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Why Machine Learning?
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“Machine Learning: Field of study that gives computers the ability to
learn without being explicitly programmed” Samuel A. - 1959
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“Multilayer feedforward networks are capable of approximating any
measurable function to any desired degree of accuracy”

Hornik K., Stinchcombe M., White H. - 1989
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Types of Machine Learning
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e Supervised Learning:
Need a training set of labeled data
Example: classification, prediction
e Unsupervised Learning:
Only need a raw set of data
Example: SVD, clustering, autoencoders
e Reinforcement Learning:
Look for the optimal policy to reach a goal
Example: traffic light control, games, fluid mechanics
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RL and Navier-Stokes: How?
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NS equations can be seen as the environment:

e Inputs are observations of the flow field, drag, lift, etc.

e Outputs are the commands to send to actuators in order to maximize the
reward

e The reward can be focused on reducing the drag, the lift, predicting the
flow solution, etc.

Figure: Control off (top) - Control on (bottom)
Rabault J. et al. (2019)
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CFD configuration
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Figure: Each angular velocity is denoted by Ax, Re = 100
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CFD configuration

6D

6D

6D

20D

Figure: Pressure probes positioning
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Reinforcement Learning setup
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Figure: RL framework

e State (input): Pressure probes
e Actor-critic agent: TD3 e Action (output): Angular veloci-
e Environment: Fluidic pinball ties

e Reward: —F3 — af|a||2

The action range is set to [—3, 3] rad/s
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Actor-Critic principle

INSTITUT

I rotate
the piece

Really bad
action
“~—
a

Actor Critic

e The actor takes as input the state and outputs the best action.
e The critic evaluates the action by computing the value function.
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Temporal Difference Learning

The action-value function is formally defined as:

Q" (s,a) Z'yk “r(sk, ax)|s; = s, a; _a]

k=t

All TDL methods are based on the fact that Q™ satisfies the Bellman equation:
Qﬂ-(sa (1) =E, [T'(St, at) + ’yoﬂ(sﬂrla at+1)|sf =S,ar = a}

The classical TD(0) algorithm is then defined as:

TD target

Q(s¢, ar) < Q(se, ar) + a(r(se, ar) + vO(St11,ar1) — Q(se, ar))
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Twin Delayed DDPG (TD3)
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Deep Deterministic Policy Gradient (DDPG) works well but highly sensitive to
hyperparameters

TD3 uses three tricks:
e Clipped Double-Q Learning
e “Delayed” Policy Updates
e Target Policy Smoothing

Quick facts:
e Off-policy algorithm
e Continuous action spaces only
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9 probes, no penalization
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9 probes, with penalization
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Effect of the number of probes
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Quick summary:

e 9 probes without penalization =~ 65% drag force reduction

e 9 probes with penalization ~ 50%
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Effect of the number of probes
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Quick summary:

e 9 probes without penalization =~ 65% drag force reduction

e 9 probes with penalization ~ 50%
Trying to reduce the number of probes:

e 3 probes with penalization ~ 35%

e 1 probe with penalization ~ 25%

Performances drops by a lot... Any solution?
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Effect of the number of probes
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Quick summary:

e 9 probes without penalization =~ 65% drag force reduction

e 9 probes with penalization ~ 50%
Trying to reduce the number of probes:

e 3 probes with penalization ~ 35%

e 1 probe with penalization ~ 25%

Performances drops by a lot... Any solution?

Takens’s embedding theorem
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3 probes, with penalization

INSTITUT

L — — =06
1 \
L \ N
&, \ S\ / \
vy \
! A\
0.
0.
10 2 3 A
Time(s)
31— A
—_ Ar
2 A
, \VVaVVame
H NS
g’ ] A
] N\ 7\
; VR N Ve S
10 20 30 - 40 0 60 0
ime(s)

Thibaut Guégan | Control by Reinforcement Learning






Summing up
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e One of the first efforts

e Arbitrary placement of probes
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Summing up
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e One of the first efforts

e Arbitrary placement of probes

Pros:

e Can be trained on various Reynolds numbers
e Fast training ~ 4 vortex shedding per epochs and 20 epochs at most
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Summing up
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e One of the first efforts

e Arbitrary placement of probes

Pros:

e Can be trained on various Reynolds numbers
e Fast training ~ 4 vortex shedding per epochs and 20 epochs at most

Cons:

e Large time delay (credit assignment problem)
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Summing up
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e One of the first efforts

e Arbitrary placement of probes

Pros:

e Can be trained on various Reynolds numbers
e Fast training ~ 4 vortex shedding per epochs and 20 epochs at most

Cons:

e Large time delay (credit assignment problem)

The experimental open cavity is the next milestone
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On demand attendee meetings
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Want to have a talk?

Availability:
e Tuesday 24 from 03:00 PM to 05:00 PM - CET
08:00 AM to 10:00 AM - CST
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Thank you for your attention!

Any questions?



