
HAL Id: hal-03088890
https://hal.science/hal-03088890v1

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Checking Entailment Between Separation Logic
Symbolic Heaps: Beyond Connected and Established

Systems
Nicolas Peltier, Radu Iosif, Mnacho Echenim

To cite this version:
Nicolas Peltier, Radu Iosif, Mnacho Echenim. Checking Entailment Between Separation Logic Sym-
bolic Heaps: Beyond Connected and Established Systems. [Research Report] VERIMAG/LIG/CNRS.
2020. �hal-03088890�

https://hal.science/hal-03088890v1
https://hal.archives-ouvertes.fr

Checking Entailment Between Separation Logic

Symbolic Heaps: Beyond Connected and

Established Systems

Mnacho Echenim, Radu Iosif and Nicolas Peltier
Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France

Univ. Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble France

January 15, 2021

Abstract

We show that the entailment problem ϕ |= ψ in Separation Logic
is decidable for separated conjunctions of atoms ϕ and ψ, that contain
predicate symbols whose interpretation is given inductively by a set of
recursive rules. The proof is based on a reduction to a class of entailment
problems shown to be decidable in [9]. In contrast with the works of
[9, 12, 13], the considered inductive rules may introduce memory locations
without allocating them, which strongly extends the class of structures
that can be constructed. Moreover, the result is more general than the one
given in [8], because the conditions on the inductive rules corresponding
to the left-hand side of the considered entailment are strongly relaxed:
it is only assumed that the rules are progressing, i.e. that they allocate
exactly one memory location.

1 Introduction

Separation Logic [11, 14] was introduced in order to reason efficiently about
programs manipulating recursively linked data structures. It forms the basis
of several industrial-scale static program analysis techniques [4, 3, 5]. Given a
set L of memory locations (e.g., addresses), the formulas in this logic describe
heaps that are finite partial functions mapping some locations to records of
locations. A location ` is allocated if it occurs in the domain of the heap. An
atom x 7→ (y1, . . . , yκ) states that the location associated with x refers to the
tuple of locations associated with (y1, . . . , yκ). The separating conjunction φ∗ψ
states that the formulæ φ and ψ hold in non-overlapping parts of the heap, that
have disjoint domains. This connective allows for modular program analyses,
because the formulæ specifying the behaviour of a program statement refer only
to the small (local) set of locations that are manipulated by that statement, with
no concern for the rest of the program’s state.

1

To reason about recursive data structures of unbounded sizes (lists, trees,
etc.), the base logic is enriched by predicate symbols, with a semantics specified
by user-defined inductive rules.

An important problem in program verification, arising during construction
of Hoare-style correctness proofs, is the discharge of verification conditions, that
are entailments of the form φ ` ψ, where φ and ψ are Separation Logic formulas.

In general, the entailment problem is undecidable for formulas containing
inductive defined predicates [10, 1]. A first decidable class of entailment prob-
lems is described in [9] and involves three restrictions on the SID rules: progress,
connectivity and establishment, formally defined later. Intuitively, the progress
condition (P) states that every rule allocates exactly one location, the connec-
tivity condition (C) states that the set of allocated locations has a tree-shaped
structure, and the establishment condition (E) states that every existential vari-
able is (eventually) allocated. In [12, 13] a 2EXPTIME algorithm was proposed
for testing the validity of PCE entailment problems, and in [6], a 2EXPTIME-
hardness proof is provided. In [8], we relaxed the condition ensuring decidability
and showed that entailment is still in 2EXPTIME if the establishment condi-
tion is removed and is replaced by a strictly less restrictive condition, called
restrictedness, which imposes some conditions on the form of the (dis)equations
occurring in the problem. One interesting feature of this class of entailment is
that it allows one to handle rules generating data structures with “dangling”
edges, for instance rules with pending elements. We also slightly generalized the
connectivity condition, by allowing forests (rooted on free variables) instead of
trees. In the present paper, we strongly generalize this result by showing that
the connectivity and restrictedness conditions need only to be imposed for the
right-hand side of the entailment. Hence no condition (other than the progress
condition) needs to be imposed on the left-hand side of the entailment, which
is a major improvement. To this aim, we prove that every entailment in which
the left-hand side formula is progressing, and the right-hand side is progressing,
connected and restricted can be reduced to a PCE entailment (although the
class of data structures that can be described is strictly bigger).

2 Definitions

For a (partial) function f : A→ B, we denote by dom(f) and rng(f) its domain
and range, respectively. A function f is finite if |dom(f)| < ∞, where |S|
denotes the cardinality of the set S. The subset {k, k + 1, . . . , `} of the set N of
natural numbers is denoted as Jk, `K; note that Jk, `K = ∅ whenever ` < k. For
a relation R ⊆ A × A, we denote by R∗ its reflexive and transitive closure, i.e.

R∗
def
= {(x1, xn) | n ≥ 1, ∀i ∈ J1, n− 1K . (xi, xi+1) ∈ R}.
Let κ be a fixed natural number and let P be a countably infinite set of

predicate symbols. Each predicate symbol p ∈ P is associated a unique arity
ar(p). Let V be a countably infinite set of variables. For technical convenience,
we also consider a special constant ⊥, which will be used to denote “empty”

2

record fields. Formulæ are built inductively according to the following syntax:

φ := x 6≈ y | x ≈ y | x 7→ (y1, . . . , yκ) | p(x1, . . . , xn) | φ1 ∗ φ2 | φ1 ∨ φ2 | ∃x . φ1

where p ∈ P is a predicate symbol of arity n = ar(p), x, x1, . . . , xn ∈ V are
variables and y1, . . . , yκ ∈ V ∪ {⊥} are terms, that is either variables or ⊥. The
set of variables freely occurring in a formula φ is denoted by fv(φ) (we assume
by α-equivalence that the same variable cannot occur both free and bound in
the same formula φ, and that distinct quantifiers bind distinct variables). The
size |φ| of a formula φ is the number of occurrences of symbols in φ.

A formula x 7→ (y1, . . . , yκ) is a points-to atom, whereas a formula p(x1, . . . , xn)
is a predicate atom. A formula is predicate-less if no predicate atom occurs in
it. A symbolic heap is a formula containing no disjunctions, i.e. of the form
∃~x . ∗mj=1αi, where each αi is either a points-to or a predicate atom.

Definition 1. A variable x is allocated by a symbolic heap φ iff φ contains a
sequence of equalities x1 ≈ x2 ≈ . . . ≈ xn−1 ≈ xn, for n ≥ 1, such that x = x1
and xn 7→ (y1, . . . , yκ) occurs in φ, for some terms y1, . . . , yκ ∈ V ∪ {⊥}.

A substitution is a partial function mapping variables to terms . If σ is a sub-
stitution and φ is a formula, a variable or a tuple, then φσ denotes the formula,
the variable or the tuple obtained from φ by replacing every free occurrence of
a variable x ∈ dom(σ) by σ(x), respectively. We denote by {〈xi, yi〉 | i ∈ J1, nK}
the substitution with domain {x1, . . . , xn} that maps xi to yi, for each i ∈ J1, nK.

Let L be a countably infinite set of locations containing, in particular, a
special location ⊥⊥⊥. A structure is a pair (s, h), where:
• s is a partial function from V ∪ {⊥} to L, called a store, such that ⊥ ∈

dom(s) and s(x) =⊥⊥⊥ ⇐⇒ x = ⊥, and
• h is a finite partial function from L to Lκ, such that ⊥⊥⊥ 6∈ dom(h).

Given a heap h, we define ref(h)
def
=

⋃
l∈dom(h){`i | h(`) = (`1, . . . , `κ), i ∈ J1, κK}

and loc(h)
def
= dom(h) ∪ ref(h). Two heaps h1 and h2 are disjoint iff dom(h1) ∩

dom(h2) = ∅, in which case h1] h2 denotes the union of h1 and h2 (undefined
if h1 and h2 are not disjoint).

If x1, . . . , xn are pairwise distinct variables and `1, . . . , `n ∈ L are loca-
tions, we denote by s[xi ← `i | 1 ≤ i ≤ n] the store s′ defined by dom(s′) =
dom(s) ∪ {x1, . . . , xn}, s′(y) = `i if y = xi for some i ∈ J1, nK, and s′(y) = s(x)
otherwise. If x1, . . . , xn 6∈ dom(s), then the store s′ is called an extension of s
to {x1, . . . , xn}.

A system of inductive definitions (SID) is a set R of rules of the form
p(x1, . . . , xn)⇐ π, where p ∈ P, n = ar(p), x1, . . . , xn are pairwise distinct vari-
ables and π is a quantifier-free symbolic heap. The predicate atom p(x1, . . . , xn)
is the head of the rule and R(p) denotes the subset of R consisting of rules with
head p(x1, . . . , xn) (the choice of x1, . . . , xn is not important). The variables in
fv(π) \ {x1, . . . , xn} are called the existential variables of the rule. Note that,
by definition, these variables are not explicitly quantified inside π and that π
is quantifier-free. For simplicity, we denote by p(x1, . . . , xn) ⇐R π the fact

3

that the rule p(x1, . . . , xn) ⇐ π belongs to R. The size of R is defined as

|R| def
=

∑
p(x1,...,xn)⇐Rπ |π| and its width as w(R)

def
= maxp(x1,...,xn)⇐Rπ |π|.

Given predicate symbols p, q ∈ P, we write p �R q iff R contains a rule of
the form p(x1, . . . , xn) ⇐ π, and q occurs in π. The relation p �∗R q is the
reflexive and transitive closure of �R, in which case we say that p depends on
q. For a formula φ, we denote by P(φ) the set of predicate symbols q, such that
p occurs in φ and p �∗R q.

Given formulæ φ and ψ, we write φ ⇐R ψ if ψ is obtained from φ by
replacing an atom p(u1, . . . , un) by π {〈x1, u1〉, . . . , 〈xn, un〉}, where R contains
a rule p(x1, . . . , xn)⇐ π . We assume that each unfolding step introduces fresh
existential variables. We say that ψ is an unfolding of φ iff φ⇐∗R ψ.

Lemma 2. Every unfolding of a symbolic heap is again a symbolic heap.

Proof. By an easy induction on the length of the unfolding sequence.
Given an SID R, (s, h) |=R φ is the least relation between structures and

formulæ, such that, whenever (s, h) |=R φ, we have fv(φ) ⊆ dom(s) and the
following conditions hold:

(s, h) |=R x ≈ y if dom(h) = ∅ and s(x) = s(y)
(s, h) |=R x 6≈ y if dom(h) = ∅ and s(x) 6= s(y)
(s, h) |=R x 7→ (y1, . . . , yκ) if dom(h) = {s(x)} and h(s(x)) = 〈s(y1), . . . , s(yκ)〉
(s, h) |=R φ1 ∗ φ2 if there exist disjoint heaps h1 and h2 such that

h = h1] h2 and (s, hi) |=R φi, for both i = 1, 2
(s, h) |=R φ1 ∨ φ2 if (s, h) |=R φi, for some i = 1, 2
(s, h) |=R p(x1, . . . , xn) if p(x1, . . . , xn)⇐R φ, {x1, . . . , xn} ⊆ dom(s) and

there exists an extension se of s to fv(φ) \ dom(s)
such that (se, h) |= φ — we assume by renaming
that (fv(φ) \ {x1, . . . , xn}) ∩ dom(s) = ∅

(s, h) |=R ∃x . φ if there exists ` ∈ L such that (s[x← `], h) |= φ

Given formulæ φ and ψ, we write φ |=R ψ whenever (s, h) |=R φ⇒ (s, h) |=R ψ,
for all structures (s, h) and φ ≡R ψ for (φ |=R ψ and ψ |=R φ). We omit the
subscript R whenever these relations hold for any SID.

It is easy to check that, for all formulas φ1, φ2, ψ, (φ1 ∨ φ2) ∗ ψ ≡ (φ1 ∗ ψ) ∨
(φ2 ∗ ψ) and (∃x.φ1) ∗ φ2 ≡ ∃x . φ1 ∗ φ2. Consequently, each formula can be
transformed into an equivalent finite disjunction of symbolic heaps.

Definition 3. An entailment problem is a triple P
def
= φ `R ψ, where φ is a

quantifier-free formula, ψ is a formula and R is an SID. The problem P is said
to be valid valid if and only if φ |=R ψ. The size of the problem P is defined as

|P| def
= |φ|+ |ψ|+ |R| and its width is defined as w(P)

def
= max(|φ|, |ψ|,w(R)).

Note that considering φ to be quantifier-free loses no generality, because ∃x.φ |=R
ψ ⇐⇒ φ |=R ψ.

4

3 Decidable Entailment Problems

The class of general entailment problems is undecidable, the initial proofs from
[10, 1] are refined by Theorem 6 below. A first attempt to define a natural
decidable class of entailment problems is described in [9] and involves three
restrictions on the SID rules, called progress, connectivity and establishment :

Definition 4. A rule p(x1, . . . , xn)⇐ π is:
1. progressing iff π = x1 7→ (y1, . . . , yκ)∗ρ and ρ contains no points-to atoms,
2. connected iff it is progressing, π = x1 7→ (y1, . . . , yκ)∗ρ and every predicate

atom in ρ is of the form q(yi, ~u), for some i ∈ J1, κK,
3. established iff every existential variable x ∈ fv(π)\{x1, . . . , xn} is allocated

by every predicate-less unfolding1 π ⇐∗R φ.
An SID R is progressing (connected, established) for a formula φ iff every rule
in

⋃
p∈P(φ)R(p) is progressing (resp. connected, established). An entailment

problem φ `R ψ is left (resp. right) progressing (resp. connected, established)
iff R is progressing (resp. connected, established) for φ (resp. ψ). An entailment
problem is progressing (resp. connected, established) iff it is both left and right
progressing (resp. connected, established).

The decidability of progressing, connected and left-established entailment
problems is an immediate consequence of the result of [9]. Moreover, an anal-
ysis of the proof [9] leads to an elementary recursive complexity upper bound,
which has been recently tighten down to 2EXPTIME-complete [13, 8, 6]. In
the following, we refer to Table 1 for a recap of the complexity results for the
entailment problem.

Table 1: Decidability and Complexity Results for the Entailment Problem —
X (resp. λ) means the condition (resp. λ-condition) holds both left and right.

Reference Progress Connected Established Restricted Complexity

Theorem 5 X X left - 2EXP-co.
Theorem 6 X left X - undec.

[7, Theorem 6] X X - - undec.
[8, Theorem 32] X λ - λ 2EXP-co.

Theorem 44 X λ-right - λ-right 2EXP-co.

Theorem 5. The progressing, connected and left-established entailment problem
is 2EXPTIME-complete. Moreover, given an instance P of this problem, there

exists an algorithm that runs in time 22
O(w(P)8·log |P|)

.

Proof. The 2EXPTIME-hardness lower bound is given in [6, Theorem 18]. The
upper bound is explained in the proof of [8, Theorem 32].

1Note that, by Lemma 2, φ is a symbolic heap.

5

A natural question arises in this context: which of the restrictions from the
above theorem can be relaxed and what is the price (in terms of computational
complexity) of relaxing (some of) them? In the light of Theorem 6 below, the
connectivity restriction cannot be completely dropped. Further, if we drop the
establishment condition, the problem becomes undecidable [7, Theorem 6], even
if both the left/right progress and connectivity conditions apply.

Theorem 6. The progressing, left-connected and established entailment problem
is undecidable.

Proof. By a reduction from the known undecidable problem of universality of
context-free languages. A context-free grammar G = 〈N,T, S,∆〉 consists of a
finite set N of nonterminals, a finite set T of terminals, a start symbol S ∈ N
and a finite set ∆ of productions of the form A → w, where A ∈ N and
w ∈ (N ∪ T)∗. Given finite strings u, v ∈ (N ∪ T)∗, the step relation u ⇒ v
replaces a nonterminal A of u by the right-hand side w of a production A→ w
and ⇒∗ denotes the reflexive and transitive closure of ⇒. The language of
G is the set L(G) of finite strings w ∈ T ∗, such that s ⇒∗ w. The problem
T ∗ ⊆ L(G) is known as the universality problem, known to be undecidable [2].
W.l.o.g. we assume further that:
• T = {0, 1}, because every terminal can be encoded as a binary string,
• L(G) does not contain the empty string ε, because computing a grammar
G′ such that L(G′) = L(G) ∩ T+ is possible in polynomial time and,
moreover, we can reduce from the modified universality problem problem
T+ ⊆ L(G′) instead of the original T ∗ ⊆ L(G),

• G is in Greibach normal form and contains only production rules of the
form A0 → aA1 . . . An, where A0, . . . An ∈ N , for some n ≥ 0 and a ∈ T .

We use the special variables 0̂ and 1̂ to denote the binary digits 0 and 1.
For each nonterminal A0 ∈ N , we have a predicate A0(x, y, 0̂, 1̂) and a rule
A0(x, y, 0̂, 1̂) ⇐ x 7→ (â, x1) ∗ A1(x1, x2, 0̂, 1̂) ∗ . . . An(xn, y, 0̂, 1̂), for each rule
A0 → aA1 . . . An of G. Moreover, we consider the rules T (x, y, 0̂, 1̂) ⇐ x 7→
(â, z) ∗ T (z, y, 0̂, 1̂), for all a ∈ {0, 1} and let R be the resulting SID. It is easy
to check that the SID is progressing and established and, moreover, the rules
for T are connected. Finally, the entailment 0̂ 6≈ 1̂ ∗ T (x, y) `R S(x, y) is valid
if and only if T+ ⊆ L(G).

The second decidable class of entailment problems relaxes the connectivity
condition and replaces the establishment with a syntactic condition (that can
be checked in linear time in the size of the SID), while remaining 2EXPTIME-
complete [8]. To define this class, we consider R-positional functions, i.e. func-
tions that map every n-ary predicate symbol p occurring in R to a subset of
J1, nK. Given an R-positional function λ and a formula φ, we denote by Vλ(φ)
the set of variables xi such that φ contains a predicate atom p(x1, . . . , xn) with
i ∈ λ(p). Note that Vλ is stable under substitutions, i.e. Vλ(φσ) = (Vλ(φ))σ,
for each formula φ and each substitution σ.

6

Definition 7. Let ψ be a formula and R be an SID. The fv-profile of the pair
(ψ,R) is the R-positional function λ, where λ(p), p ∈ P are the maximal sets
satisfying the following conditions:

1. Vλ(ψ) ⊆ fv(ψ).

2. For all predicate symbols p ∈ P(ψ), all rules p(x1, . . . , xn) ⇐ π in R, all
predicate atoms q(y1, . . . , ym) in π and all i ∈ λ(q), there exists j ∈ λ(p)
such that xj = yi.

The fv-profile of (ψ,R) is denoted by λψR.

Intuitively, given a predicate p ∈ P, the set λψR(p) denotes the formal param-
eters of p that, in every unfolding of ψ, will always be substituted by variables
occurring freely in ψ. It is easy to check that λψR can be computed in polynomial
time w.r.t. |ψ| + |R|, using a straightforward greatest fixpoint algorithm. The
algorithm starts with a function mapping every predicate p of arity n to J1, nK
and repeatedly removes elements from the sets λ(p) to ensure that the above
conditions hold. In the worst case, we may have eventually λ(p) = ∅ for all
predicate symbols p.

Definition 8. Let λ be an R-positional function, and V be a set of variables.
A formula φ is λ-restricted w.r.t. V iff the following hold:

1. for every disequation y 6≈ z in φ, we have {y, z} ∩ V 6= ∅, and
2. Vλ(φ) ⊆ V .

A rule p(x1, . . . , xn)⇐ x 7→ (y1, . . . , yκ) ∗ ρ is:
• λ-connected iff for every atom q(z1, . . . , zm) occurring in ρ, we have z1 ∈
Vλ(p(x1, . . . , xn)) ∪ {y1, . . . , yκ},

• λ-restricted iff ρ is λ-restricted w.r.t. Vλ(p(x1, . . . , xn)).
An SID R is progressing (resp. λ-connected, λ-restricted) for a formula φ iff
every rule in

⋃
p∈P(φ)R(p) is progressing (resp. λ-connected, λ-restricted). An

SID R is λ-connected (λ-restricted) for a formula φ iff every rule in
⋃
p∈P(φ)R(p)

is λ-connected (λ-restricted). An entailment problem φ `R ψ is left (right) λ-
connected, (λ-restricted) iff R is λ-connected (λ-restricted) for φ (ψ), where

λ is considered to be λφR (λψR). An entailment problem is λ-connected (λ-
restricted) iff it is both left and right λ-connected (λ-restricted).

The class of progressing, λ-connected and λ-restricted entailment problems has
been shown to be a generalization of the class of progressing, connected and
left-established problems, because the latter can be reduced to the former by a
many-one reduction [8, Theorem 13] that runs in time |P| · 2O(w(P)2) on input
P (Figure 1) and preserves the width asymptotically.

In the rest of this paper we close the loop by defining a syntactic extension
of λ-progressing, λ-connected and λ-restricted entailment problems that can be
reduced to the class of progressing, connected and left-established entailment
problems by a many-one reduction.

7

⊇

(safe)

progressing

left λ-connected

left λ-restricted

progressing

connected

left established

progressing

λ-connected

λ-restricted

|P| · 2O(w(P)2)

|P
| ·
2
O
(w

(P
)
lo
g
w
(P

))

Figure 1: Many-one Reductions between Decidable Entailment Problems

Definition 9. An entailment problem φ `R ψ is safe if, by letting λ
def
= λψR, it

is the case that:
1. every rule in R is progressing,
2. ψ is λ-restricted w.r.t. fv(φ),
3. all the rules from

⋃
p∈P(ψ)R(p) are λ-connected and λ-restricted.

Note that there is no condition on the formula φ, or on the rules defining the
predicates occurring only in φ (other than the progress condition). Essentially,
the conditions in Definition 9 ensure that all the disequations occurring in any
unfolding of ψ involve at least one variable that is free in φ. Further, the heaps
of the model of ψ must be forests, i.e. unions of trees, the roots of which are
associated with the first argument of the predicate atoms in ψ or to free variables
from φ.

We refer the reader to Figure 1 for a general picture of the entailment prob-
lems considered so far and of the many-one reductions between them, where
the reduction corresponding to the dashed arrow is the concern of the next sec-
tion. Importantly, since all reductions are many-one, taking time polynomial
in the size and exponential in the width of the input problem, while preserving
its width asymptotically, the three classes from Figure 1 can be joined into a
single, general, 2EXPTIME-complete class of entailment problems.

4 From Safe To Established Entailment

In this section we consider an instance of the safe entailment problem P =
φ `R ψ and let λ denote the R-positional function λψR, i.e. the fv-profile of

(ψ,R) (Definition 7). Let {w1, . . . , wν}
def
= fv(φ) ∪ fv(ψ) and ~w

def
= (w1, . . . , wν),

the order of variables does not matter and may be chosen arbitrarily. We further
assume, w.l.o.g., that ν > 0. Note that, by definition, the right-hand side of
every rule in R is a symbolic heap (i.e., R contains no disjunction).

Let Pl
def
= P(φ) and Pr

def
= P(ψ) be the predicate symbols that depend on the

8

predicate symbols occurring in the left- and right-hand side of the entailment,
respectively. We assume that φ and ψ contain no points-to atoms and that
Pl ∩ Pr = ∅. Again, these assumptions lose no generality, because a points-to
atom x 7→ (y1, . . . , yκ) can be replaced by a predicate atom p(x, y1, . . . , yκ),
where p is a fresh predicate symbol associated with the rule p(u, v1, . . . , vκ) ⇐
u 7→ (v1, . . . , vκ). Moreover the condition Pl ∩ Pr 6= ∅ may be enforced by
considering two copies of each predicate, for the left-hand side and for the right-
hand side, respectively. Finally, we assume that every rule contains exactly µ
existential variables, for some fixed µ ∈ N; this condition can be enforced by
adding dummy literals x ≈ x if needed.

We describe a reduction of P to an equivalent progressing, connected, and
left-established entailment problem. The reduction will add ν + µ record fields
to the heap. In what follows, we shall therefore often consider heaps and points-
to atoms having κ+ ν+µ record fields, where the formal definitions are similar
to those given before. Usually such formulas and heaps will be written with a
prime. These additional record fields will be used to ensure that the constructed
system is connected, by adding all the existential variables of a given rule (as
well as the variables in w1, . . . , wν) into the image of the location allocated
by the considered rule. Furthermore, the left-establishment condition will be
enforced by adding predicates and rules in order to allocate all the locations that
correspond to existential quantifiers and that are not already allocated, making

such locations point to a dummy vector ~⊥ def
= (⊥, . . . ,⊥), of length κ + ν + µ,

where ⊥ is the special constant denoting empty heap entries . To this aim, we
shall use a predicate symbol ⊥ associated with the rule ⊥(x)⇐ x 7→ ~⊥, where
~⊥ = (⊥, . . . ,⊥) . Note that allocating all these locations will entail (by definition
of the separating conjunction) that they are distinct, thus the addition of such
predicates and rules will reduce the number of satisfiable unfoldings. However,
due to the restrictions on the use of disequations, we shall see that this does not
change the status of the entailment problem.

Definition 10. For any total function γ : L → L and any tuple ~̀= 〈`1, . . . , `n〉 ∈
Ln, we denote by γ(~̀) the tuple 〈γ(`1), . . . , γ(`n)〉. If s is a store, then γ(s)

denotes the store with domain dom(s), such that γ(s)(x)
def
= γ(s(x)), for all

x ∈ dom(s). Consider a heap h such that for all ` 6= `′ ∈ dom(h), we have
γ(`) 6= γ(`′). Then γ(h) denotes the heap with domain dom(γ(h)) = {γ(`) | ` ∈
dom(h)}, such that γ(h)(γ(`))

def
= γ(h(`)), for all ` ∈ dom(h).

Proposition 11. Let λ be an R-positional function and let V be a set of vari-
ables. Consider an atom p(u1, . . . , un) such that Vλ(p(u1, . . . , un)) ⊆ V and a
λ-restricted rule p(x1, . . . , xn)⇐ π. Then the formula π {〈x1, u1〉, . . . , 〈xn, un〉}
is λ-restricted w.r.t. V .

Proof. Let θ = {〈x1, u1〉, . . . , 〈xn, un〉}. By hypothesis π is λ-restricted w.r.t.
Vλ(p(x1, . . . , xn)), thus we have Vλ(π) ⊆ Vλ(p(x1, . . . , xn)) and we deduce that

Vλ(πθ) = Vλ(π)θ ⊆ Vλ(p(x1, . . . , xn))θ = Vλ(p(u1, . . . , un)) ⊆ V.

9

Consider an atom yθ 6≈ zθ occurring in πθ. Then necessarily y 6≈ z occurs in
π, hence {y, z} ∩ Vλ(p(x1, . . . , xn)) 6= ∅ and {yθ, zθ} ∩ Vλ(p(u1, . . . , un)) 6= ∅.
Since Vλ(p(u1, . . . , un)) ⊆ V , we have the result.

Lemma 12. Given a set of variables V , let α be a formula that is λ-restricted
w.r.t. V , such that P(α) ⊆ Pr and let (s, h) be an R-model of α. For every
mapping γ : L → L such that γ(`) = γ(`′) ⇒ ` = `′ holds whenever either
{`, `′} ⊆ dom(h) or {`, `′} ∩ s(V) 6= ∅, we have (γ(s), γ(h)) |=R α.

Proof. The proof is by structural induction on the definition of the relation |=R.
We distinguish the following cases:

• If α = (x ≈ y), then s(x) = s(y) and h = ∅, thus γ(s)(x) = γ(s)(y) and
γ(h) = ∅. Therefore, (γ(s), γ(h)) |=R x ≈ y.

• If α = (x 6≈ y), then s(x) 6= s(y) and h = ∅, hence γ(h) = ∅. Since α is
λ-restricted w.r.t. V , necessarily one of the variables x or y occurs in V ,
hence {s(x), s(y)}∩s(V) 6= ∅. By the hypotheses of the lemma this entails
that γ(s)(x) 6= γ(s)(y). Thus (γ(s), γ(h)) |=R x 6≈ y.

• If α = x 7→ (y1, . . . , yκ) then we have dom(h) = {s(x)} and h(s(x)) =
〈s(y1), . . . , s(yn)〉. Therefore dom(γ(h)) = {γ(s(x))} and γ(h)(s(x)) =
γ(〈s(y1), . . . , s(yn)〉), thus (γ(s), γ(h)) |=R α.

• If α = α1 ∗α2 then there exists h1, h2, such that h = h1]h2 and (s, hi) |=R
αi, for i = 1, 2. Since αi is λ-restricted w.r.t. V and that P(αi) ⊆ Pr, by
the induction hypothesis, we obtain that (γ(s), γ(hi)) |=R αi, for i = 1, 2.
For all `i ∈ dom(hi) with i = 1, 2, we have `1, `2 ∈ dom(h) and `1 6= `2,
thus by the hypothesis of the lemma γ(`1) 6= γ(`2). Hence dom(γ(h1))
and dom(γ(h2)) are disjoint, we have γ(h) = γ(h1)] γ(h2) and therefore
(γ(s), γ(h)) |=R α.

• If α = p(u1, . . . , un) thenR contains a rule p(x1, . . . , xn)⇐ π and (se, h) |=R
πθ, for some extension se of s, with θ

def
= {〈xi, ui〉 | i ∈ J1, nK}. Since

P(α) ⊆ Pr, the rule must be λ-restricted by Condition 3 in Definition
9. By Proposition 11, we deduce that πθ is λ-restricted w.r.t. V . More-
over, we have P(πθ) = P(π) ⊆ Pr, thus by the induction hypothesis
(γ(se), γ(h)) |=R πθ, and therefore (γ(s), γ(h)) |=R α, because γ(se) is an
extension of γ(s).

If γ is injective then Lemma 12 holds for any formula:

Lemma 13. Let α be a formula and let (s, h) be an R-model of α. For every
injective mapping γ : L → L we have (γ(s), γ(h)) |=R α.

Proof. The proof is similar to that of Lemma 12; it is in fact simpler as the
conditions on α are useless, since the implication γ(`) = γ(`′) ⇒ ` = `′ holds
for all `, `′.

10

4.1 A Relation On Structures

We introduce a so-called expansion relation on structures, as well as a truncation
operation on heaps. Intuitively, the expansion of a structure is a structure with
the same store and whose heap is augmented with new allocated locations (each

pointing to ~⊥) and additional record fields, referring in particular to all the newly
added allocated locations. These locations are introduced to accommodate all
the existential variables of the predicate-less unfolding of the left-hand side of
the entailment (to ensure that the obtained entailment is left-established). Con-
versely, the truncation of a heap is the heap obtained by removing these extra
locations. We also introduce the notion of a γ-expansion which is a structure

whose image by γ is an expansion. We recall that ~w
def
= (w1, . . . , wν) is the tuple

of free variables of the instance P of the entailment problem, taken in some
fixed order, of no particular importance.

Definition 14. Let γ : L → L be a total mapping. A structure (s, h′) is a γ-
expansion (or simply an expansion if γ = id) of some structure (s, h), denoted
(s, h′) .γ (s, h), if there exist two disjoint heaps main(h′) and aux(h′) such that
h′ = main(h′)] aux(h′) and the following hold:

1. for all `1, `2 ∈ dom(main(h′)), if γ(`1) = γ(`2) then `1 = `2,
2. γ(dom(main(h′))) = dom(h),
3. for each ` ∈ dom(main(h′)), we have h′(`) = 〈~a, s(~w), b`1, . . . , b

`
µ〉, for some

b`1, . . . , b
`
µ ∈ L and γ(~a) = h(γ(`)),

4. for each ` ∈ dom(aux(h′)), we have h′(`) = ~⊥⊥⊥ and there exists `′ ∈
dom(main(h′)) such that main(h′)(`′) is of the form 〈~a, ~ω, b`′1 , . . . , b`

′

µ 〉 and

` = b`
′

i , for some i ∈ J1, µK. The element `′ is called the connection of `
in h′ and is denoted by Ch′(`)

2

Let (s, h′) be a γ-expansion of (s, h) and let ` ∈ dom(main(h′)) be a location.
Since ν > 0 and for all i ∈ J1, νK, s(wi) occurs in h′(`), and since we assume that

s(wi) 6=⊥⊥⊥ = s(⊥) for every i ∈ J1, νK, necessarily main(h′)(`) 6= ~⊥⊥⊥. This entails
that the decomposition h′ = main(h′)] aux(h′) is unique : dom(main(h′)) and

dom(aux(h′)) are the set of locations ` in dom(h′) such that h′(`) 6= ~⊥⊥⊥ and

h′(`) = ~⊥⊥⊥, respectively.

Proposition 15. For all stores s and functions γ, we have (s, ∅) .γ (s, ∅).

Lemma 16. Consider a total mapping γ : L → L, a store s and two heaps h
and h′, such that (s, h′) .γ (s, h). We have h′ = ∅ if and only if h = ∅.

Proof. Since (s, h′) .γ (s, h), following the notations of Definition 14, h′ is of the
form main(h′)] aux(h′). First assume h′ = ∅. Then necessarily main(h′) = ∅
and by Condition 2 of Definition 14, we deduce that h = ∅. Conversely, if
h = ∅, then by Condition 2 of Definition 14 we must have main(h′) = ∅ and by
Condition 4, we also have aux(h′) = ∅.

2Note that `′ does not depend on γ, and if several such locations exist then one is chosen
arbitrarily.

11

Lemma 17. Consider a store s, heaps h1, h
′
1, h2, h

′
2 and total mappings γ, γ1, γ2 :

L → L, such that the following hold:
1. dom(h′1) ∩ dom(h′2) = ∅ and dom(h1) ∩ dom(h2) = ∅.
2. (s, h′i) .γi (s, hi), for i = 1, 2,
3. for all ` ∈ loc(h′i), γ(`) = γi(`), for i = 1, 2.

By letting h′
def
= h′1] h′2 and h

def
= h1] h2, we have h′ .γ h.

Proof. By Point (2), we have h′i = main(h′i)] aux(h′i), for i = 1, 2. By Point
(1), dom(main(h′1))∩ dom(main(h′2)) = dom(aux(h′1))∩ dom(aux(h′2)) = ∅. Let
main(h′) = main(h′1)] main(h′2) and aux(h′) = aux(h′1)] aux(h′2). We prove
that these heaps satisfy the conditions of Definition 14:

1. Let `1, `2 ∈ dom(main(h′)). If `1 ∈ dom(main(h′1)) and `2 ∈ dom(main(h′2)),
then γ(`1) = γ1(`1) ∈ dom(h1), and γ(`2) = γ2(`2) ∈ dom(h2). Since
both sets are disjoint, it is impossible to have γ(`1) = γ(`2). Else, if
`1, `2 ∈ dom(main(h′1)), then γ(`1) = γ1(`1) and γ(`2) = γ1(`2), thus
γ1(`1) = γ1(`2) and `1 = `2 follows from point (2). The other cases are
symmetric.

2. We compute:

γ(dom(main(h′))) = γ(dom(main(h′1))] dom(main(h′2)))

= γ1(dom(main(h′1)))] γ2(dom(main(h′2)))

= dom(h1)] dom(h2)

= dom(h).

3. Let ` ∈ dom(main(h′)) and assume ` ∈ dom(main(h′1)); the other case
is symmetric. Then by construction main(h′)(`) = main(h′1)(`) is of the
form 〈~a, s(~w), b`1, . . . , b

`
µ〉 where γ1(~a) = h1(γ1(`)). Since ~a, ` ∈ loc(h′1), we

deduce that γ(~a) = h1(γ(`)), hence γ(~a) = h(γ(`)).
4. Let ` ∈ dom(aux(h′)). By definition, ` ∈ dom(aux(h′i)), for some i =

1, 2, and by Point 2, we deduce that h′i(`) = ~⊥⊥⊥ and that there exists a

connection `′ ∈ dom(main(h′i)) of ` in h′i. Then h′(`) = h′i(`) = ~⊥⊥⊥ and
`′ ∈ dom(main(h′)), hence `′ is also a connection of ` in h′.

Lemma 18. Assume (s, h′) .γ (s, h) and let η : L → L be a bijection such that
η(⊥⊥⊥) =⊥⊥⊥. If γ′ = γ ◦ η−1, then (η(s), η(h′)) .γ′ (η(s), h).

Proof. Note that η(h′) is well-defined, since η is a bijection. We show that
η(main(h′)) and η(aux(h′)) satisfy the conditions of Definition 14, thus proving
the result:

1. Let `, `′ ∈ dom(η(main(h′))) and assume that γ′(`) = γ′(`′). Then there
exist `1, `2 ∈ dom(main(h′)) such that ` = η(`1) and `′ = η(`2), hence

γ(`1) = γ ◦ η−1(η(`1)) = γ′(`) = γ′(`′) = γ ◦ η−1(η(`2)) = γ(`2),

so that `1 = `2, by point (1) of Definition 14, leading to ` = `′.

12

2. We compute:

γ′(dom(η(main(h′)))) = γ′(η(dom(main(h′)))) = γ(dom(main(h′)))
= dom(h).

3. Let ` ∈ dom(η(main(h′))). Then there exists `1 ∈ dom(main(h′)) such
that ` = η(`1), and main(h′)(`1) is of the form 〈~a, s(~w), b1, . . . , bµ〉, for
some bi ∈ L (1 ≤ i ≤ µ) and γ(~a) = h(γ(`1)). Hence, η(main(h′))(`) =
〈η(~a), η(s)(~w), η(b1), . . . , η(bµ)〉 and

γ′(η(~a)) = γ(~a) = h(γ(`1)) = h(γ′(`)).

4. Let ` ∈ dom(η(aux(h′))). Then there exists `2 ∈ dom(aux(h′)) such that
` = η(`2), and since η(⊥) = ⊥, we have η(aux(h′))(`) = η(aux(h′)(`2)) =

η(~⊥⊥⊥) = ~⊥⊥⊥. By hypothesis `2 admits a connection `′ in h′, and it is straight-
forward to check that η(`′) is a connection of ` in η(h′).

Lemma 19. Assume (s, h′) .id (s, h), let D ⊆ dom(h′) and consider h′1 (resp.
h1), the restriction of h′ (resp. h) to D. If every location in dom(aux(h′)) ∩D
has a connection in h′1, then (s, h′1) .id (s, h1).

Proof. We check the conditions of Definition 14:
1. Trivial.
2. Since dom(main(h′)) = dom(h), we obtain dom(main(h′1)) = dom(main(h′))∩
D = dom(h) ∩D = dom(h1).

3. Since Point (3) holds for main(h′), it also holds for main(h′1).

4. Let ` ∈ dom(aux(h′1)) = dom(aux(h′)) ∩D. We have h′1(`) = h′(`) = ~⊥⊥⊥.
Further, ` has a connection in h′1 by hypothesis.

Definition 20. Given a heap h′, we denote by trunc(h′) the heap h defined as

follows: dom(h)
def
= dom(h′) \ {` ∈ dom(h′) | h′(`) = ~⊥⊥⊥} and for all ` ∈ dom(h),

if h′(`) = (`1, . . . , `κ+ν+µ), then h(`)
def
= (`1, . . . , `κ).

Example 21. Assume that L = N, ν = µ = 1. Let s be a store such that
s(w1) = 0. We consider:

h
def
= {〈1, 2〉, 〈2, 2〉},

h′1
def
= {〈1, (2, 0, 1)〉, 〈2, (2, 0, 3)〉, 〈3, (⊥,⊥,⊥)〉},

h′2
def
= {〈1, (3, 0, 1)〉, 〈2, (4, 0, 3)〉, 〈3, (⊥,⊥,⊥)〉}.

We have (s, h′1).id (s, h) and (s, h′2).γ (s, h), with γ
def
= {〈1, 1〉, 〈2, 2〉, 〈3, 2〉, 〈4, 2〉}.

Also, trunc(h′1) = {〈1, 2〉, 〈2, 2〉} = h and trunc(h′2) = {〈1, 3〉, 〈2, 4〉}. �

Lemma 22. If (s, h′) .γ (s, h) then h = γ(trunc(h′)).

13

Proof. Since (s, h′) .γ (s, h), the restriction of γ to dom(main(h′)) is injective
and γ(dom(main(h′))) = dom(h), by Point (2) of Definition 14. Furthermore,
by Definition 20, dom(trunc(h′)) = dom(main(h′)). Thus dom(γ(trunc(h′))) =
γ(dom(trunc(h′))) = γ(dom(main(h′))) = dom(h). Moreover, for any ` ∈
dom(main(h′)), we have h′(`) = 〈~a, s(~w), b`1, . . . , b

`
µ〉 and h(γ(`)) = γ(~a), for

some ~a ∈ Lκ and b`1, . . . , b
`
µ ∈ L, thus by Definition 20, γ(trunc(h′)(`)) = γ(~a) =

γ(h(`)).

Corollary 23. If (s, h′) .γ (s, h), then (s, h′) .id (s, trunc(h′)).

The converse of Lemma 22 does not hold in general but it holds under some
additional conditions:

Lemma 24. Consider a store s, let h′ be a heap and let h
def
= trunc(h′). Let

D2
def
= {` ∈ dom(h′) | h′(`) = ~⊥⊥⊥} and D1

def
= dom(h′) \D2. Assume that:

1. for every location ` ∈ D1, h(`) is of the form (`1, . . . , `κ) and h′(`) is of
the form (`1, . . . , `κ, s(~w), `′1, . . . , `

′
µ);

2. every location ` ∈ D2 has a connection in h′.
Then (s, h′) .id (s, h).

Proof. It is straightforward to check that Conditions 1 and 2 of Definition 14
hold, with main(h′) (resp. aux(h′)) defined as the restriction of h′ to D1 (resp.
D2). Condition 3 follows immediately from Point 1 and from the definition of
trunc(h′). Condition 4 holds by Point 2.

Lemma 25. Let h′1, h
′
2 be disjoint heaps and let hi

def
= trunc(h′i), for i = 1, 2.

Then h1 and h2 are disjoint and trunc(h′1] h′2) = h1] h2.

Proof. By definition, dom(hi) ⊆ dom(h′i) hence since h′1, h
′
2 are disjoint, h1 and

h2 are also disjoint. and h
def
= h1] h2. Let D be the set of locations ` such that

h′1(`) = ~⊥⊥⊥ or h′2(`) = ~⊥⊥⊥. By Definition 20, we have dom(hi) = dom(h′i) \ D,
hence dom(h1] h2) = dom(h′1] h′2) \D = dom(trunc(h′1] h′2)). It is clear that
this entails that trunc(h′1] h′2) = h1] h2.

4.2 Transforming The Consequent

We first describe the transformation for the right-hand side of the entailment
problem, as this transformation is simpler. We recall that ~w = (w1, . . . , wν)
denotes the vector of free variables occurring in the problem, which is assumed
to be fixed throughout this section and that {w1, . . . , wν ,⊥} ⊆ dom(s), for every
store s considered in this section. Moreover, we assume w.l.o.g. that w1, . . . , wν
do not occur in the considered SID R.

Definition 26. We associate each n-ary predicate p ∈ Pr with a new predicate
p̂ of arity n+ν. We denote by α̂ the formula obtained from α by replacing every
predicate atom p(x1, . . . , xn) by p̂(x1, . . . , xn, ~w).

14

Definition 27. We denote by R̂ the set of rules of the form:

p̂(x1, . . . , xn, ~w)⇐ x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ̂σ ∗ ξI ∗ χσ

where:
• p(x1, . . . , xn)⇐ x1 7→ (y1, . . . , yκ) ∗ ρ is a rule in R with p ∈ Pr,
• {z1, . . . , zµ} is a set of variables not occurring in fv(ρ)∪{x1, . . . , xn, y1, . . . , yκ, w1, . . . , wν},
• σ is a substitution with dom(σ) ⊆ fv(ρ)\{x1} and rng(σ) ⊆ {w1, . . . , wν},
• ξI

def
= ∗i∈I⊥(zi), with I ⊆ {1, . . . , µ},

• χσ
def
= ∗x∈dom(σ)x ≈ xσ.

We denote by Rr the set of rules in R̂ that are connected3.

Note that the free variables ~w are added as parameters in the rules above
(instead of some vector of fresh variables ~ω). This is for the sake of clarity, since
these parameters ~ω will be systematically mapped to ~w.

Example 28. Assume that ψ = ∃x . p(x,w1), with ν = 1, µ = 1 and λ(p) =
{2}. Assume also that p is associated with the rule:

p(u1, u2) ⇐ u1 7→ u1 ∗ q(u2).

Observe that the rule is λ-connected, but not connected. Then dom(σ) ⊆ {u2},
rng(σ) ⊆ {w1} and I ⊆ {1}, so that R̂ contains the following rules:

(1) p(u1, u2, w1) ⇐ u1 7→ (u1, w1, z1) ∗ q(u2)
(2) p(u1, u2, w1) ⇐ u1 7→ (u1, w1, z1) ∗ q(u2) ∗⊥(z1)
(3) p(u1, u2, w1) ⇐ u1 7→ (u1, w1, z1) ∗ q(w1) ∗ u2 ≈ w1

(4) p(u1, u2, w1) ⇐ u1 7→ (u1, w1, z1) ∗ q(w1) ∗⊥(z1) ∗ u2 ≈ w1

Rules (1) and (2) are not connected, hence do not occur in Rr. Rules (3) and
(4) are both connected, hence occur in Rr. Note that (4) is established, but (3)
is not.

We now relate R and Rr.

Lemma 29. If (s, h′) |=Rr α̂ then for all ` ∈ dom(aux(h′)), ` has a connection
in h′.

Proof. Let ` ∈ dom(aux(h′)). By definition h′(`) = ~⊥⊥⊥. Observe that ` cannot be
allocated by the points-to atom of a rule in Rr, since otherwise, by Definition
27, it would be mapped to a tuple containing s(w1), . . . , s(wν), hence to a tuple

distinct from ~⊥ since ν > 0 and s(wi) 6= ⊥⊥⊥ for i = 1, . . . , ν. Consequently, `
must be allocated by a predicate ⊥(zi) invoked in a rule in Definition 27. Since
zi also occurs as one of the last µ components on the right-hand side of the
points-to atom of the considered rule, necessarily ` has a connection in h′.

3Note that all the rules in R̂ are progressing.

15

Lemma 30. Let α be a formula that is λ-restricted w.r.t. {w1, . . . , wν} and
contains no points-to atom, with P(α) ⊆ Pr. Given a store s and two heaps h
and h′, such that (s, h′).id(s, h), we have (s, h′) |=Rr α̂ if and only if (s, h) |=R α.

Proof. The proof is by induction on the pair (|h|, |α|), using the lexicographic
order. We distinguish several cases, depending on the form of α.
• If α is of the form x ≈ y then by Definition 26, α̂ = α. We have (s, h′) |=Rr
α̂ iff h′ = ∅ and s(x) = s(y), and (s, h) |=R α iff h = ∅ and s(x) = s(y).
By Lemma 16, h′ = ∅ iff h = ∅, hence the result.

• The proof is similar if α is of the form x 6≈ y.
• Assume that α = α1 ∨ α2. By construction we have α̂ = α̂1 ∨ α̂2. Now,

(s, h′) |=Rr α̂ if and only if (s, h′) |=Rr α̂i, for some i ∈ {1, 2}. By
the induction hypothesis, this is equivalent to (s, h) |=Rr αi, for some
i ∈ {1, 2}, i.e. equivalent to (s, h) |=Rr α.

• Assume that α = α1 ∗ α2. Then it is straightforward to check that α̂ =
α̂1 ∗ α̂2. If (s, h′) |=Rr α̂ then there exists h′1, h

′
2 such that h′ = h′1] h′2

and (s, h′i) |=Rr α̂i for i = 1, 2. Let hi = trunc(h′i). By Lemma 29, every
location in aux(h′i) has a connection in h′i, thus, by Lemma 19 (applied
with D = dom(h′i)), we deduce that (s, h′i) .id (s, hi). By the induction
hypothesis, we deduce that (s, hi) |=R αi, and by Lemma 25, h = h1] h2.
Thus (s, h) |=R α.
Conversely, assume that (s, h) |=R α. Then there exists h1, h2 such that

h = h1] h2 and (s, hi) |=R αi for i = 1, 2. Let D
def
= dom(h′) \ dom(h),

D1
def
= {d ∈ D |Ch′(d) ∈ dom(h1)} and D2

def
= D \D1. For i = 1, 2, let h′i be

the restriction of h′ to dom(hi) ∪Di. Since (s, h′) .id (s, h) by hypothesis,
it is straightforward to verify that (s, h′i) .id (s, hi), and by the induction
hypothesis, we deduce that (s, h′i) |=Rr α̂i for i = 1, 2. By construction,
D1, D2, dom(h1) and dom(h2) are pairwise disjoint and dom(h1) ∪D1 ∪
dom(h2) ∪D2 = dom(h) ∪D = dom(h′), hence h′ = h′1] h′2. We conclude
that (s, h′) |=Rr α̂.

• Assume that α = p(u1, . . . , un), so that α̂ = p̂(u1, . . . , un, ~w). If (s, h′) |=Rr
α̂, then Rr contains a rule of the form

p̂(x1, . . . , xn, ~w)⇐ x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ) ∗ ρ̂σ ∗ ξI ∗ χσ,

satisfying the conditions of Definition 27, and there exists an extension se
of s such that (se, h

′) |=Rr u1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)θ∗ρ̂σθ∗ξIθ∗χσθ,
with θ

def
= {〈xi, ui〉 | i ∈ J1, nK}. Then, necessarily, R contains a rule:

p(x1, . . . , xn)⇐ x1 7→ (y1, . . . , yκ) ∗ ρ (‡)

Let h′1 be the restriction of h′ to dom(h) \ ({s(u1)} ∪ {se(zi) | i ∈ I}) and

let h1
def
= trunc(h′1). By definition of h′1, we have (se, h

′
1) |=Rr ρ̂σθ. By

hypothesis α is λ-restricted w.r.t. {w1, . . . , wν}, thus Vλ(p(u1, . . . , un)) ⊆
{w1, . . . , wν} and, since the entailment problem under consideration is
safe, rule (‡) is necessarily λ-restricted by Point (3) of Definition 9. Thus,

16

ρθ must be λ-restricted w.r.t. {w1, . . . , wν}, by Lemma 11. Since the
image of σ is contained in {w1, . . . , wν}, we deduce that ρσθ is also λ-
restricted w.r.t. {w1, . . . , wν}. By the induction hypothesis, this entails
that (se, h1) |=R ρσθ. Since (se, ∅) |=R χσθ by definition of χσ — see
Definition 27, we have se(xθ) = se(xσθ) for every variable x ∈ dom(σ).
But the latter equality trivially holds for every variable x 6∈ dom(σ), hence
replacing all variables xσθ occurring in ρσθ by xθ preserves the truth value
of the formula in (se, h1). Consequently ρσθ and ρθ have the same truth
value in (se, h1), and thus (se, h1) |=R ρθ.
Let h′u denote the restriction of h′ to {s(u1)}. By construction h′(se(zi)) =
~⊥⊥⊥ for every i ∈ I, hence by Lemmas 22 and 25 we have

h = trunc(h′) = trunc(h′1] h′u) = h1] trunc(h′u).

Since trunc(h′u) = {(se(u1), 〈se(y1θ), . . . , se(yκθ)〉)}, we deduce that (se, h) |=R
u1 7→ (y1, . . . , yκ)θ ∗ ρθ, and therefore that (s, h) |=R p(u1, . . . , un).
Conversely, assuming that (s, h) |=R p(u1, . . . , un), R contains a rule:

p(x1, . . . , xn)⇐ x1 7→ (y1, . . . , yκ) ∗ ρ (†)

and there exists an extension se of s such that (se, h) |=R u1 7→ (y1, . . . , yκ)θ∗
ρθ, where θ

def
= {〈xi, ui〉 | i ∈ J1, nK}. Thus we must have:

h′(se(u1)) = 〈se(y1θ), . . . , se(yκθ), se(~w), `1, . . . , `µ〉

for some locations `1, . . . , `µ. Since the variables z1, . . . , zµ do not occur
in {x1, . . . , xn, y1, . . . , yκ, w1, . . . , wν}∪ fv(ρ) by hypothesis (see Definition

27), we may assume, w.l.o.g., that se(zi) = `i. Let I
def
= {i ∈ J1, µK |

h′(`i) = ~⊥} and let σ be the substitution defined as follows:
– dom(σ) = (fv(ρ) \ {x1}) ∩ {x | se(xθ) ∈ {se(w1), . . . , se(wµ)}}, and
– for every variable x ∈ fv(ρ)\{x1}, such that se(xθ) = se(wi) for some

i ∈ J1, νK, we let σ(x)
def
= wi; if several such values of i are possible,

then one is chosen arbitrarily.
By construction (see again Definition 27), R̂ contains the rule:

p̂(x1, . . . , xn, ~w)⇐ x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ) ∗ ρ̂σ ∗ ξI ∗ χσ.

Let h1 be the restriction of h to dom(h) \ {s(u1)}, and let h′1 be the
restriction of h′ to dom(h′) \ {s(u1), `i | i ∈ I}. Since (s, h′) .id (s, h), no
element `i with i ∈ I can be in dom(h). By Definition, every element of
dom(aux(h′1)) has a connection in h′1 (since the locations `i with i ∈ I
are the only elements of dom(aux(h′)) whose connection is s(u1)), and by
Lemma 19 we deduce that (s, h′1) .id (s, h1).
Note that by hypothesis α is λ-restricted w.r.t. {w1, . . . , wν} and the en-
tailment problem P is safe, thus ρθ is λ-restricted w.r.t. {w1, . . . , wν}
by Lemma 11. By construction rng(σ) ⊆ {w1, . . . , wν} thus necessarily,
ρσθ must also be λ-restricted w.r.t. {w1, . . . , wν}. Furthermore, since the

17

rule (†) is λ-connected, for every q(x′1, . . . , x
′
m) occurring in ρ, if x′1 6∈

{y1, . . . , yκ} then necessarily x′1θ ∈ Vλ(p(u1, . . . , un)) ⊆ {w1, . . . , wν}. By
the definition of σ we deduce that x′1 ∈ dom(σ), and the rule above must
be connected and occur in Rr (note that we cannot have x′1 = x1, because
all the rules are progressing, hence se(x

′
1θ) ∈ dom(h1) and by definition

s(x1θ) 6∈ dom(h1)).
Now ρσθ is λ-restricted w.r.t. {w1, . . . , wν}, and since (se, h1) |=R ρθ,
by definition of σ we have (se, h1) |=R ρσθ. By the induction hypothe-

sis, (se, h
′
1) |=Rr ρ̂σθ. For every i ∈ I, we have h′(se(zi)) = ~⊥, and by

definition of σ we have se(xθ) = se(xσθ) for every x ∈ dom(σ), thus
(se, h

′) |=Rr x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)θ ∗ ρσθ ∗ ξIθ ∗ χσθ, hence
(s, h′) |=Rr p̂(u1, . . . , un, ~w).

4.3 Transforming The Antecedent

We now describe the transformation operating on the left-hand side of the entail-
ment problem. We recall that ~w = (w1, . . . , wν) are the free variables occurring
in the entailment problem and that µ is the number of existentially quantified
variables in each rule of the considered SID. For technical convenience, we make
the following assumption:

Assumption 31. We assume that for every predicate p ∈ Pl, every rule
p(x1, . . . , xn) ⇐ π in R and every atom q(x′1, . . . , x

′
m) occurring in π, x′1 6∈

{x1, . . . , xn}.

This is without loss of generality since every variable x′1 ∈ {x1, . . . , xn} can
be replaced by a fresh variable z while adding the equation z ≈ x′1 to π. Note
that the obtained SID may no longer be connected, but this is not problematic.

Definition 32. We associate each pair (p,X) where p is a predicate symbol
in Pl of arity n, and X ⊆ J1, nK, with a new predicate pX of arity n + ν. A
decoration of a formula α containing no points-to atom and such that P(α) ⊆ Pl
is a formula obtained from α by replacing each predicate atom β

def
= q(y1, . . . , ym)

in α by an atom of the form qXβ (y1, . . . , ym, ~w), with Xβ ⊆ J1,mK. The set of
decorations of a formula α is denoted by D(α).

Note that the set of decorations of an atom α is always finite.

Proposition 33. If an atom α′ is a decoration of α and is of the form α′1 ∗α′2,
then α is of the form α1 ∗ α2 and for i = 1, 2, α′i is a decoration of αi.

Definition 34. We denote by D(R) the set of rules of the form

pX(x1, . . . , xn, ~w)⇐ x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ′ ∗ ∗i∈I⊥(zi),

where:
• p(x1, . . . , xn)⇐ x1 7→ (y1, . . . , yκ) ∗ ρ is a rule in R and X ⊆ J1, nK;
• {z1, . . . , zµ} = (fv(ρ) ∪ {y1, . . . , yκ}) \ {x1, . . . , xn},

18

• σ is a substitution with domain dom(σ) ⊆ {z1, . . . , zµ} and range rng(σ) ⊆
{x1, . . . , xn, w1, . . . , wν , z1, . . . , zµ};

• ρ′ is a decoration of ρσ;
• I ⊆ {1, . . . , µ} and ∀i ∈ I, zi 6∈ dom(σ).

Lemma 35. If (s, h′) |=Rl α̂ then for all ` ∈ dom(aux(h′)), ` has a connection
in h′.

Proof. The proof is similar to that of Lemma 29.

Lemma 36. Let α be a formula containing no points-to atom, with P(α) ⊆ Pl,
and let α′ be a decoration of α. If (s, h′) |=D(R) α

′ and (s, h′) .id (s, h), then
(s, h) |=R α.

Proof. The proof is by induction on the pair (|h|, |α′|), using the lexicographic
order. We distinguish several cases.
• If α′ is of the form x ≈ y or x 6≈ y, then necessarily α = α′ and h′ = ∅.

Thus h = ∅ by Lemma 16 and (s, h) |=R α.
• If α′ is of the form α′1 ∨ α′2 then α is of the form α1 ∨ α2 where α′i is

a decoration of αi. If (s, h′) |=D(R) α
′ then (s, h′) |=D(R) α

′
i for some

i = 1, 2, and by the induction hypothesis we deduce that (s, h) |=R αi,
thus (s, h) |=R α.

• If α′ is of the form α′1 ∗ α′2 then h′ = h′1] h′2, with (s, h′i) |=D(R) α
′
i

for i = 1, 2, and by Lemma 33, α is of the form α1 ∗ α2 where α′i is a
decoration of αi. Let hi be the restriction of h to the locations occurring in
dom(h′i). By Lemma 35, every element of dom(aux(h′i)) has a connection
in h′i. Therefore, by Lemma 19, we deduce that (s, h′i).id (s, hi) and by the
induction hypothesis we deduce that (s, hi) |=R αi. By definition of .id, we

have dom(hi) = dom(h′i)\{` | h′(`) = ~⊥⊥⊥}, and since dom(h′1)∩dom(h′2) =
∅, h1 and h2 are disjoint. Furthermore, we have:

dom(h) = dom(h′) \ {` | h′(`) = ~⊥⊥⊥}
= (dom(h′1) ∪ dom(h′2)) \ {` | h′(`) = ~⊥⊥⊥}
= (dom(h′1) \ {` | h′(`) = ~⊥⊥⊥}) ∪ (dom(h′2) \ {` | h′(`) = ~⊥⊥⊥})
= dom(h1) ∪ dom(h2),

therefore h = h1] h2 and (s, h) |=R α1 ∗ α2 = α.
• If α′ is of the form pX(u1, . . . , un, ~w), then α = p(u1, . . . , un). By definition
D(R) contains a rule

pX(x1, . . . , xn, ~w)⇐ x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ′ ∗ ∗i∈I⊥(zi)

satisfying the conditions of Definition 34, and there exists an extension se
of s with (se, h

′) |=D(R) u1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σθ∗ρ′θ∗∗i∈I⊥(zi),

where θ
def
= {〈xi, ui〉 | i ∈ J1, nK}. In particular,R contains a rule p(x1, . . . , xn)⇐

x1 7→ (y1, . . . , yκ) ∗ ρ, where ρ′ is a decoration of ρσ; note that ρ′θ is a
decoration of ρσθ.

19

Let h′1 be the restriction of h′ to dom(h′) \ ({s(u1)} ∪ {se(zi) | i ∈ I}) and
let h1 be the restriction of h to dom(h) \ {s(u1)}. We have (se, h

′
1) |=D(R)

ρ′θ, with |h′1| < |h′|. By Lemma 35, every element of dom(aux(h′1)) has a
connection in h′1. Since (s, h′) .id (s, h), by Lemma 19 we have (se, h

′
1) .id

(se, h1). Hence, by the induction hypothesis, we deduce that (se, h1) |=R
ρσθ. Moreover we have

h′(u1) = (se(y1σθ), . . . , s(yκσθ), s(~w), s(z1σθ), . . . , s(zµσθ)),

and since (s, h′) .id (s, h), we deduce that h(u1) = (se(y1σθ), . . . , s(yκσθ)).
Consequently, (se, h) |=R (x1 7→ (y1, . . . , yκ)∗ρ)θ, and therefore (s, h) |=R
p(x1θ, . . . , xnθ) = p(u1, . . . , un).

At this point, the setX for predicate symbol pX is of little interest: atoms are
simply decorated with arbitrary sets. However, we shall restrict the considered
rules in such a way that for every model (s, h) of an atom pX(x1, . . . , xn+ν) (with
n = ar(p)), the setX denotes a set of indices i ∈ J1, nK such that s(xi) ∈ dom(h).
In other words, X will denote a set of formal parameters of pX that are allocated
in every model of pX .

Definition 37. Given a formula α, we define the set Alloc(α) as follows: x ∈
Alloc(α) iff either α contains a points-to atom of the form x 7→ (. . .) , or a
predicate atom qX(x′1, . . . , x

′
m+ν) with x′i = x for some i ∈ X.

Definition 38. A rule pX(x1, . . . , xn+ν) ⇐ π in D(R) with n = ar(p) with
ρ = x1 7→ (y1, . . . , yk, ~w, z1, . . . , zµ)∗ρ′ is well-defined if the following conditions
hold:

1. {x1} ⊆ Alloc(pX(x1, . . . , xn+ν)) ⊆ Alloc(π);
2. fv(π) ⊆ Alloc(π) ∪ {x1, . . . , xn+ν}.

We denote by Rl the set of well-defined rules in D(R).

We first establish some important properties of Rl.

Lemma 39. If i ∈ X then xi is allocated in every predicate-less unfolding of
pX(x1, . . . , xn+ν).

Proof. Let φ be a predicate-less unfolding of pX(x1, . . . , xn+ν). The proof is by
induction on the length of derivation from pX(x1, . . . , xn+ν) to φ. Assume that
i ∈ X. Then Rl contains a rule

pX(x1, . . . , xn, ~w)⇐ x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ′ ∗ ∗i∈I⊥(zi)

and x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ′ ∗ ∗i∈I⊥(zi) ⇐∗Rl ψ. If i = 1 then it
is clear that xi is allocated in ψ. Otherwise by Condition 1 of Definition 38 we
have

xi ∈ Alloc(pX(x1, . . . , xn, ~w))

⊆ Alloc(x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ′ ∗ ∗i∈I⊥(zi))

= {x1} ∪Alloc(ρ′ ∗ ∗i∈I⊥(zi)),

20

thus (since {z1, . . . , zµ}∩{x1, . . . , xn} = ∅) there exists an atom qY (x′1, . . . , x
′
m)

occurring in ρ′ and an index j ∈ Y such that xi = x′j . Then ψ is of the
form (modulo AC) ψ′ ∗ ψ′′, with qY (x′1, . . . , x

′
m) ⇐∗R ψ′, and by the induction

hypothesis, x′j is allocated in ψ′, hence xi is allocated in ψ.

Corollary 40. Every rule in Rl is progressing, connected and established.

Proof. Since R is progressing by hypothesis, it is straightforward to verify that
Rl is also progressing. Consider a rule pX(x1, . . . , xn, ~w)⇐ π, with

π
def
= x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ′ ∗ ∗i∈I⊥(zi),

that occurs in Rl, and a predicate atom α occurring in ρ′ ∗∗i∈I⊥(zi). This rule
is obtained from a rule p(x1, . . . , xn)⇐ x1 7→ (y1, . . . , yκ) ∗ ρ in R. The atom α
is either of the form ⊥(zi) for some i ∈ I (so that zi 6∈ dom(σ)), or a decoration
qY (x′1, . . . , x

′
m, ~w) of some atom q(x′1, . . . , x

′
m) occurring in ρ. By Assumption

31 x′1 /∈ {x1, . . . , xn}, hence by definition of z1, . . . zµ we have x′1 ∈ {z1, . . . , zµ}σ
and the rule is connected. Let x be a variable occurring in fv(π)\{x1, . . . , xn+ν}
and assume (s, h) |=Rl π. Then by Condition 2 of Definition 38, x ∈ Alloc(π).
Thus, π contains either a points-to atom of the form x 7→ (. . .), or a predicate
atom qX(x′1, . . . , x

′
m+ν) where x′i = x for some i ∈ X. In the first case, it is clear

that x is allocated in any predicate-free unfolding of π. In the second case, by
Lemma 39, x′i is allocated in any predicate-free unfolding of qX(x′1, . . . , x

′
m+ν),

hence x is allocated in any predicate-free unfolding of π. This proves that the
rule is established.

We now relate the systems R and Rl.

Definition 41. A store s is quasi-injective if, for all x, y ∈ dom(s), the impli-
cation s(x) = s(y)⇒ x = y holds whenever {x, y} 6⊆ {w1, . . . , wν}.

Lemma 42. Let L be an infinite subset of L. Consider a formula α containing
no points-to atom, with P(α) ⊆ Pl, and let (s, h) be an R-model of α, where s
is quasi-injective, and (rng(s)∪ loc(h))∩L = ∅. There exists a decoration α′ of
α, a heap h′ and a mapping γ : L → L such that:
• (s, h′) .γ (s, h),
• if ` 6∈ L then γ(`) = `,
• loc(h′) \ rng(s) ⊆ L,
• dom(aux(h′)) ⊆ L and
• (s, h′) |=Rl α′.

Furthermore, if s(u) ∈ dom(h′) \ {s(wi) | 1 ≤ i ≤ ν} then u ∈ Alloc(α′).

Proof. Note that by hypothesis, L cannot contain ⊥⊥⊥, since s(⊥) = ⊥⊥⊥ and
rng(s) ∩ L = ∅. The proof is by induction on the pair (|h|, |α|), using the
lexicographic order. We distinguish several cases:
• If α is of the form x ≈ y or x 6≈ y, then h = ∅, and α is a decoration of

itself, since it contains no predicate symbol. Since (s, h) .id (s, h), we may

thus set α′
def
= α, γ

def
= id and h′

def
= h.

21

• If α′ is of the form α′1 ∨ α′2 then the proof follows immediately from the
induction hypothesis.

• If α is of the form α1 ∗ α2, then let L1, L2 be two disjoint infinite subsets
of L. Since (s, h) |=R α1 ∗ α2 , there exist disjoint heaps h1, h2 such that
h = h1] h2 and (s, hi) |=R αi. By the induction hypothesis, for i = 1, 2,
there exists a decoration α′i of αi, a heap h′i and a mapping γi : L → L
such that: (s, h′i) .γi (s, hi) ; ` 6∈ Li ⇒ γi(`) = `; loc(h′i) \ rng(s) ⊆ Li;
dom(aux(h′)) ⊆ Li; (s, h′i) |=Rl α′i and if s(u) ∈ dom(h′i) \ {s(wj) | 1 ≤
j ≤ ν} then u ∈ Alloc(α′i). Let α′

def
= α′1 ∗ α′2 and consider the function

γ : ` 7→

γ1(`) if ` ∈ L1

γ2(`) if ` ∈ L2

` otherwise

Since L1 ∩ L2 = ∅, this function is well-defined, and since L1 ∪ L2 ⊆ L,
if ` 6∈ L then γ(`) = `. Assume that dom(h′1) ∩ dom(h′2) contains an
element `. Then by the induction hypothesis, for i = 1, 2, ` ∈ rng(s)∪Li;
and since L1 ∩ L2 = ∅, we deduce that ` ∈ rng(s), so that ` 6∈ L. Since
dom(aux(h′i)) ⊆ Li, necessarily ` ∈ dom(main(h′i)) and (s, h′i) .γi (s, hi),
by Condition 2 of Definition 14, γi(`) ∈ dom(hi). Since ` 6∈ L we have
γ1(`) = γ2(`) = `, and we deduce that ` ∈ dom(h1) ∩ dom(h2), which
contradicts the fact that h1 and h2 are disjoint. Consequently, h′1 and h′2
are disjoint and we may define h′

def
= h′1] h′2. Since (s, h′i) |=Rl α′i, for both

i = 1, 2, we have (s, h′) |=Rl α′.
Let ` ∈ loc(h′i) for i = 1, 2. If ` ∈ rng(s), then by hypothesis ` /∈ L and by
construction, γ(`) = ` = γi(`). Otherwise, ` ∈ loc(h′i)\ rng(s), thus by the
induction hypothesis ` ∈ Li and by construction, γ(`) = γi(`). We deduce
by Lemma 17 that (s, h′) .γ (s, h). Furthermore, still by the induction
hypothesis we have:

loc(h′) \ rng(s) ⊆ (loc(h′1) \ rng(s)) ∪ (loc(h′2) \ rng(s)) ⊆ L1 ∪ L2 ⊆ L.

We also have aux(h′) = aux(h′1)]aux(h′2), thus dom(aux(h′)) = dom(aux(h′1))∪
dom(aux(h′2)) ⊆ L1 ∪L2 ⊆ L. Finally, if s(x) ∈ dom(h′) \ {s(wi) | 1 ≤ i ≤
ν} then necessarily s(x) ∈ dom(h′i) for some i = 1, 2, so that x ∈ Alloc(α′i)
and therefore x ∈ Alloc(α′).

• Assume that α is of the form p(u1, . . . , un) and that dom(s) = fv(α) ∪
{w1, . . . , wν ,⊥}. Then,R contains a rule p(x1, . . . , xn)⇐ x1 7→ (y1, . . . , yκ)∗
ρ such that (se, h) |=R u1 7→ (y1, . . . , yκ)θ∗ρθ, where θ = {〈xi, ui〉 | i ∈ J1, nK}
and se is an extension of s. Let {z1, . . . , zµ}

def
= (fv(ρ) ∪ {y1, . . . , yκ}) \

{x1, . . . , xn}, be the set of existential variables of the above rule. We
have dom(se) = dom(s) ∪ {z1, . . . , zµ}. Consider the substitution σ such
that: dom(σ) ⊆ {z1, . . . , zµ} and σ(zi) = z iff z is the first variable in
u1, . . . , un, w1, . . . , wν , z1, . . . , zi−1 such that se(zi) = se(z) (σ(zi) is unde-
fined in there is no such variable). By construction, if x is a variable
occurring in ρσ, then x /∈ dom(σ). Let ŝ be the restriction of se to

22

dom(se) \ dom(σ) and we show that ŝ is quasi-injective. Assume that
ŝ(x) = ŝ(x′) for distinct variables x, x′ ∈ dom(ŝ) with {x, x′} 6⊆ {wi | i ∈
J1, νK}. Since ŝ is a restriction of se, we have se(x) = se(x

′). We deduce
that x and x′ both occur in the sequence u1, . . . , un, w1, . . . , wν , z1, . . . , zµ,
and we assume w.l.o.g. that x occurs before x′ in this sequence. If x, x′ ∈
{u1, . . . , un, w1, . . . , wν}, then since se is an extension of s, we would have
s(x) = se(x) = se(x

′) = s(x′), so that x = x′, because by hypothe-
sis s is quasi-injective. Thus, one of the variables x, x′ is in {z1, . . . , zµ}.
Since x occurs before x′ in the sequence u1, . . . , un, w1, . . . , wν , z1, . . . , zµ,
we deduce that x′ ∈ {z1, . . . , zµ}. By definition of σ, this entails that
x′σ = xσ 6= x′, hence x′ ∈ dom(σ) and x′ 6∈ dom(ŝ), which contradicts
our assumption.
Let h1 be the restriction of h to dom(h) \ {s(u1)}, so that (se, h1) |=R
ρθ. Then by construction, (ŝ, h1) |=R ρσθ. Let L1

def
= L \ rng(ŝ). Since

loc(h1) ⊆ loc(h) and L1 ⊆ L, we have (rng(ŝ)∪ loc(h1))∩L1 = ∅. Thus, by
the induction hypothesis, there exists a decoration ρ′ of ρσθ, a mapping
γ1 : L → L satisfying ` 6∈ L1 ⇒ γ1(`) = ` and a heap h′1 satisfying
loc(h′1) \ rng(ŝ) ⊆ L1 and dom(aux(h′1)) ⊆ L1, such that (ŝ, h′1) .γ1 (ŝ, h1),
(ŝ, h′1) |=Rl ρ′ and for all variables u, if ŝ(u) ∈ dom(h′1)\{ŝ(wi) | 1 ≤ i ≤ ν},
then u ∈ Alloc(ρ′).

Let E
def
= (rng(ŝ)∪ loc(h′1))\ rng(s) and consider a bijection η : L → L such

that:
– if ` ∈ E then η(`) ∈ L \ E and η(η(`)) = `;
– if ` ∈ L \ (E ∪ η(E)) then η(`) = `.

Such a bijection necessarily exists because E is finite and L is infinite. Let
` ∈ rng(s), so that ` /∈ E, and assume ` ∈ η(E). Then η−1(`) ∈ E, hence
` ∈ L \ E. But by the hypotheses of the lemma, (rng(s) ∪ loc(h)) ∩ L =
∅, so this case is impossible. We deduce that ` ∈ L \ (E ∪ η(E)) and
that η(`) = `. Thus, in particular, η(⊥⊥⊥) = ⊥⊥⊥. Consider the mapping

γ
def
= γ1 ◦ η−1, the heap h′′1

def
= η(h′1) and the store ŝ′

def
= η(ŝ). By Lemma

18 (ŝ′, h′′1) .γ (ŝ′, h1). By Lemma 13, since (ŝ, h′1) |=Rl ρ′, we deduce that
(ŝ′, h′′1) |=Rl ρ′. We have dom(s) ⊆ dom(se)\dom(σ) = dom(ŝ) = dom(ŝ′),
hence the restriction of ŝ′ to dom(s) is well-defined, and if x ∈ dom(s),
then

ŝ′(x) = η(ŝ(x)) = η(se(x)) = η(s(x)) = s(x).

This shows that the restriction of ŝ′ to dom(s) coincides with s.
Let j ∈ J1, µK such that zj 6∈ dom(σ). By definition we have ŝ(zj) 6∈ rng(s),
thus ŝ(zj) ∈ E and ŝ′(zj) = η(ŝ(zj)) ∈ L. Let I be the set of indices
j ∈ J1, µK such that zj 6∈ dom(σ) and ŝ(zj) 6∈ dom(h′1); for all j ∈ I, we
therefore have ŝ′(zj) ∈ L. Consider the set:

X
def
= {1} ∪ {i ∈ J1, nK | ui ∈ Alloc(ρ′) ∧ ∀j ∈ J1, νK, s(ui) 6= s(wj)},

and let α′
def
= pX(u1, . . . , un, ~w). By definition, D(R) contains a rule (∓)

23

of the form

pX(x1, . . . , xn, ~w)⇐ x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ ∗ ρ′′ ∗ ∗i∈I⊥(zi),

where ρ′′θ = ρ′. We define the following heaps:

h′2
def
= {〈ŝ′(u1), (ŝ′(y1σθ), . . . , ŝ

′(yκσθ), ŝ
′(~w), ŝ′(z1σθ), . . . , ŝ

′(zµσθ))〉},
h′3

def
= {〈ŝ′(zj), ~⊥⊥⊥〉 | j ∈ I}.

By definition of I, it cannot be the case that ŝ′(u1) = ŝ′(zj) for j ∈ I,
because otherwise we would have s(u1) = ŝ(zj) and zj ∈ dom(σ), hence
dom(h′2)∩dom(h′3) = ∅. We show that (dom(h′2)∪dom(h′3))∩dom(h′′1) = ∅.
First let j ∈ I, and assume ŝ′(zj) ∈ dom(h′′1). Then since η is a bi-
jection, necessarily, ŝ(zj) ∈ dom(h′1), which is impossible by definition
of I. Now assume that ŝ′(u1) ∈ dom(h′′1), so that ŝ(u1) ∈ dom(h′1).
Then by definition of L1 we have ŝ(u1) /∈ L1, and γ1(ŝ(u1)) = ŝ(u1).
Since dom(aux(h′1)) ⊆ L1, necessarily ŝ(u1) ∈ dom(main(h′1)), hence
γ1(ŝ(u1)) = ŝ(u1) = s(u1) ∈ dom(h1), which is impossible by definition of
h1. This shows that the domains of h′′1 , h′2 and h′3 are pairwise disjoint,

that h′
def
= h′′1] h′2] h′3 is well-defined, and by construction,

(ŝ′, h′) |=Rl u1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σθ ∗ ρ′′θ ∗ ∗i∈I⊥(zi)θ.

We show that (s, h′).γ (s, h), with main(h′)
def
= main(h′′1)]h′2 and aux(h′)

def
=

aux(h′′1)] h′3. Note that if ` ∈ dom(h′2) then necessarily ` = ŝ′(u1) =
s(u1) ∈ rng(s), so that ` /∈ L1 and by definition of η and γ1, γ(`) =
γ1 ◦ η−1(`) = γ1(`) = `. We check the four points of Definition 14 below:

1. Let `1, `2 be locations in dom(main(h′)) such that γ(`1) = γ(`2), and
assume that `1 ∈ dom(main(h′′1)). Then γ(`1) ∈ dom(h1) because
(ŝ′, h′′1) .γ (ŝ′, h1). If `2 ∈ dom(h′2) then γ(`2) = `2. By definition of
h1 we cannot have `2 ∈ dom(h1), and therefore, `1 6= `2. Otherwise,
`2 ∈ dom(main(h′′1)) and for i = 1, 2 we have γ(`i) = γ1(η−1(`i)) and
η−1(`i) ∈ dom(h′1). Since (ŝ, h′1).γ1 (ŝ, h1), we deduce that η−1(`1) =
η−1(`2) and because η is a bijection, `1 = `2. The proof is symmetric
if `2 ∈ dom(main(h′′1)). Finally, if `1, `2 ∈ dom(h′2), then `1 = `2
since dom(h′2) is a singleton.

2. We have γ(dom(main(h′′1))) = dom(h1) and since γ(ŝ′(u1)) = ŝ′(u1) =
s(u1), we deduce that γ(dom(η(main(h′′1))) ∪ dom(h′2)) = dom(h).

3. Let ` ∈ dom(main(h′′1))∪dom(h′2). If ` = ŝ′(u1), then by construction
we have

h′(ŝ′(u1)) = (ŝ′(y1σθ), . . . , ŝ
′(yκσθ), ŝ

′(~w), ŝ′(z1σθ), . . . , ŝ
′(zµσθ))

= (ŝ′(y1σθ), . . . , ŝ
′(yκσθ), s(~w), ŝ′(z1σθ), . . . , ŝ

′(zµσθ)),

where the second line follows from the fact that ŝ′ coincides with s
on dom(s). Note that, using the fact that rng(ŝ) ∩ L1 = ∅ and by

24

definition of γ and ŝ′, the following equalities hold:

γ (ŝ′(y1σθ), . . . , ŝ
′(yκσθ)) = (γ1(ŝ(y1σθ)), . . . , γ1(ŝ(yκσθ)))

= (ŝ(y1σθ), . . . , ŝ(yκσθ)).

We also have:

h(se(u1)) = (se(y1θ), . . . , se(yκθ)) and

h(ŝ(u1)) = (ŝ(y1σθ), . . . , ŝ(yκσθ)),

where the second equation is a consequence of the definitions of σ
and ŝ respectively. This proves that:

h(γ(ŝ′(u1))) = h(ŝ(u1)) = (ŝ(y1σθ), . . . , ŝ(yκ)σθ)

= γ (ŝ′(y1σθ), . . . , ŝ
′(yκσθ)) ,

hence that ŝ′(u1) satisfies Condition 3 of Definition 14. Now if ` ∈
dom(main(h′′1)), then it is straightforward to verify that ` satisfies
Condition 3 of Definition 14, using the fact that (ŝ′, h′′1) .γ (ŝ′, h1).

4. If ` ∈ dom(h′3), then ` = ŝ′(zjθ) for some j ∈ I and it is simple to

verify that Condition 4 of Definition 14 is verified, setting Ch′(`)
def
=

ŝ′(u1). If ` ∈ dom(aux(h′′1)) then, using the fact that (ŝ′, h′′1).γ(ŝ′, h1),
we deduce that Condition 4 of Definition 14 is verified.

We prove that dom(aux(h′)) ⊆ L. Let ` ∈ dom(aux(h′)), and first assume
that ` ∈ dom(aux(h′′1)), so that ` = η(`′) for `′ ∈ dom(aux(h′1)). By
the induction hypothesis we have dom(aux(h′1)) ⊆ L1, thus `′ ∈ L1. If
`′ ∈ rng(s), then `′ 6∈ E (by definition of E), and `′ 6∈ L (by the hypothesis
of the lemma), hence by definition of η we have η(`′) = `′ = ` ∈ L1 ⊆ L.
Otherwise `′ ∈ E and by construction, η(`′) ∈ L \ E ⊆ L. Now assume
that ` ∈ dom(h′3). Then ` = ŝ′(zj) for some j ∈ I, and since we have
shown that ŝ′(zj) ∈ L, for every j ∈ I, we have ` ∈ L.
We now show that loc(h′) \ rng(s) ⊆ L. Since dom(aux(h′)) ⊆ L and
loc(aux(h′)) = dom(aux(h′))∪{⊥⊥⊥}, we deduce that loc(aux(h′))\rng(s) ⊆
L, because ⊥⊥⊥ ∈ rng(s). Now let ` ∈ loc(main(h′)) \ rng(s). If ` ∈ loc(h′2)
then by definition of h′2 and since ` 6∈ rng(s), we must have ` = ŝ′(zjσθ) =
ŝ′(zj) for some j ∈ I, hence ` ∈ L. Otherwise ` ∈ loc(main(h′′1)), and ` =
η(`′) for some `′ ∈ loc(main(h′1)). If `′ ∈ rng(s) then η(`′) = ` ∈ rng(s),
which contradicts our assumption. Thus `′ 6∈ rng(s), hence `′ ∈ E, and by
definition of η, η(`′) = ` ∈ L.
There remains to prove that Rule (∓) is well-defined; this entails that
it occurs in Rl, hence that (s, h′) |=Rl α′. We first check that Condi-
tion 1 of Definition 38 holds. By construction we have 1 ∈ X, hence x1 ∈
Alloc(pX(x1, . . . , xn)), and we also have x1 ∈ Alloc(x1 7→ (y1, . . . , yκ, ~w, z1, . . . , zµ)σ).
Now assume that xi ∈ Alloc(pX(x1, . . . , xn)) and that i 6= 1. By defini-
tion of X, this entails that xiθ ∈ Alloc(ρ′). Since ρ′ = ρ′′θ, we de-
duce that xi ∈ Alloc(ρ′′). Next, we check that Condition 2 of Defini-
tion 38 holds. Let z be a variable occurring on the right-hand side of

25

rule (∓) but not on its left-hand side. Then z = zj , for some j with
zj 6∈ dom(σ) (indeed, z1, . . . , zµ are the only existential variables, and if
z ∈ dom(σ) then by definition of σ, we have σ(z′) 6= z for every variable
z′, thus z cannot occur in ρσ, hence in ρ′) and by definition of σ, we have
ŝ(zj) = se(zj) 6∈ {s(w1), . . . , s(wν)}. If j ∈ I then zj ∈ Alloc(∗i∈I⊥(zi)).
Otherwise, by definition of I, we must have ŝ(zj) ∈ dom(h′1), and since
rng(ŝ) ∩ L1 = ∅, necessarily, ŝ(zj) = γ1(ŝ(zj)). By the induction hypoth-
esis, since ŝ(zj) 6∈ {s(w1), . . . , s(wν)} and ŝ(wi) = s(wi) for i ∈ J1, νK,
we deduce that zj ∈ Alloc(ρ′); and since zj 6∈ dom(θ), we must have
zj ∈ Alloc(ρ′′).
We finally show that if s(u) ∈ dom(h′) \ {s(wi) | 1 ≤ i ≤ ν} then u ∈
Alloc(α′). Consider such a variable u. Assume s(u) ∈ dom(h′3). Then
s(u) is of the form ŝ′(zj) for some j ∈ I, hence s(u) ∈ L, since we have
shown that ŝ′(zj) ∈ L, for every j ∈ I. But L ∩ rng(s) = ∅, so this case
is impossible. We deduce that s(u) ∈ dom(h′′1) ∪ {s(u1)}. If s(u) = s(u1),
then since s is quasi-injective we deduce that u = u1 thus u ∈ Alloc(α′),
because by construction, 1 ∈ X. Otherwise, we have s(u) ∈ dom(h′′1) and
since η(`) = ` for all ` ∈ rng(s), necessarily s(u) ∈ dom(h′1). By the
induction hypothesis, we deduce that u ∈ Alloc(ρ′), hence there exists
x ∈ Alloc(ρ′′) (1 ≤ j ≤ n) such that u = xθ. By definition of θ (and
assuming by renaming that fv(ρ) ∩ fv(α) = ∅), necessarily, x = xj , for
some j ∈ J1, nK. Then by definition of X we have j ∈ X, thus u = xjθ ∈
Alloc(α′).

• Assume that α is of the form p(u1, . . . , un) and that dom(s) 6= fv(α) ∪
{w1, . . . , wν ,⊥⊥⊥}. Note that we have necessarily dom(s) ⊇ fv(α)∪{w1, . . . , wν ,⊥⊥⊥}.
Let s′ be the restriction of s to fv(α) ∪ {w1, . . . , wν ,⊥⊥⊥}. It is clear that
(s′, h) |= α and that s′ fulfills all the hypotheses of the lemma. Thus,
by the previous item, there exists α′, h′ and γ : L → L such that
(s′, h′).γ (s′, h), if ` 6∈ L then γ(`) = `, loc(h′)\rng(s′) ⊆ L, (s′, h′) |=Rl α′
and s(u) ∈ dom(h′) \ {s(wi) | 1 ≤ i ≤ ν} ⇒ u ∈ Alloc(α′). It is clear
that we have (s, h′) .γ (s, h), and (s, h′) |=Rl α′. Furthermore, since
rng(s′) ⊆ rng(s), we also have loc(h′) \ rng(s) ⊆ L. Finally, if s(u) ∈
dom(h′)\{s(wi) | 1 ≤ i ≤ ν}, then, since s(u) 6∈ L, and ref(h′)\rng(s′) ⊆ L
we must have s(u) ∈ rng(s′), thus u ∈ Alloc(α′) by the previous item.

4.4 Transforming Entailments

We define R̂ def
= Rl∪Rr. We show that the safe entailment problem φ |=R ψ can

be solved by considering an entailment problem on R̂ involving the elements of
D(φ) (see Definition 32).

Corollary 43. The entailment φ |=R ψ holds iff
∨
φ′∈D(φ) φ

′ |=R̂ ψ̂ holds.

Proof. First assume that φ |=R ψ. Consider a formula φ′ ∈ D(φ), let (s, h′)

be an R̂-model of φ′ and let h
def
= trunc(h′). Note that by construction, (s, h′)

26

is an Rl-model of φ′. By definition of D(φ), φ′ is a decoration of φ. Let

D2
def
= {` ∈ dom(h′) | h′(`) = ~⊥⊥⊥}, D1

def
= dom(h′) \ D2, and consider a location

` ∈ dom(h′). By definition, ` must be allocated by some rule in Rl. If ` is
allocated by a rule of the form given in Definition 34, then necessarily h′(`) is
of the form (`1, . . . , `κ, s(w), `′1, . . . , `

′
µ) and ` ∈ D1. Otherwise, ` is allocated by

the predicate ⊥ and we must have ` ∈ D2 by definition of the only rule for ⊥.
Since this predicate must occur within a rule of the form given in Definition 34,
` necessarily occurs in the µ last components of the image of a location in D1,
hence admits a connection in h′. Consequently, by Lemma 24 (s, h′).id(s, h), and

by Lemma 36, (s, h) |=R φ. Thus (s, h) |=R ψ, and by Lemma 30, (s, h′) |=Rr ψ̂,

so that (s, h′) |=R̂ ψ̂.

Now assume that
∨
φ′∈D(φ) φ

′ |=R̂ ψ̂ and let (s, h) be a model of φ. Since

the truth values of φ and ψ depend only on the variables in fv(φ) ∪ fv(ψ), we
may assume, w.l.o.g., that s is quasi-injective. Consider an infinite set L ⊆ L
such that (rng(s) ∪ loc(h)) ∩ L = ∅. By Lemma 42, there exist a heap h′, a
mapping γ : L → L and a decoration φ′ of φ such that γ(`) = ` for all ` /∈ L,
(s, h′) .γ (s, h) and (s, h′) |= φ′. Since rng(s) ∩ L = ∅, we also have γ(s) = s.

Then (s, h′) |= ψ̂. Let h1
def
= trunc(h′). Since (s, h′) .γ (s, h), by Corollary 23

we have (s, h′) .id (s, h1), and by Lemma 30, (s, h1) |= ψ. By Lemma 22 we
have h = γ(h1); thus, since ψ is λ-restricted w.r.t. {w1, . . . , wn}, we deduce by
Lemma 12 that (s, h) |= ψ.

This leads to the main result of this paper:

Theorem 44. The safe entailment problem is 2EXPTIME-complete.

Proof. The 2EXPTIME-hard lower bound follows from [8, Theorem 32], as the
class of progressing, λ-connected and λ-restricted entailment problems is a sub-
set of the safe entailment class. For the 2EXPTIME membership, Corollary 43
describes a many-one reduction to the progressing, connected and established
class, shown to be in 2EXPTIME, by Theorem 5. Considering an instance
P = φ |=R ψ of the safe class, Corollary 43 reduces this to checking the validity

of |D(φ)| instances of the form φ′ |=R̂ ψ̂, that are all progressing, connected and
established, by Corollary 40. Since a formula φ′ ∈ D(φ) is obtained by replac-
ing each predicate atom p(x1, . . . , xn) of φ by pX(x1, . . . , xn, ~w) and there are
at most 2n such predicate atoms, it follows that |D(φ)| = 2O(w(P)). To obtain
2EXPTIME-membership of the problem, it is sufficient to show that each of
the progressing, connected and established instances φ′ |=R̂ ψ̂ can be built in

time |P| · 2O(w(P)·log w(P)). First, for each φ′ ∈ D(φ), by Definition 32, we have
|φ′| ≤ |φ| ·(1+ν) ≤ |φ| ·(1+w(P)) = |φ| ·2O(log w(P)). By Definition 26, we have

|φ̂| ≤ |φ| · (1 + ν) = |φ| · 2O(log w(P)). By Definition 34, D(R) can be obtained
by enumeration in time that depends linearly of:

|D(R)| ≤ |R| · 2µ · (n+ ν + µ)ν

≤ |R| · 2w(P)+w(P)·log w(P)

= |P| · 2O(w(P))

27

This is because the number of intervals I is bounded by 2µ and the number of
substitutions σ by (n + ν + µ)ν , in Definition 34. By Definition 37, checking
whether a rule is well-defined can be done in polynomial time in the size of the
rule, hence in 2O(w(P)), so the construction ofRl takes time |P|·2O(w(P) log w(P)).

Similarly, by Definition 34, the set R̂ is constructed in time:

|R̂| ≤ |R| · 2µ · w(P)ν

≤ |R| · 2w(P) · 2w(P)·log w(P)

= |P| · 2O(w(P))

Moreover, checking that a rule in R̂ is connected can be done in time polynomial
in the size of the rule, hence the construction of Rr takes time 2O(w(P) log w(P)).
Then the entire reduction takes time 2O(w(P) log w(P)), which proves the 2EXP-
TIME upper bound for the safe class of entailments.

References

[1] Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I.
Kanovich, and Joël Ouaknine. Foundations for decision problems in sep-
aration logic with general inductive predicates. In Anca Muscholl, editor,
FOSSACS 2014, ETAPS 2014, Proceedings, volume 8412 of Lecture Notes
in Computer Science, pages 411–425, 2014.

[2] Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. On formal properties
of simple phrase structure grammars. Sprachtypologie und Universalien-
forschung, 14:143–172, 1961.

[3] Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for
systems-level code. In Ganesh Gopalakrishnan andShaz Qadeer, editor,
Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of LNCS,
pages 178–183. Springer, 2011.

[4] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim
Purbrick, and Dulma Rodriguez. Moving fast with software verification.
In Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA
Formal Methods - 7th International Symposium, NFM 2015, Pasadena,
CA, USA, April 27-29, 2015, Proceedings, volume 9058 of LNCS, pages
3–11. Springer, 2015.

[5] Kamil Dudka, Petr Peringer, and Tomás Vojnar. Predator: A practical
tool for checking manipulation of dynamic data structures using separa-
tion logic. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, volume 6806 of LNCS, pages
372–378. Springer, 2011.

28

[6] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment checking
in separation logic with inductive definitions is 2-exptime hard. In LPAR
2020: 23rd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020, volume 73
of EPiC Series in Computing, pages 191–211. EasyChair, 2020.

[7] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment is Undecid-
able for Symbolic Heap Separation Logic Formulae with Non-Established
Inductive Rules. working paper or preprint, September 2020. URL:
https://hal.archives-ouvertes.fr/hal-02951630.

[8] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Decidable entailments in
separation logic with inductive definitions: Beyond establishment. In CSL
2021: 29th International Conference on Computer Science Logic, EPiC
Series in Computing. EasyChair, 2021.

[9] Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The tree width of separa-
tion logic with recursive definitions. In Proc. of CADE-24, volume 7898 of
LNCS, 2013.

[10] Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in
inductive separation logic with tree automata. In Franck Cassez and Jean-
François Raskin, editors, ATVA 2014, Proceedings, volume 8837 of Lecture
Notes in Computer Science, pages 201–218. Springer, 2014.

[11] Samin S Ishtiaq and Peter W O’Hearn. Bi as an assertion language for
mutable data structures. In ACM SIGPLAN Notices, volume 36, pages
14–26, 2001.

[12] Jens Katelaan, Christoph Matheja, and Florian Zuleger. Effective entail-
ment checking for separation logic with inductive definitions. In Tomás
Vojnar and Lijun Zhang, editors, TACAS 2019, Proceedings, Part II, vol-
ume 11428 of Lecture Notes in Computer Science, pages 319–336. Springer,
2019.

[13] Jens Pagel and Florian Zuleger. Beyond symbolic heaps: Deciding sepa-
ration logic with inductive definitions. In LPAR-23, volume 73 of EPiC
Series in Computing, pages 390–408. EasyChair, 2020.

[14] J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Struc-
tures. In Proc. of LICS’02, 2002.

29

https://hal.archives-ouvertes.fr/hal-02951630

	Introduction
	Definitions
	Decidable Entailment Problems
	From safe to established entailment
	A relation on structures
	Transforming the Consequent
	Transforming the Antecedent
	Transforming Entailments

