Malliaros, Michalis Vazirgiannis. Influence Maximization using
Influence and Susceptibility Embeddings. ICWSM 2020 - 14th International Conference on Web and
Social Media, Jun 2020, Atlanta / Virtual, United States. �hal-03088909�

https://hal.science/hal-03088909v1
https://hal.archives-ouvertes.fr

Influence Maximization using Influence and Susceptibility Embeddings

George Panagopoulos
École Polytechnique

george.panagopoulos@polytechnique.edu

Fragkiskos D. Malliaros
Université Paris-Saclay
CentraleSupélec, Inria

fragkiskos.malliaros@centralesupelec.fr

Michalis Vazirgiannis
École Polytechnique

AUEB
mvazirg@lix.polytechnique.fr

Abstract

Finding a set of users that can maximize the spread of in-
formation in a social network is an important problem in so-
cial media analysis — being a critical part of several real-
world applications such as viral marketing, political advertis-
ing and epidemiology. Although influence maximization has
been studied extensively in the past, the majority of works
focus on the algorithmic aspect of the problem, overlook-
ing several practical improvements that can be derived by
data-driven observations or the inclusion of machine learn-
ing. The main challenges of realistic influence maximization
is on the one hand the computational demand of the diffu-
sion models’ repetitive simulations, and on the other the ac-
curacy of the estimated influence spread. In this work, we
propose CELFIE, an influence maximization method that uti-
lizes learnt influence representations from diffusion cascades
to overcome the use of diffusion models. It comprises of
two parts. The first is based on INF2VEC, an unsupervised
learning model that embeds influence relationships between
nodes from a set of diffusion cascades. We create a new
version of the model, based on observations from influence
analysis on a large scale dataset, to match the scalability
needs and the purpose of influence maximization. The sec-
ond part capitalizes on the learned representations to rede-
fine the traditional live-edge model sampling for the com-
putation of the marginal gain. For evaluation, we apply our
method in the Sina Weibo and Microsoft Academic Graph
datasets, two large scale networks accompanied by diffusion
cascades. We observe that our algorithm outperforms various
baseline methods in terms of seed set quality and speed. In
addition, the proposed INF2VEC modification for influence
maximization provides substantial computational advantages
in the price of a minuscule loss in the influence spread.

Introduction
With the advent of the social web, social media have been
broadly utilized to spread news, establish trends or even
shape public opinions. This has motivated a substantial
amount of research on the analysis of how social media users
effect each other. Traces of such influence can be detected in
the users sharing activity, such as tweets, Facebook posts, In-
stagram stories etc. Formally, social influence is defined as a

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

directed measure between two users and represents how pos-
sible is for the target user to adapt the behavior or copy the
action of the source user. The research on social influence
can be divided into two main branches that address different
problems: influence maximization and influence learning.

Influence maximization is typically formulated as a com-
binatorial optimization problem where the aim is to find the
set of nodes in a network that would maximize the reach of
a diffusion cascade starting from them (Kempe, Kleinberg,
and Tardos 2003). Although the problem was inspired by vi-
ral marketing (Domingos and Richardson 2001), it can be
applied to several other disciplines, such as limiting misin-
formation (Budak, Agrawal, and El Abbadi 2011), opinion
polarization (Garimella et al. 2017) etc. Influence maximiza-
tion algorithms face scalability issues primarily because the
computation of the number of nodes infected by a set of seed
users, called the influence spread, relies on repetitive simu-
lations of diffusion models (Chen, Wang, and Wang 2010a).
Apart from the computational hinder, diffusion models are
based on several non-realistic assumptions that may guide
the algorithm in unreliable results (Panagopoulos, Malliaros,
and Vazirgiannis 2018). More specifically, influence max-
imization utilizes stochastic diffusion models such as the
independent cascade and the linear threshold with uniform
probabilities of influence between nodes. This random influ-
ence assignment, together with the simplistic assumptions
governing the diffusion models, produces non-realistic es-
timations of the influence spread (Aral and Walker 2012).
Moreover, influence dynamics do not depend solely on the
structure of the network, but time is of essence as well (Kar-
sai et al. 2011). In addition, diffusion models are Markovian,
meaning that they fail to capture any higher order memory
effects that are present in influence paths — a disadvantage
we address further in this work. In general, these solutions
depend on the structural information and oversimplified dif-
fusion models, overlooking how information diffusion re-
ally take place over the network. However, along with new
datasets that contain the network and diffusion cascade logs
(Lerman, Ghosh, and Surachawala 2012), emerged the ques-
tion of how to measure influence in a data-driven manner.

Influence learning has attracted significant attention the
past few years. Initially, these methods were learning param-
eters that define the influence probabilities of diffusion mod-
els (Gomez-Rodriguez, Balduzzi, and Schölkopf 2011), or

the edge probabilities themselves (Goyal, Bonchi, and Lak-
shmanan 2010). However, these approaches suffered from
overfitting, as the number of parameters was equal to the
number of edges. To address this, more recently, an array
of works utilize representation learning to capture influence
between two nodes. A representative example is EMBEDD-
IC (Bourigault, Lamprier, and Gallinari 2016), an adaptation
of the independent cascade where the influence probabilities
are expressed as a combination of the nodes’ embeddings.
Each node is associated with two embeddings, a source and
a target, which combined construct the probability of influ-
encing and getting influenced. This basic idea has been de-
veloped into involved neural architectures that can be used to
predict the evolution of a diffusion cascade, such as the next
infected node, and the time of the next infection (Du et al.
2016; Islam et al. 2018). One important problem with influ-
ence learning techniques that are based on diffusion models
(Bourigault, Lamprier, and Gallinari 2016), is that they as-
sume influence independence between edges. This assump-
tion does not allow the model to capture influence similar-
ities between nodes of similar status, which exist because
of the assortative mixing property (Newman 2002). More-
over, it causes a substantial depreciation in the estimation
of the influence spread (Aral and Dhillon 2018), which is
why in this work, we utilize a model that learns influence
and susceptibility embeddings based on the co-occurence in
diffusion cascades (Feng et al. 2018).

In this study, we propose CELFIE, a fast influence max-
imization method based on diffusion probabilities instead
of diffusion models. Our model capitalizes on the informa-
tion contained in past diffusion cascades using influence and
susceptibility representations learnt specifically for this set-
ting. We start from the representation learning part. In order
to improve the scalability of our model and compute diffu-
sion instead of influence probabilities, we device a modifi-
cation of the recently proposed influence embedding model
INF2VEC (Feng et al. 2018), based on observations from a
data analysis on a large scale dataset. As we will see in de-
tail in the next section, INF2VEC computes influence and
susceptibility embeddings based on time precedence in dif-
fusion cascade history and follow relationships in the net-
work. We adjust it to focus on initiators of the cascades and
compute diffusion probabilities, which are influence proba-
bilities between nodes with more than one hop distance in
the network. We use the definition of this probability to re-
formulate the problem as influence maximization in a bi-
partite network. In this setting with no higher order paths,
each seed directly infects a specific node, thus the stochas-
tic existence of an influence edge effects only the infection
of the node in the receiving end, and the need for diffu-
sion models is eliminated. We take advantage of this to de-
fine a new marginal gain based on a sampling strategy sim-
ilar to the live-edge model, but diminishing the sampling
space due to past infections and reusing a seed’s past sam-
ples to compute the new influence spread. Finally we pro-
pose a greedy solution that optimizes the marginal gain us-
ing the well-known Cost Effective Lazy Forward (CELF)
algorithm. We evaluate our methodology in two large scale
datasets, the Sina Weibo that contains both, a follow net-

work and retweet cascades (Zhang et al. 2013), and the Mi-
crosoft Academic Graph for computer science papers, which
is comprised of a co-authorship network, and citation cas-
cades (Sinha et al. 2015) . The quality of the retrieved seed
set is determined by a set of unseen diffusion cascades from
future time steps, similar to a train and test split in machine
learning (Panagopoulos, Malliaros, and Vazirgiannis 2018;
Du et al. 2013). We have observed that our algorithm outper-
forms various baselines methods in terms of seed set quality,
and that the proposed INF2VEC modification provides sub-
stantial computational advantages in the price of a minuscule
loss in the influence spread.

The rest of the paper is organized as follows. We start
by briefly reviewing the required background. Then, we de-
lineate influence representation learning, providing the data
analysis study that served as motivation for the adjustment of
INF2VEC. Then, we describe the reformulation of the live-
edge model using diffusion probabilities and the proposed
influence maximization algorithm. We present the experi-
mental design, including the baseline methods and the jus-
tification of the results. In the last section, we conclude the
paper with a contribution synopsis and suggestions for fu-
ture work.

Background
Network Representation Learning
NODE2VEC (Grover and Leskovec 2016) is a popular rep-
resentation learning technique that capitalizes on the struc-
ture of the network to derive node vectors (representations)
that translate the structural correlations of the nodes into a
real space. The learning algorithm resembles WORD2VEC
(Mikolov et al. 2013), where each word is a node and each
context is derived by a balanced random walk starting from
that node. The intuition is that nodes that occur in the context
of a node should have similar structural properties, hence
their embeddings must be similar. These vectors can then be
utilized for classification, clustering and visualization pur-
poses with remarkable results. The INF2VEC model (Feng
et al. 2018), similar to NODE2VEC, is a shallow neural net-
work that receives as input a node of the network, and out-
puts a probability distribution over all other nodes getting
influenced by this node. The training data is a pair of node-
context derived by a set of diffusion cascades. More specif-
ically, each cascade is first transformed into a diffusion net-
work, by drawing directed edges from a node in the cascade,
to other nodes that appear later in that cascade and have ac-
tual edges in the respective network (e.g., follow relation-
ships). Subsequently, a node-context pair is constructed for
each node in this diffusion network, where the context is
comprised by 5 nodes derived by a random walk with restart
starting from the node under examination, and 45 nodes ran-
domly sampled from the diffusion network.

The hidden layer of the network represents the source em-
beddings O of the nodes, and the output layer the target T .
The likelihood for a node u to influence v is given by:

fv,u = Ou · Tv + bu + b′v. (1)
Note here the use of bu and b′v . These two one-dimensional
embeddings substitute the bias and aim to capture the source

node’s general capacity to influence other nodes and the sus-
ceptibility of the target node to be influenced. The output of
the model, which is a probability distribution over all nodes,
is created through a Softmax function φ(·):

pv,u = φ
(
fv,u

)
=

efv,u∑
u∈G e

fv,u
. (2)

Due to the number of nodes, calculating the denominator
of Eq. (2) is too computationally expensive, so a negative
sampling approach is employed. The loss function samples
randomly 10 nodes w that act as counter examples to the
actual node u that occurred in the pair with v. The final log-
likelihood uses the sigmoid s and is formulated as:

log(pv,u) = log
(
s(fv,u)

)
+
∑
w∈N

log
(
s(−fv,w)

)
. (3)

Influence Maximization
The greedy algorithm for influence maximization (Kempe,
Kleinberg, and Tardos 2003) starts with an empty seed
set S and adds iteratively the node that provides the best
marginal gain, i.e., the maximum increase of the set’s in-
fluence spread. Influence spread is the number of nodes in-
fected by a given seed set and is computed by simulating
the progress of a diffusion cascade through the network us-
ing two basic models: the Independent Cascade (IC) and
the Linear Threshold (LT). Instead of running simulations
of these stochastic processes, the algorithm estimates the in-
fluence spread based on the live-edge model:

σ(S) =
∑
g⊆G

P (g)σg(S) (4)

P (g) =
∏

e∈E(g)

pe
∏

e′∈E(G)/E(g)

(1− pe′) (5)

where g is derived by randomly sampling edges from the
network G. This Monte Carlo (MC) sampling facilitates
converging to an unbiased estimate of the actual influence
spread of both, IC and LT. An exact computation would re-
quire taking into account all possible realizations of the net-
work, which amounts to

∑e
k=0

((
e
k

))
= 2e combinations,

where e is the number of edges. From the point of view
of the diffusion process, this computation would be neces-
sary because both stochastic processes rely on the influence
probabilities of edges, hence both need to take into account
all possibilities to compute the estimated spread. The influ-
ence spread σg(S) under the specific network realization g,
is computed by the nodes that are reachable through a path
of live-edges from the seed set S. The probability of the re-
alization, which is derived by the influence probabilities of
the edges in Eq. (5), weighs the influence spread in order to
quantify the likelihood of the specific spread occurring.

The function of the influence spread under the IC and LT
diffusion models is monotonic and submodular. Submodu-
larity means that as the seed set increases the contribution
of a node to the influence spread (marginal gain) can only
decrease or stay the same:

σ
(
S ∪ {w}

)
− σ

(
S
)
≥ σ

(
S′ ∪ {w}

)
− σ

(
S′
)
, (6)

where S ⊆ S′. Due to this, the algorithm is guaranteed
to reach a solution that approximates the optimal within a
factor of (1 − 1/e). However, the influence spread estima-
tion is still prohibitively time consuming for real-world net-
works. Several methods have been developed that achieve
notable acceleration and retain the theoretical guarantees us-
ing sketches (Cohen et al. 2014) or reverse reachable sets
(Tang, Xiao, and Shi 2014). Moreover numerous heuris-
tics have been proposed that, though lacking guarantees, ex-
hibit remarkable success in practice (Goyal, Lu, and Laksh-
manan 2011; Chen, Wang, and Wang 2010b). One general
problem with most of these approaches is that they rely on
the diffusion models, and the influence probabilities are de-
rived by the weighted cascade model or uniformly at ran-
dom (Kempe, Kleinberg, and Tardos 2003). This calls into
question the quality of the retrieved seed set, as more and
more studies indicate that structure alone can not capture
the properties of influence and diffusion (Karsai et al. 2011;
Pei, Morone, and Makse 2018). There has been a number
of attempts that examine influence maximization using dif-
fusion cascades, either directly (Goyal, Bonchi, and Lak-
shmanan 2011; Panagopoulos, Malliaros, and Vazirgiannis
2018) or by weighing the network based on the activities in
diffusion cascades (Goyal, Bonchi, and Lakshmanan 2010),
but overall, it is a largely overlooked field.

Influence Representation Learning
An important question in influence analysis is whether suc-
cessful sharing or resharing contributes more to an influ-
encer’s popularity. In other words, does it suffice for an in-
fluencer to create massive cascades, or she has to participate
in strong ones started by others as well? The sampling pro-
cess of the INF2VEC algorithm described above, assumes
the participation of a node in other cascades is important,
as node-context pairs are derived for each node in each dif-
fusion cascade. Although this is definitely a more complete
approach, given that the average size of a cascade can sur-
pass 60 nodes in today’s datasets, it is very time consuming.

We examined this question in the diffusion cascades of
the Weibo dataset, a network consisting of more than 1.7
million nodes and 0.4 billion edges, accompanied by a set
of 300,000 retweet cascades spanning 3 years of record-
ings. The network is retrieved at the final month of these
3 years. The diffusion cascades are formed by gathering the
past 1,000 tweets of each node in the network. The original
posts in these tweets represent the start of a cascade, and any
tweet with the same content, that is not an original post and
is preceded by the initial tweet, is considered a retweet. We
should underline here that the original post is not defined
based on time precedence, we know which tweet is the orig-
inal post because it is the only tweet of a given content that
is not marked as a retweet.

In our case, we have separated the dataset in train and
test cascades based on their time of occurrence. We keep the
18,652 diffusion cascades from the last month of recording
as test set and the 97,034 from the previous 11 months as
train set. We call them test and train set, similarly to ma-
chine learning, because we will use them for evaluation of

our algorithm, as we describe in the experimental section of
the paper.

To evaluate our hypothesis that successful influencers
mostly start diffusion cascades rather than participate in
them, we will first rank all seed users found in the test set
based on three measures of success: the number of test cas-
cades they spawn, their cumulative size and the number of
Distinct Nodes Influenced (DNI) (Panagopoulos, Malliaros,
and Vazirgiannis 2018). We separate all users in three cate-
gories for each metric, based on how high they rank on it.
Then, we compute for each category the total cascades they
start in the training set and those they simply participate in.
As we can see in Figure 1, all users that belong to the top 1/3
of the test cascades in all three metrics are far more likely to
start a train cascade than simply participate in it.

0

10000

20000

30000

40000

50000

High
DNI

High
No

High
Size

Mid
DNI

Mid
No

Mid
Size

Low
DNI

Low
No

Low
Size

Participated Started

Figure 1: Influencer’s initiating versus participating in dif-
fusion cascades. DNI stands for distinct nodes influenced,
size stands for cascade size, and no stands for number of
cascades started. Each category in the x-axis defines where
these users belong in the test cascades, and the bar indicates
how many train cascades they start opposing to how many
they just participate in.

To this end, we propose a new approach to the creation
of the input to the neural network behind INF2VEC. Instead
of deriving one node-context pair for each node in the diffu-
sion, we can derive a single one only for the initiator of the
cascade. Apart from the significant computational gain, we
expect this approach to perform adequately due to the above
observation. Moreover, instead of creating the diffusion net-
work, which is time consuming and prone to noise due to
the absence of edges (Panagopoulos, Malliaros, and Vazir-
giannis 2018), we can perform another type of sampling to
derive the context of the initiator.

A very important characteristic in the study of social in-
fluence is its temporal dynamics. In the case of informa-
tion diffusions, the time passed between two node’s activ-
ity is known to play a role in the amount of influence the
source node exerts to the target (Goyal, Bonchi, and Lak-
shmanan 2010). Yet, the original INF2VEC algorithm does

not capitalize over this attribute. In our dataset, we can ob-
serve this phenomenon by studying the copying times in the
diffusion cascades of the influencers. As mentioned above,
we focus on the nodes that have started a cascade in the test
set and use as a measure of a node’s influence the number
of nodes it infects throughout all these cascades (DNI). We
compute the average copying time of a cascade, for all train
cascades of these nodes, and average it to get an estimate
of how fast these nodes get “copied” during their cascades.
Subsequently, we group these nodes based on their DNI and
compute the average copying time of each group and plot it
opposed to the DNI in Figure 2.

●
●

●

●
●

●

●

●●●●

●

●

●
●●

●
●
●

●

●●●
●●
●●●●●
●●
●

●●

●

●
●●●
●

●

●●●●●
●●
●●●
●●●●

●

●●●
●●●●

●

●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●
●
●●●●
●●
●●●●
●
●●●

●

●●●●●●●●●
●
●●
●
●

●●●
●
●
●●●●

●

●●●●
●
●●●●●

●

●

●

●

●
●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●

●

●●●●

●

●●●
●
●●●

●

●●●

●

●
●●
●●●●

●

●●●●●

●
●●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●
●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●●●
●
●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●
●
●●●●
●

●

●
●
●●●●
●
●●●●

●

●●
●
●●●●●●●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●

●●

●●●●●●

●

●●
●●
●●●●

●

●
●
●●●
●
●●●●●●●
●

●

●●●
●
●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●
●
●●●●●●●●●●●●●●●●●

●

●●
●
●●●●●
●
●●●●●●●●
●
●

●

●●●●●●
●
●●
●●
●●●●●
●

●●●●●●
●
●●●●●●●●●●●
●
●●●●
●●
●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●
●
●

●●
●●●●●●●●
●●
●●●●●●●●●●●●

●

●

●●●●

●
●

●●●●●●●●●●●

●

●●●
●●●●●●●

●

●●●●●●●●
●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●

●

●
●
●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●
●●●●
●●

●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●●● ●●●● ● ● ● ●0e+00

1e+05

2e+05

3e+05

4e+05

0 20000 40000 60000
DNI

C
op

yi
ng

 T
im

e

Figure 2: Average copying time in the train cascades rela-
tive to the number of distinct nodes influenced in the test
cascades.

This plot indicates that nodes with higher influence tend
to have much faster cascades than ordinary influencers. Of
course, there are much more nodes with smaller DNI than
high, but since we take the average of the copying time for
each DNI, the result is not affected. Apart from confirm-
ing our intuition, this observation buttress several findings
that underline the decay of influence as the copying time
increases in real-world diffusion cascades (Goyal, Bonchi,
and Lakshmanan 2010). To this end, we guide the sampling
of a node’s context based on the copying times in its cas-
cades. More specifically, we form the context by performing
a random sampling over the nodes in the cascade, where the
probability is inversely proportional to the copying time be-
tween the candidate node and the initiator. For the current
analysis, we do an oversampling of 120% to emphasize the
importance of fast resharing in the depiction of influence.
This creates node-context pairs that take into account the
temporal dynamics of the cascades.

As a final step, we observed that the influenceability and
susceptibility embeddings did not increase the accuracy of
INF2VEC in our task, so we substituted them with a sim-
ple bias and used noise contrastive estimation over nega-
tive sampling (Gutmann and Hyvärinen 2010). The changes
above were driven from observations in the data and aim

primarily to alleviate the extensive computational demand
of INF2VEC. We name the new model light INF2VEC (L-
INF2VEC), and later on we will compare it to the original
INF2VEC in our task. It should be noted that L-INF2VEC,
apart from significant computational advantages, is devoid
of the use of the diffusion network, and consequently the
underlying network itself, as it uses only the diffusion cas-
cades. Moreover, we overcome the sampling process of
INF2VEC which requires the creation of the propagation net-
work that has a complexity of O

(
c(n̄(n̄ − 1)/2)

)
, where c

is the number of cascades and n̄ is the average cascade size.
This is the case because it requires going through every node
in the cascade and iterating over the subsequent nodes to
search for a directed edge in the network. It should be noted
here that our representation learning model’s final purpose is
influence maximization, which is why we focus so much on
the activity of initiators and overlook the rest of the nodes. If
we aimed for another task, such as predicting the course of a
diffusion or recommending friendships, it is unclear whether
this type of context-creation would be effective.

Influence Maximization with Influence
Embeddings

The likelihood influence score pv,u is derived from Eq. (1)
and Eq. (2). From this we can build the influence likelihood
matrix (ILM) as:

ILM =

φ(D1)
...

φ(DI)

 , D = OT> +B +B′, (7)

where φ(·) is the Softmax function, O is the hidden layer
matrix (embeddings of source nodes), T is the output layer
matrix (embeddings of target nodes), B is a matrix contain-
ing the embeddings that capture the ability of each node to
influence others (bu in Eq. (1)) repeated for I rows, where
I is the number of nodes that started more then one cas-
cade, and B′ is the embeddings of influence susceptibility
repeated for N columns. The Softmax function from Eq. (2)
is applied in every row of the matrix to derive the diffusion
probabilities. In the case of L-INF2VEC, we compute ILM
in the same manner as in Eq. (7), without any bias.

Reformulation of the Problem
The main idea is to substitute the aforementioned compu-
tation of the influence spread that is based on the diffusion
models, with a function that utilizes the influence likelihood
scores derived by INF2VEC. As a first step, we observe that
the influence spread under a specific live-edge sampling in
Eq. (4) is determined by the paths formed by the sampled
edges. Intuitively, in our case the influence likelihood score
in Eq. (7) stands for the probability of a node appearing in a
diffusion started by a seed (source node), independently of
the two nodes’ distance in the network. We can name this
diffusion probability, although it has been used in the past to
describe influence probability between two nodes in the net-
work (Kalimeris et al. 2018), their difference is clear. This

means that these probabilities implicitly include the under-
lying influence paths from the seed to the infected node and
we can reformulate the live-edge model to take advantage of
it. More specifically, we can interpret the ILM matrix as a
fully connected bipartite network, where each of the nodes
in the left side is connected to all other nodes in the right
side. The left side nodes are the candidate seeds, and each of
them can influence every node in the right side. In this man-
ner, all the paths with length more than 1 are removed, so we
do not require a diffusion model to estimate the spread. This
is also the reason why we have no connections between the
nodes at the same side, as there are no higher order influence
paths and each seed can influence a node only through their
direct edge.

For example, in the traditional setting a node u might be
able to influence another node z by influencing node v be-
tween them, as shown in Figure 3. However, in our case, if
u could indeed induce the infection of z in a direct or indi-
rect manner, it would be depicted by the diffusion probabil-
ity pu,z . Thus we can remove all influence paths with length
more than 1, as they are captured by the diffusion probabil-
ities. From a data-driven perspective, this approach captures
the case when v appears in the diffusions of u and z appears
in the diffusions of v but not in u’s. This happens in cases
where node v publishes or reshares different types of con-
tent. When v reshares content from u, it diffuses in different
directions than z. Thus, it would be wrong to assume u’s
infection is able to eventually cause z’s. Typical influence
maximization algorithms that rely on diffusion models fail
to capture this effect of higher order correlations. A diffu-
sion model acts in a Markovian manner and can spread the
infection from u to z. The biggest advantage of this “short-
cut” is that it allows us to overlook the complexity induced
by the diffusion models.

v

u z

pu,v pv,z

pu,z

Figure 3: Toy example of higher order influence to depict
the difference between influence and diffusion probabilities
between nodes.

Assuming the influence probabilities are independent, the
probability of a node u getting influenced by a seed set S
is the complementary probability of not getting influenced
by each node v ∈ S. Summing this over all non-seed nodes
can give a new influence spread:

σ′(S) =
∑
u∈G

(
1−

∏
v∈S

(1− pv,u)
)
. (8)

To transform this into a set function that computes the in-

fected nodes, we can use a threshold, meaning that a node
will get infected if its probability of getting influenced by
the seed set at this step is equal to or more than 0.5, which
is the value used in classifiers with softmax output. Unfortu-
nately, it is easy to see that this function is not submodular.
Think of a toy example with two source nodes a, b that can
influence three other nodes with probabilities [0.6, 0.3, 0.5]
and [0.3, 0.4, 0.4] respectively. In the first step, the algorithm
will choose a as it gives 2 infected nodes opposing to b that
gives 0. In the second step, following our definition, the ad-
dition of b will infect the second and final node, thus the
property of diminishing returns does not stand for this in-
fluence spread and we can not utilize the greedy algorithm.
Although the set function defined above is not submodular,
function σ′(·) in Eq. (8) itself is convex. From it and Eq. (7)
we can derive that:

σ′(S) = |G| −
∑
u∈G

∏
v∈S

(
1− ILM [v, u]

)
, (9)

which leads to the following optimization problem:

argmaxS(σ′(S)) = argminS

(∑
u∈G

∏
v∈S

(
1− ILM [v, u]

))
.

(10)
Since there is no easy way to directly optimize this func-
tion with guarantees, we will rely on a greedy heuristic. The
method simply iterates throughout all nodes in each turn and
adds in the seed set the node that minimizes the function
above, taking into account the seed set up to that point. This
will serve as a baseline for our experiments.

CELF with Influence Embeddings
As we saw above, directly minimizing the probability of a
node getting influenced by the seed set is not a straight for-
ward option. Thus, we can adopt the traditional approach
to influence maximization and assume there is an underly-
ing diffusion model, but instead of running over an influence
network, it is based on the learned diffusion probabilities. To
be more specific, we can use the bipartite network as defined
by matrix ILM and follow the greedy algorithm (Kempe,
Kleinberg, and Tardos 2003) to find the optimum seed set.
Moreover, we can tailor the algorithm to increase signifi-
cantly the speed of the process by taking advantage of the
network’s form. Particularly, one can observe that a seed’s
influence spread in the bipartite network is related only to
its edges and the edges of the rest of seed set. This charac-
teristic can induce a drastic change to the computation of the
influence spread in Eq. (4).

In the typical live-edge model, edges are randomly sam-
pled from the network and their joint probability in Eq. (5)
is used to weigh the influence spread. During this process,
edges that are unrelated to the seeds can be sampled, be-
cause they may form a new path from a seed to multiple
uninfected nodes, which causes the computation of the joint
probability of the whole network in Eq. (5). However, in our
case sampling an edge that is unrelated to the seed set will
never produce an infected node, because we do not have any
paths. Thus, in the sampling process of this model, we do
not have to take into account the probability of the whole

network, but only of the seed set under consideration. We
can update P (g) in Eq. (4) to depict this effect as follows:

P (g) =
∏
s∈S

∏
e⊆N̄

pe
∏

e′∈N(s)\N̄

(1− pe′), (11)

where N(s) are the neighbors of the seed s, and N̄ ∼ N(s)
is a sample of them of size ε. This not only allows to re-
strain our sampling to the seed at hand, but also separate the
sampling of the seed set with the sampling of the candidate
seed. In this way instead of sampling from the whole net-
work, computing the sample’s joint probability and finding
the live paths from the seed set in each simulation, we can
sample solely for each candidate seed and combine it with
the sampling of the seed set in the respective simulation from
the previous iterations. To this end, we can redefine the com-
putation of the marginal gain and the algorithm itself.

To measure the marginal gain of a candidate seed c, we
use Algorithm 1. We perform a fixed number of simulations,
where each one consists of sampling a fixed number of c’s
edges (line 4), according to their probabilities. Subsequently,
we unite these nodes with the ones that have been infected
by the seed set in that respective simulation (line 5), which
gives the candidates influenced set. The cumulative quantity
from all simulations subtracted by the same quantity of the
seed set up to now defines the marginal gain of c, as in line
18 and 19 of the main algorithm (2), which is an adapted
implementation of CELF (Leskovec et al. 2007). Variables l
is the number of simulations and ε is the number of edges to
sample during each simulation. The list q is used to store a
node’s id and influence set, as well as the iteration it was last
updated. The CELF with Influence Embeddings (CELFIE)
algorithm, like CELF, capitalizes on the submodularity of
the marginal gain to minimize the computations. The intu-
ition is that a node that has higher marginal gain during it-
eration t than other nodes have at t − 1, will retain its lead
at t. Hence, the computation of the marginal gain is elim-
inated for those nodes that remain lower in the list though
they have not been evaluated with the current seed set yet.
This is achieved by taking always the first node in the list
q, if it was updated with the current seed set (line 11) and
resorting the list when a candidate seed is evaluated with the
current seed set (lines 16 & 21).

Algorithm 1 MARGINAL INFLUENCE SET (MIS)
Input: Influence likelihood matrix ILM , index of candidate
seed c, influenced set up to now inf set,number of simula-
tions l, number of edges to sample ε
Output: Updated influenced set inf set

procedure MIS(ILM, c, inf set, l, ε)
2: set gain = 0, n = size(ILM)[0]

for i← 0; i < l; i+ + do
4: c inf ← Sample(ε, n, ILM [c, :])

inf set[i] = inf set[i] ∪ c inf
6: return inf set

Algorithm 2 CELFIE

Input: Influence likelihood matrix ILM , number of simu-
lations l, number of edges to sample ε, seed set size size
Output: Seed set S

procedure CELFIE(ILM, l, ε, size)
2: set q = [], S = []

for i← 0; i < l; i+ + do
4: inf set[i]← ∅

for c← 0; c < N [1]; c+ + do
6: infs←MIS(ILM, c[0], inf set, l, ε)

q.append([c, infs, 0])

8: q ← Sort(q, 1, Desc = True)
while S.size() < size do

10: c← q[0]
if c[2] == size(S) then

12: S.add(c[npos])
inf set = c[1]

14: q.delete(c)
else

16: infs←MIS(ILM, c[0], inf set, l, ε)
mg ← 0

18: for i← 0; i < l; i+ + do
mg+ = |infs[i]| − |inf set[i]|

20: c← [mg, infs, |S|]
q ← Sort(q, 1, Desc = True)

22: return S

Experiments
Evaluation Methodology
As mentioned above, we split each dataset into train and
test cascades based on their time of occurrence. For the
structural information required to form the diffusion net-
work in the original INF2VEC algorithm, we utilize the
underlying network. Our evaluation tactic is to compute
the number of distinct nodes influenced in the test diffu-
sion cascades by the predicted seed set (Du et al. 2013;
Panagopoulos, Malliaros, and Vazirgiannis 2018). We con-
sider as influenced every node that participates in a test set
diffusion initiated from one of the predicted seeds. Meaning,
each seed set has initiated a number of cascades in the test
set. The set of infected nodes (DNI) is computed by adding
every node appearing in these test cascades in a unified set.
We use the size of this set to measure the success of the seed
set in the test set. Since we measure the size of the distinct
set, potential overlaps between diffusions of different seeds
are taken into account, which would not be the case had we
use more simplistic measures such as the sum of the seeds’
average cascade size. Although not devoid of assumptions,
it is the closest and most objective measure of a seed set’s
influence over a network at a given time span.

Datasets
• Sina Weibo: A directed follower network where a cas-

cade is defined by the first tweet and the list of retweets
(Zhang et al. 2013). We keep the last month of cascades

Weibo MAG-CS
Nodes 1,170,689 1,436,158
Edges 225,877,808 15,928,078

Cascades 115,686 181,020
Avg Cascade size 148 29

Table 1: Summary of the datasets used.

as the test set and the previous 11 as train set, in an ap-
proximate 80%-20% split. We also remove from the net-
work nodes that do not appear in the cascades, in order
to make more fair the comparison between structural and
diffusion-based methods, since the evaluation relies on
diffusions.

• MAG Computer Science: We follow suit from (Qiu et al.
2018) and define a network of authors with undirected
co-authorship edges, where a cascade happens when an
author writes a paper and other authors cite it. In other
words, a co-authorship is perceived as a friendship, a pa-
per as a post and a citation as a repost. In this case, we em-
ploy Microsoft Academic Graph (Sinha et al. 2015) and
filter it to keep only papers that belong to computer sci-
ence. We remove cascades with length less than 10. The
train and test split happens in a similar manner to Weibo,
keeping the first 80% of diffusion cascades for train set
and the next for test set.

Although the metaphor between the paper and tweet cas-
cades is not perfect, since a citation between two nodes
might happen without requiring any structural relationship
(e.g. a path of co-authorships linking them) in contrast to a
social network, the idea that scientific information diffuses
like this through the network of authors is valid. A subtle
point is that a citation cascade does not start from just one
node, since in most cases a paper has numerous authors. We
thus treat the citation cascade started by a paper as n separate
cascades initiated by the n authors of the paper and spread-
ing through the same nodes (the authors of the papers that
cite the initial paper). To restrict the number of cascades, we
remove those with length less than 10 i.e., papers with less
then 10 citations.

Baselines
We should note here that juxtaposing the effectiveness of
structural and diffusion metrics as well as influence maxi-
mization algorithms is something missing from the litera-
ture, to the best of our knowledge, especially in the scale of
the networks utilized.

• K-CORE: The top 100 nodes in terms of their core num-
ber, as defined by the undirected k-core decomposition
(Malliaros et al. 2020).

• AVERAGE CASCADE SIZE: The average number of
retweets that a user has in the train set.

• DIFFUGREEDY: An influence maximization algorithm
that uses directly the diffusion cascades of a node to
compute the marginal gain (Panagopoulos, Malliaros, and
Vazirgiannis 2018).

• CREDIT DISTRIBUTION: Uses cascade logs to assign in-
fluence credits based on time precedence and the edges
of the network to derive a seed set for IM (Goyal, Bonchi,
and Lakshmanan 2011). (Parameter λ is set 0.001).

• HEURISTIC: The heuristic defined in the “Reformulation
of the Problem” section using the L-INF2VEC embed-
dings.

• CELFIE: CELFIE with the influence embeddings from the
original INF2VEC model.

• L-CELFIE: CELFIE with L-INF2VEC embeddings.

We cannot employ traditional influence maximization al-
gorithms like greedy or CELF and CELF++, because their
scalability is limited to networks with less then 200K edges.
Even fast heuristics like SIMPATH (Goyal, Lu, and Laksh-
manan 2011) or PMIA (Chen, Wang, and Wang 2010a),
can not scale in networks with tens of millions of edges.
Moreover, as mentioned above, methods that rely on simula-
tions rather than data-driven observations of influence suffer
from the aforementioned disadvantages of diffusion mod-
els, which is why we compare to models that utilize diffu-
sion cascades and possibly the network. In terms of other
learning methods that we could compare with, CONTINEST
(Du et al. 2013) uses an adjacency matrix stored in mem-
ory, so it can not scale in these networks, while EMBED-IC
(Bourigault, Lamprier, and Gallinari 2016) was proven ex-
perimentally inferior to INF2VEC in predicting the evolution
of a cascade (Feng et al. 2018). A practical problem with
CELFIE is that a typical large network can consist of more
then N = 1, 000, 000 nodes and I = 100, 000 influencers,
hence computing ILM might be infeasible. To overcome
this, we can filter out nodes that are not candidate seeds
based on a fast criteria. In our case, I = 9, 755 in Weibo
(nodes with more then 1 cascade), and we define as the final
candidate influencers the top 1,000 nodes of them based on
the size of the node’s cascade in the train set. The experi-
ments were run on a machine with Intel i7, 16Gb RAM and
an Nvidia GeForce GTX 1050 GPU.The code can be found
online 1.

Results
Figures 4 and 5 show the quality of the seed set in dif-
ferent sizes for each method, for the Weibo and MAG-CS
datasets respectively. One can see that the proposed CELFIE
algorithm outperforms the baselines by a significant mar-
gin using both INF2VEC and L-INF2VEC embeddings (L-
CELFIE). The increased DNI stems from the combination
of the learnt representations and the algorithm that derives
the seed set. The advantage of representation learning com-
pared to simple influence maximization using past diffu-
sion cascades is more obvious from the gap between L-
CELFIE and DIFFUGREEDY. In that case, an algorithm that
uses past diffusion cascades exhibits a consistently inferior
DNI than the model that learns the diffusion probabilities
from them. However, influence and susceptibility represen-
tations are not enough, as indicated by the accuracy of the
HEURISTIC approach, which is also lower to L-CELFIE in

1https://github.com/GiorgosPanagopoulos/IMINFECTOR

●

●

●

●

●

0

50000

100000

150000

200000

250000

10 20 30 40 50
Seed Set Size

N
um

be
r

of
 D

is
tin

ct
 N

od
es

 In
flu

en
ce

d
(D

N
I)

●
CELFIE
L−CELFIE

Heuristic
DiffuGreedy

K−core
Cascade size

Weibo

Figure 4: The quality of the seed set in different sizes for
each method tested in the Weibo dataset. The legend is sorted
from left to right and up down, based on descending average
DNI computed throughout all seed set sizes. CELFIE and L-
CELFIE are significantly better than the baselines. The com-
parison with DIFFUGREEDY underlines the importance of
using influence and suseptibility embeddings compared to
simple influence maximization based on diffusion cascades.
The comparison with the HEURISTIC indicates that simply
relying on the learnt representations is not enough and an in-
fluence maximization algorithm such as CELFIE is required
to increase accuracy.

both cases. Hence, it is important to take into account the
influence spread overlap in an effective way, such that the
seed set’s accuracy is guaranteed to increase.

The embeddings of L-INF2VEC provide a slightly worse
seed set than simple INF2VEC, the difference being more
clear in the experiments in MAG-CS. However, Figure 6 pro-
vides an overlook over the computational time required for
the two algorithms; we can observe that L-CELFIE is much
faster than CELFIE in both datasets. Of course, the main
difference lies in the preprocessing step, where INF2VEC
creates a propagation network from each cascade and de-
rives node-context pairs from each node in it, while L-
INF2VEC simply samples from the cascade based on the
copying times. The training of the representation learning
model is also faster due to the reduced number of input sam-
ples from the previous step. Overall, the computational bur-
den of the propagation network is prevalent in Weibo for
both, the Credit Distributon and CELFIE. One can see how
the HEURISTIC is slower than CELFIE in MAG-CS but be-
comes faster in Weibo, due to the huge number of edges
and the combination of number and average size of cascades
that renders the context creation mechanism (preprocessing
step of CELFIE) very slow. This is also obvious in the only

●

●

●

●

●

0

10000

20000

30000

40000

10 20 30 40 50
Seed Set Size

N
um

be
r

of
 D

is
tin

ct
 N

od
es

 In
flu

en
ce

d
(D

N
I)

●
CELFIE
L−CELFIE

Credit Distribution
DiffuGreedy

Heuristic
Cascade size

K−core

MAG−CS

Figure 5: The quality of the seed set in different sizes for
each method tested in MAG-CS dataset. The legend is sorted
from left to right and, based on descending average DNI
computed throughout all seed set sizes. The difference be-
tween INF2VEC and L-INF2VEC embeddings becomes a lit-
tle more clear, as the seed set from L-CELFIE is slightly
inferior to that of CELFIE. The comparison with another
strong influence maximization algorithm that uses the dif-
fusion cascades and the network (CREDIT DISTRIBUTION)
indicates the effectiveness of our representation learning ap-
proach.

baseline that performs closely to L-CELFIE, the CREDIT
DISTRIBUTION model. This model assigns influence cred-
its based on time precedence in the cascades and the follow
edges of the network, which has an analogous complexity of
the propagation network. Hence, although it scales easily in
MAG-CS, in which case it performs worse than L-CELFIE,
it is not able to scale in Weibo (i.e., takes more than 5 days)
due to the combination of cascade number and size as well
as the number of edges. Of course. there is also a practi-
cal advantage in relying just on the the diffusion cascades to
derive the embeddings, because the availability of the under-
lying network is not guaranteed. L-CELFIE uses solely the
diffusion cascades and exhibits an adequate or better per-
formance than methods that utilize both, the network and
the cascades, such as CELFIE and CREDIT DISTRIBUTION.
To sum up, L-CELFIE’s speed can be attributed on the one
hand to the context-creation mechanism and on the other to
the use of diffusion probabilities and the updated definition
of marginal gain, which circumvents the need to run simu-
lations of diffusion models, a constant burden to other influ-
ence maximization algorithms. In addition, using the CELF
approach instead of running the pure greedy algorithm pro-
vides a substantial acceleration.

The most important parameter in our model is the size of

X

Weibo

MAG−CS

L−CELFIE CELFIE Credit
Distribution

Heuristic DiffuGreedy

L−CELFIE CELFIE Credit
Distribution

Heuristic DiffuGreedy
0

50000

100000

150000

0

20000

40000

60000

T
im

e
[s

ec
]

Algorithm Preprocessing Training

Figure 6: The computational time required by all algorithms
for both datasets, broken down to the different steps. One
can see the immense difference that the number of edges
and average cascade size of Weibo causes to the compu-
tational time of CELFIE and CREDIT DISTRIBUTION. The
difference between L-CELFIE and CELFIE’s time is tripled
between Weibo and MAG-CS, while the CREDIT DISTRI-
BUTION fails to run within the scope of five days. This is
because of the propagation network creation that requires
looping through all nodes in the cascade and retrieving fol-
low edges from the network. The metric baselines were not
included as they are significantly faster but exhibit a very
bad DNI.

the train set. When applied in the real world, the relation-
ship between the size of the input and the time range of the
resulting seed set is very crucial and indicative of a model’s
robustness. To evaluate it, we performed a sensitivity anal-
ysis by training in different percentages of the cascades and
evaluating with a cascade set from the future. Note here that
in machine learning, training with different train set sizes
means the test set is adjusted as well. In this case however,
the DNI would become unavoidably lower as you increase
the train set, because there will be fewer test cascades. More-
over, due to the sequential nature of the prediction, we want
to refrain from any type of overlapping between the train
set and the test set. Thus, we chose to use different train set
sizes (60, 70, 80, 90) but test them in the same test set of the
last 10%, because in every other case, the train set would in-
clude some part of the test set. We plot the results for differ-
ent seed set sizes in Figure 7. One can see that, the seed set’s
accuracy does not change significantly throughout different
train sets, which indicates the robustness of L-CELFIE. The

only exception is the 70% seed set in MAG-CS, that has an
increased accuracy relative to the rest. The intuition behind
this is that seeds that are more successful in the test set, were
more active in the first 70% of train set. Afterwards, they
were surpassed by other nodes that are not as successful in
the test set, but their difference is still not significant. The
robustnesss of the model mostly stems from the small size
of the seed set we predict, meaning that the top 50 nodes
will unavoidably be very influential in a pool of millions of
nodes.

●

●

●

●
●

●

●

●
●

●

Weibo

MAG−CS

10 20 30 40 50

10 20 30 40 50

15000

20000

25000

30000

35000

120000

140000

160000

Seed Set Size

N
um

be
r

of
 D

is
tin

ct
 N

od
es

 In
flu

en
ce

d
(D

N
I)

● 60 70 80 90

Figure 7: The changes of the accuracy relative to the size of
the train set for L-CELFIE are almost the same throughout
different sizes of input for both datasets.

Conclusions
This paper proposed CELFIE, an algorithm to perform influ-
ence maximization using representations learned from diffu-
sion cascades, such as a tweet and its retweets or a post and
its reshares that are spread over a friendship or follower net-
work. The algorithm outperformed several baseline methods
in retrieving a set of users that can influence the largest part
of the network, based on a data driven evaluation in a large
scale dataset. The overall contributions can be summarized
as follows:

• Analysis of influencer activity that provided two new in-
sights: Successful influencers mostly start diffusion cas-
cades rather then participate in them, and their cascades
tend to be faster then those of a non-influencer.

• Capitalized on the aforementioned findings to modify
INF2VEC into L-INF2VEC, a faster model that learns dif-
fusion probabilities for influence maximization by focus-
ing the node-context creation on the initiator of the cas-
cade and the copying times.

• Use of the diffusion probabilities to redefine the computa-
tion of the influence spread by substituting diffusion mod-
els’ simulations on the original network to simple neigh-
borhood sampling on a fully connected bipartite network
with the learned edge probabilities.

• Developed a version of CELF that utilizes this setting to
optimize the influence spread and retrieve the seed set.

This is the first time, to the best of our knowledge, that
representation learning is used towards solving influence
maximization, and it proved promising in terms of both
accuracy in the seed set and speed. However, our method
does not take into account conditional probabilities of influ-
ence. In our case, we work with direct diffusion probabilities
that implicitly include the transitive influence, but in gen-
eral it could be argued that a more accurate approach would
model the influence probability conditioned on who is al-
ready influenced. Thus, models that learn embeddings taking
into account the sequence of the cascades (Du et al. 2016;
Islam et al. 2018; Wang et al. 2017) could be used to create
a more accurate diffusion model to compute the influence
spread in the iterations of greedy, and we leave this as future
work.

References
Aral, S., and Dhillon, P. S. 2018. Social influence maxi-
mization under empirical influence models. Nature Human
Behaviour 2(6):375.
Aral, S., and Walker, D. 2012. Identifying influen-
tial and susceptible members of social networks. Science
337(6092):337–341.
Bourigault, S.; Lamprier, S.; and Gallinari, P. 2016. Rep-
resentation learning for information diffusion through social
networks: an embedded cascade model. In 9th ACM Inter-
national Conference on Web Search and Data Mining, 573–
582. ACM.
Budak, C.; Agrawal, D.; and El Abbadi, A. 2011. Limiting
the spread of misinformation in social networks. In 20th in-
ternational conference on World wide web, 665–674. ACM.
Chen, W.; Wang, C.; and Wang, Y. 2010a. Scalable influence
maximization for prevalent viral marketing in large-scale so-
cial networks. In 16th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 1029–1038.
ACM.
Chen, W.; Wang, C.; and Wang, Y. 2010b. Scalable influence
maximization for prevalent viral marketing in large-scale so-
cial networks. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 1029–1038. ACM.
Cohen, E.; Delling, D.; Pajor, T.; and Werneck, R. F.
2014. Sketch-based influence maximization and computa-
tion: Scaling up with guarantees. In Proceedings of the 23rd

ACM International Conference on Conference on Informa-
tion and Knowledge Management, 629–638. ACM.
Domingos, P., and Richardson, M. 2001. Mining the net-
work value of customers. In 7th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 57–66. ACM.
Du, N.; Song, L.; Rodriguez, M. G.; and Zha, H. 2013. Scal-
able influence estimation in continuous-time diffusion net-
works. In Advances in neural information processing sys-
tems, 3147–3155.
Du, N.; Dai, H.; Trivedi, R.; Upadhyay, U.; Gomez-
Rodriguez, M.; and Song, L. 2016. Recurrent marked tem-
poral point processes: Embedding event history to vector.
In 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 1555–1564. ACM.
Feng, S.; Cong, G.; Khan, A.; Li, X.; Liu, Y.; and Chee,
Y. M. 2018. Inf2vec: Latent representation model for so-
cial influence embedding. In 2018 IEEE 34th International
Conference on Data Engineering.
Garimella, K.; Gionis, A.; Parotsidis, N.; and Tatti, N. 2017.
Balancing information exposure in social networks. In Ad-
vances in Neural Information Processing Systems, 4663–
4671.
Gomez-Rodriguez, M.; Balduzzi, D.; and Schölkopf, B.
2011. Uncovering the temporal dynamics of diffusion net-
works. In 28th International Conference on Machine Learn-
ing, 561–568.
Goyal, A.; Bonchi, F.; and Lakshmanan, L. V. 2010. Learn-
ing influence probabilities in social networks. In Proceed-
ings of the third ACM International Conference on Web
Search and Data Mining, 241–250. ACM.
Goyal, A.; Bonchi, F.; and Lakshmanan, L. V. 2011. A data-
based approach to social influence maximization. In Very
Large DataBases Endowment 5(1):73–84.
Goyal, A.; Lu, W.; and Lakshmanan, L. V. 2011. Simpath:
An efficient algorithm for influence maximization under the
linear threshold model. In Data Mining (ICDM), 2011 IEEE
11th International Conference on, 211–220. IEEE.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, 855–864. ACM.
Gutmann, M., and Hyvärinen, A. 2010. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In 13th International Conference on Ar-
tificial Intelligence and Statistics, 297–304.
Islam, M. R.; Muthiah, S.; Adhikari, B.; Prakash, B. A.;
and Ramakrishnan, N. 2018. Deepdiffuse: Predicting
the’who’and’when’in cascades. In IEEE International Con-
ference on Data Mining, 1055–1060. IEEE.
Kalimeris, D.; Singer, Y.; Subbian, K.; and Weinsberg, U.
2018. Learning diffusion using hyperparameters. In Inter-
national Conference on Machine Learning, 2425–2433.
Karsai, M.; Kivelä, M.; Pan, R. K.; Kaski, K.; Kertész, J.;
Barabási, A.-L.; and Saramäki, J. 2011. Small but slow

world: How network topology and burstiness slow down
spreading. Physical Review E 83(2):025102.
Kempe, D.; Kleinberg, J.; and Tardos, É. 2003. Maximizing
the spread of influence through a social network. In 9th ACM
SIGKDD international conference on Knowledge Discovery
and Data Mining, 137–146. ACM.
Lerman, K.; Ghosh, R.; and Surachawala, T. 2012. So-
cial contagion: An empirical study of information spread
on digg and twitter follower graphs. arXiv preprint
arXiv:1202.3162.
Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; Van-
Briesen, J.; and Glance, N. 2007. Cost-effective outbreak
detection in networks. In 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, 420–
429. ACM.
Malliaros, F. D.; Giatsidis, C.; Papadopoulos, A. N.; and
Vazirgiannis, M. 2020. The core decomposition of net-
works: theory, algorithms and applications. Very Large Data
Bases Journal 29(1):61–92.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems, 3111–3119.
Newman, M. E. 2002. Assortative mixing in networks.
Physical review letters 89(20):208701.
Panagopoulos, G.; Malliaros, F. D.; and Vazirgiannis, M.
2018. Diffugreedy: An influence maximization algorithm
based on diffusion cascades. In International Workshop
on Complex Networks and their Applications, 392–404.
Springer.
Pei, S.; Morone, F.; and Makse, H. A. 2018. Theories for
influencer identification in complex networks. In Complex
Spreading Phenomena in Social Systems. Springer. 125–
148.
Qiu, J.; Tang, J.; Ma, H.; Dong, Y.; Wang, K.; and Tang, J.
2018. Deepinf: Modeling influence locality in large social
networks. In 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.
Sinha, A.; Shen, Z.; Song, Y.; Ma, H.; Eide, D.; Hsu, B.-
j. P.; and Wang, K. 2015. An overview of microsoft aca-
demic service (mas) and applications. In Proceedings of the
24th international conference on world wide web, 243–246.
ACM.
Tang, Y.; Xiao, X.; and Shi, Y. 2014. Influence maxi-
mization: Near-optimal time complexity meets practical ef-
ficiency. In Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data, 75–86. ACM.
Wang, Y.; Shen, H.; Liu, S.; Gao, J.; and Cheng, X. 2017.
Cascade dynamics modeling with attention-based recurrent
neural network. In 26th International Joint Conference on
Artificial Intelligence, 2985–2991. AAAI Press.
Zhang, J.; Liu, B.; Tang, J.; Chen, T.; and Li, J. 2013. So-
cial influence locality for modeling retweeting behaviors. In
IJCAI, volume 13, 2761–2767.

