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Stability and stabilization of homogeneous systems
depending on a parameter

Emmanuel Moulay

Abstract—This paper deals with the Lyapunov stability and interior of A. A function f : R™ — R™ is a smooth function
stabilization of nonlinear homogeneous systems depending on ajf jt is at leastC!.
parameter. We give a new method for proving global stability and A matrix A € C™" is Hurwitz if its eigenvalues have
stabilization by using a continuous topological deformation which . :
preserves the stability. The proposed results use a condition basde strictly negative real part. We denote by
on a well known topological lemma, called the tube lemma. To

illustrate these results, we study finite time robust stabilization 0 0 0 Qi
of the chain of integrators. 1 0 e 0 o)
Index Terms—Homogeneous systems, nonlinear systems de- Cla)= 0 1 0 as
pending on a parameter, stability, stabilization. : : . : :
0 0 1 Qp
I. INTRODUCTION ) )
he companion matriattached tax = (a1, ...,a,) € C™.

t
The stabilization of nonlinear systems is a challenging andA function g : X — Y between two topological spaces is

difficult subject in control theory. Recent years have Se%?operif and only if the preimage of every compact setyin
increasing interest in the stabilization of nonlinear eyss. o compact inX

There are sever_al mot|yat|ons for considering homoger?eouq_et us recall the definitions about weighted homogeneity

§ystem_s depending contmuously ona paramet_er. The main QiHich generalizes the classical notion of homogeneity and

is t_hat it can be seen as a continuous topological defqrmauﬁas been first introduced in [4]. A functiol : R" — R

which preserves the stability. The proposed framework seta is r—homogeneous of degrelif

on a topological result known as the tube lemma and leads to

a new method for proving global stability and stabilizatiain V (A% (2)) = AV (z)

homogeneous systems. This idea has been considered in [1] to , .

study the finite time stabilization of the chain of integrato [0F @l A >0 wherer = (r1,...,r,) € RZ, are the weights

The main objective of this paper is to extend the scope of tR8d A% (z) = (A"z1,.., A™,) is the dilatation. A vector

study to the global stability and stabilization of homogawe fi€ld f is —homogeneous of degreaf for all 1 < < n, the

systems depending on a parameter. i—th compqnentfi is a r—homogeneous function of degree
One system of particular interest in many practical sitreti " +d, thatis

is thg _c:ha!n of mtegrators: .We. apply our thegretlc_al restdt fi (A% (2)) = A ()

the finite time robust stabilization of this chain of integns.

A survey on finite time stability of nonlinear systems can béor all A > 0.

found in [2] and the problem of finite stabilization of nordar Let us consider a continuous vector field R™ — R™. In

systems is considered for instance in [3]. the following, we consider that all Cauchy problems asgedia
The outline of the paper is as follows. In Section I, we fixvith the system

notation and terminology about control theory. Our mainles . n

for the stability and the stabilization of systems depegdin a &=f(z), zeR @)

parameter is proved in Section Ill. In Section IV we discles t have unique forward solutions for all positive times deddig
implications of this result to the finite time robust stadalion = (1) for » € R* and¢ > 0. Under this assumption ofy, the

of the chain of integrators. We make concluding remarks aggstem (1) has a continuous global semi-fiot, z) = ¢ (t)
sketch some directions for future research in Section V. (see [5]). A set4d C R” is positively invariantunder f if
P(t, A) C Aforall t > 0. A setA that is positively invariant
Il. NOTATION AND DEFINITIONS under f is strictly positively invariantunder f if (¢, A) c A
Throughout the papeB” denotes the unit open ball &~. for all ¢ > 0.
A neighborhoodof z in a topological spaceX is an open  The system (1) is—homogeneous of degreeif the vector
subsetU of X which containsz. Let A be a subset of a field f is r—homogeneous of degree

topological spacefpA and A denote the boundary and the If V : R® — R is a continuously differentiable function

then define
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A Lyapunov functionV : R® — R for the system (1) is strictly positively invariant underf, then the system (1) is
a proper continuously differentiable positive definite dtion globally asymptotically stable.

such thatV is negative definite. Let us recall a Lyapunov theorem dedicated to the homo-
The system (1) imsymptotically stablé the following two geneous systems which appears in [7, Theorem 2].
conditions hold. Lemma 4: Suppose that the vector fielflis continuous on

1) the system (1) istable that is, for every open neighbor-R" andr—homogeneous of degrek Let p be a positive inte-
hoodV C R™ of the origin, there exists an open neighgder. If the system (1) is asymptotically stable, then thedste
borhood/ C R™ of the origin such that)(t,U) C V a C?—Lyapunov function for the system (X}-homogeneous
for everyt > 0. of degree

2) the origin is attractive that is, there exists an open kE>p Jax 7.
neighborhoodV C R” of the origin such that, for every _ - _

z € W and every open neighborhodd C R™ of the Now, let us consider a continuous function

;)rigiTn, there existd” > 0 such thaty)(t,z) € U for all FiAXR' - R"
>T.
The system (1) isglobally asymptotically stablef it s WhereA is a topological space, and farc A the system
asymptot@cally stable on the who!e_ spg]dé:R”.. o . i = fw,z), r € R (4)
Let us introduce the notion of finite time stability involgn
the settling time function given in [6]. For everyw € A, we suppose in the following that all Cauchy

Definition 1: Let us consider the system (1). The systefroblems associated with the system (4) have unique forward
(1) is finite time stabldf it is stable and there exists an opersolutions for all positive times.
neighborhoodV of the origin that is positively invariant under The following theory is based on a well known topological
f and a positive definite functiod : N' — R called the lemma called the tube lemma. Let us recall this lemma whose
settling-time functiorsuch that)(7'(x),x) = 0 for all z € A*  proof can be found in [8, Lemma 26.8].
andy(t,z) # 0 for all z € M\ {0}, t < T(z). The system Lemma 5 (tube lemma)et X and Y be topological
(1) is globally finite time stabléf the it is finite time stable spaces witlt” compact and consider the product space Y.

with A/ = R"™. If N is an open set oK x Y containing the slicdzo} x Y of
Various properties of the settling-time function are giien X x Y, then N contains some tub®” x Y about{z¢} x Y,
[6]. whereW is a neighborhood of( in X.

Remark 2:If the system (1) is finite time stable, then it We can now state the main result of this paper.
cannot possess uniqueness in backward time at the origin, imfheorem 6:Let A be a topological space and suppose that

particular f cannot be locally Lipschitz at the origin. [/ is a continuous vector field ahxR" such thate — f (w, x)
Consider the control system is (r1(w),...,rn(w)) —homogeneodse RZ,. If the system
&= f(z,u), reR" ueR™ (2) & = f(wo, ), zeR" (5)

with f € C° (R™ x R™,R") and f(0,0) = 0. is globally asymptotically stable fapy € A, then there exist

The control system (2) izontinuously stabilizablgre- @ neighborhood\” of wy in A such that for alkw € A’, the
spectivelyglobally continuously stabilizab)df there exists a System (4) is globally asymptotically stable. Moreoverthié

feedback controt € C° (R, R™) such that: weightsr = (ry,...,m) € RY, do not depend ow, then
1) u(0) =0 for any r—homogeneous smooth Lyapunov functigrfor the

system (5) there exists a neighborhaatl of wy in A such
that V is also a Lyapunov function for the system (4) for all
&= f(z,u(x), xeR™ () weA.
. . , Proof: As the system (5) is globally asymptotically stable,
Is asymptotically stable (respectively globally asymptoy,e yheorem of Kurzweil given in [9, Theorem 7] ensures there
ically stable). exists a smooth Lyapunov functiori : R" — R for the
The control system (2) idinite time stabilizable(respec- system (5). Let us denote by -

tively globally finite time stabilizableif the closed-loop sys- "

tem (3) is finite time stable (respectively globally finiteng v (z) = oV (z) fi(w,z).

stable). “ dx; R

i=1

2) the closed-loop system

As V is proper,
[1l. STABILITY AND STABILIZATION OF SYSTEMS S=v-1({1})

DEPENDING ON A PARAMETER

For the convenience of the reader, we first recall a resifitc@mpact. Define the continuous function

dedicated to homogeneous vector fields which can be found p: AxS — R

in [1, Theorem 6.1]. (w,z) +— V,(z)
Lemma 3: Suppose that the vector fieltlis homogeneous.

If A C R™is a compact set that contains the origin and is!in general, the weightéri (w), . .., r»(w)) depend onw.



theny~! (R-() is an open subset df x S containing the slice IV. APPLICATION TO FINITE TIME ROBUST STABILIZATION
{wo} x S. Since S is compact, there exists a neighborhood
A’ C A of wy such thatp~! (R_) contains some tubg’ x S
about{wy} x S (see Lemma 5). We havi, (z) < 0 for all
(w,z) € A’ x S. The compact set

An application of the previous theory is in studying the
global finite time robust stabilization of the chain of intag
tors (see [1, Proposition 8.1]). In this example, a nonlinea
robust feedback control is derived from a linear one by using
A= Vet ([07 1]) Corollary 9.
The chain of integrators is given by
is strictly positively invariant undet — f (w, z) for all w in

A’, due to the fact that 1= T3
S = 0A. G =3 7
By using Lemma 3, we deduce that the system (4) is globally In =u
asymptotically stable for every in A’. denoted in short by
Now, suppose that the weights= (rq,...,7,) € R™ do
not depend omw. By using Lemma (4), we know there exists =T (z,u).

a smooth Lyapunov functio’ : R — Rx for the system
(5) r—homogeneous of degrele As before, there exists a
neighborhoodA” of wy in A such thatV, (z) < 0 for all
(w,z) € A" xS. As z — f(w,x) is r—homogeneous of
degreed (w) andV is r—homogeneous of degrég it follows
that V, (z) is r—homogeneous of degreé(w) + k for all
w € A" (see for instance [10], [11]). Thug, (z) < 0 for
all (w,a:) e A" xR™ andV is a LyapUnOV function for the with d € (,%’rn} and u is T,homogeneous of degree
system (4) for allv € A”. m L

Remark 7:Theorem 6 gives the existence of a neighbor- |, 1 proposition 8.1], a control algorithm is built for the
hood A” and not a precise specification of the knowledge ¢kain of integrators (7). In the following, we extend thisut
the domain of stability. Numerical techniques could be usgd 5 robust feedback control in the sense that we obtain a
to determine a more precise domain of stability. Nevers®le gotor margin for the choice of the control gain. Indeed, we
when the degree of homogeneity of the system (4) depeng§j; 4 closed-loop chain of integrators which is robust to

The following characterization of the homogeneity properdt
the chain of integrators will be useful.

Lemma 10:The system (7) is—homogeneous of degreke
if and only if

Ti+1=7“i+d, 1<i1<n-1

on the constant weights-, .. .,m,) € RY, forallw € A, the  peryrhations of the feedback control gains. Moreover, &mo
knowledge of a LX?pU”OV function can be useful to Spec'&recise specification of the domain of stability is given by
the neighborhood\”. using Corollary 9 and Lemma 10.

For systems without any homogeneity property, we still have Proposition 11:Letk = (ky, ... k,) € R" such that' (k)
the following result: AR

Corollary 8: If the system (5) is globally asymptotically
stable forwy € A, then there exists a compact sétand a
neighborhood\’ of wq in A such thatA is strictly positively ae(l—¢1),
invariant underz — f (w,z) for all w in A’.

The next result is a corollary of Theorem 6 which deals
with the problem of stabilization. the system (7) is globally finite time stabilizable under the

Corollary 9: Consider the control system (2) and the corzontinuous feedback control
tinuous function

u: AxR* — R™

is Hurwitz. There exists € |1 — ﬁ@) ande; > 0 for
1 < ¢ < n such that for all

ki € (ki — € ki + ),

(w,z) +— wu(w,x)’ ula, by, k@) = ki [2]™ — =k 2] (8)
Suppose that for everyy € A the vector field » with o o
f (z,u(w,z)) is homogeneous and all Cauchy problems as- 217 = |2[" sgn (z), zeR
sociated with the closed-loop system and
. Qi < i<
i=f(z,u(w,z)), TER" (6) G-1= o, e 2SEST
an = Q, (9)
have unique forward solutions for all positive times. If the Qpt1 =1

control system (2) is globally continuously stabilized and
the feedback contraol (wo, z) with wy € A, then there exists
a neighborhoodA’ of wy in A such that for allw € A/, =T (z,u(a, k), ...,k ,z)) (10)
the system (2) is globally continuously stabilized undez th

feedback controk (w, x). is (— . i) —homogeneous of degree= 21,

ay’? Y Qg «

Moreover, the closed-loop system



Proof: Homogeneity propertyWith Lemma (10), it is T T ==
easy to verify that the system (10) is homogeneous of degree
d if and only the the following inequalities hold

1 a—1 1

- <=, > 1.
a(n—1) ! a "

So the system must satisfy

1
0<l——<a<?2
n—1

which is equivalent to the fact that o

1 1 asl
_ . d —. 0 Time
n—1 <e< 2

. T
Asymptotic stabilityit is well known that the system Fig- 1. Simulation wither = 55

=T (z,u(l,ky...,kn,x)) * ‘ ‘ ‘ ‘ T =

is globally asymptotically stable. Corollary 9 implies thiaere
exists (a,b) € R%, with

1-— % <a<l<b<?2
ande; > 0 with 1 < i < n such that the system (10) is
globally asymptotically stable for alv € (a,b) and &k €
(kz — €4, kl + Ei).

Finite time convergencdt follows from [1, Theorem 7.1]
that the closed-loop system (10) is finite time stable if the

degree of homogeneity is negative. Finally, we have L5 5 m 25 20 2 %0
1 1 <a<l 1
. . . . 1
n_1 Fig. 2. Simulation withaw = 5
[ ]
Remark 12:Due to the fact that the function — |[z]“ is V. CONCLUSION

not differentiable for0 < a <1, the closed-loop system (10)  his paper analyzes the stability and stabilization oferyst

is not equivalent to the closed-loop system depending on a parameter. The main goal of this paper is to
develop a topological tool to obtain the global stabilitydan
stabilization of a system class depending on a parameter. Th

or a well known stabilizable system under a diffeomorphig!Pe lemma plays a key role in the presented theoreticaltsesu
change of coordinates in the state space. This is the readf§Se are particularly suited for deriving a nonlinear besek
why we had to find a new way of doing. control from a linear one as for the chain of integrators.

Example 13:Let us give the example of the triple integrator A possible direction for future research is to build a state
space varying parameter(z), with values in the neighbor-

=T (z,u(l,kr...,kn,x))

1 = X2 hood A’, in order to optimize the properties of the feedback
o =3 . controlsu (w (x) , x), as for instance the speed of convergence.
T3 =u It will be interesting to find a more precise specification foe t
I 5 neighborhood\’, or at least oDA’, in order to bound the state
(8) becomes
11 3 3 u 3 u 3 1 ACKNOWLEDGMENT
U 77_17_77_7»:5 :_Lxﬂ%_*LmQWzg_foi{lm . .
20 27 2 2 2 The author gratefully acknowledge discussions on homoge-

neous systems with Laurent Praly.

Then, the system 28, 22 20) _homogeneous of degree

—%. A simulation of the system leads to Figure 1 which
gives an estimate of the settling time.
With Proposition 11, we know that fax = 1 we lose the [1] S. P. Bhat and D. S. Bernstein, “Geometric homogeneity \aftplica-

.. . . . 2 tions to finite-time stability,"Math. Control Signals Systemsol. 17,
finite time property as displayed by Figure 2. pp. 101-127, 2005.

REFERENCES



(2]

(3]
(4]
(5]
(6]

(7]

(8]
(9]

(20]

[11]

E. Moulay and W. Perruquettiinite-time stability and stabilization:
state of the art, in “Advances in Variable Structure and BigdMode
Control”. Lecture Notes in Control and Information Sciences, Springe
Verlag, 2006, vol. 334.

——, “Finite time stability and stabilization of a class ebntinuous
systems,"J. Math. Anal. Appl.vol. 323, no. 2, pp. 1430-1443, 2006.
L. P. Rothschild and E. M. Stein, “Hypoelliptic differgal operators
and nilpotent groups,Acta Math, vol. 137, pp. 247-320, 1976.

N. Bhatia and O. Hajek.ocal semi-dynamical systemd_ecture Notes
in Mathematics, Vol. 90, Springer, 1969.

S. P. Bhat and D. S. Bernstein, “Finite time stability ofntiauous
autonomous systems3IAM J. Control Optim.vol. 38, no. 3, pp. 751—
766, 2000.

L. Rosier, “Homogeneous Lyapunov function for homogerseoantin-
uous vector field,"Systems Control Leftvol. 19, pp. 467-473, 1992.
J. Munkres,Topology Prentice Hall, 1999.

J. Kurzweil, “On the inversion of Liapunov’s second tihem on stability
of motion,” Amer. Math. Soc. Translvol. 24, pp. 19-77, 1963.

H. Hermes, “Homogeneous ccordinates and continuous asyicgily
stabilizing feedback controls,” iRroc. Colorado Springs ConfDiffer-
ential equations : Stability & Contr@larcel Dekker, S. Elaydi Editor
1990.

M. Kawski, “Geometric homogeneity and stabilizationj’ Proc. IFAC
Nonlinear Control Symposiunbake Tahoe, CA, 1995, pp. 164-169.



