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Stability and stabilization of homogeneous systems
depending on a parameter

Emmanuel Moulay

Abstract—This paper deals with the Lyapunov stability and
stabilization of nonlinear homogeneous systems depending on a
parameter. We give a new method for proving global stability and
stabilization by using a continuous topological deformation which
preserves the stability. The proposed results use a condition based
on a well known topological lemma, called the tube lemma. To
illustrate these results, we study finite time robust stabilization
of the chain of integrators.

Index Terms—Homogeneous systems, nonlinear systems de-
pending on a parameter, stability, stabilization.

I. I NTRODUCTION

The stabilization of nonlinear systems is a challenging and
difficult subject in control theory. Recent years have seen
increasing interest in the stabilization of nonlinear systems.
There are several motivations for considering homogeneous
systems depending continuously on a parameter. The main one
is that it can be seen as a continuous topological deformation
which preserves the stability. The proposed framework is based
on a topological result known as the tube lemma and leads to
a new method for proving global stability and stabilizationof
homogeneous systems. This idea has been considered in [1] to
study the finite time stabilization of the chain of integrators.
The main objective of this paper is to extend the scope of the
study to the global stability and stabilization of homogeneous
systems depending on a parameter.

One system of particular interest in many practical situations
is the chain of integrators. We apply our theoretical results to
the finite time robust stabilization of this chain of integrators.
A survey on finite time stability of nonlinear systems can be
found in [2] and the problem of finite stabilization of nonlinear
systems is considered for instance in [3].

The outline of the paper is as follows. In Section II, we fix
notation and terminology about control theory. Our main result
for the stability and the stabilization of systems depending on a
parameter is proved in Section III. In Section IV we discuss the
implications of this result to the finite time robust stabilization
of the chain of integrators. We make concluding remarks and
sketch some directions for future research in Section V.

II. N OTATION AND DEFINITIONS

Throughout the paperBn denotes the unit open ball ofR
n.

A neighborhoodof x in a topological spaceX is an open
subsetU of X which containsx. Let A be a subset of a
topological space,∂A and Å denote the boundary and the
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interior of A. A function f : R
n → R

m is a smooth function
if it is at leastC1.

A matrix A ∈ C
n×n is Hurwitz if its eigenvalues have

strictly negative real part. We denote by

C (α) =















0 0 · · · 0 α1

1 0 · · · 0 α2

0 1 · · · 0 α3

...
...

.. .
...

...
0 0 · · · 1 αn















the companion matrixattached toα = (α1, . . . , αn) ∈ C
n.

A function g : X → Y between two topological spaces is
proper if and only if the preimage of every compact set inY
is compact inX.

Let us recall the definitions about weighted homogeneity
which generalizes the classical notion of homogeneity and
has been first introduced in [4]. A functionV : R

n → R

is r−homogeneous of degreed if

V (∆r
λ(x)) = λdV (x)

for all λ > 0 wherer = (r1, . . . , rn) ∈ R
n
>0 are the weights

and ∆r
λ(x) = (λr1x1, ..., λ

rnxn) is the dilatation. A vector
field f is r−homogeneous of degreed if for all 1 ≤ i ≤ n, the
i−th componentfi is a r−homogeneous function of degree
ri + d, that is

fi (∆r
λ(x)) = λri+dfi (x)

for all λ > 0.
Let us consider a continuous vector fieldf : R

n → R
n. In

the following, we consider that all Cauchy problems associated
with the system

ẋ = f(x), x ∈ R
n (1)

have unique forward solutions for all positive times denoted by
φx (t) for x ∈ R

n andt ≥ 0. Under this assumption onf , the
system (1) has a continuous global semi-flowψ (t, x) = φx (t)
(see [5]). A setA ⊆ R

n is positively invariantunder f if
ψ(t, A) ⊆ A for all t > 0. A setA that is positively invariant
underf is strictly positively invariantunderf if ψ(t, A) ⊂ Å

for all t > 0.
The system (1) isr−homogeneous of degreed if the vector

field f is r−homogeneous of degreed.
If V : R

n → R is a continuously differentiable function
then define

V̇ (x) =

n
∑

i=1

∂V

∂xi

(x) fi (x) .
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A Lyapunov functionV : R
n → R≥0 for the system (1) is

a proper continuously differentiable positive definite function
such thatV̇ is negative definite.

The system (1) isasymptotically stableif the following two
conditions hold.

1) the system (1) isstable, that is, for every open neighbor-
hoodV ⊆ R

n of the origin, there exists an open neigh-
borhoodU ⊆ R

n of the origin such thatψ(t,U) ⊆ V
for every t ≥ 0.

2) the origin is attractive, that is, there exists an open
neighborhoodW ⊆ R

n of the origin such that, for every
x ∈ W and every open neighborhoodU ⊆ R

n of the
origin, there existsT ≥ 0 such thatψ(t, x) ∈ U for all
t > T .

The system (1) isglobally asymptotically stableif it is
asymptotically stable on the whole spaceW =R

n.
Let us introduce the notion of finite time stability involving

the settling time function given in [6].
Definition 1: Let us consider the system (1). The system

(1) is finite time stableif it is stable and there exists an open
neighborhoodN of the origin that is positively invariant under
f and a positive definite functionT : N → R called the
settling-time functionsuch thatψ(T (x), x) = 0 for all x ∈ N
andψ(t, x) 6= 0 for all x ∈ N\{0}, t < T (x). The system
(1) is globally finite time stableif the it is finite time stable
with N = R

n.
Various properties of the settling-time function are givenin

[6].
Remark 2: If the system (1) is finite time stable, then it

cannot possess uniqueness in backward time at the origin, in
particularf cannot be locally Lipschitz at the origin.

Consider the control system

ẋ = f (x, u) , x ∈ R
n, u ∈ R

m (2)

with f ∈ C0 (Rn × R
m,Rn) andf(0, 0) = 0.

The control system (2) iscontinuously stabilizable(re-
spectivelyglobally continuously stabilizable) if there exists a
feedback controlu ∈ C0 (Rn,Rm) such that:

1) u (0) = 0,
2) the closed-loop system

ẋ = f (x, u(x)) , x ∈ R
n. (3)

is asymptotically stable (respectively globally asymptot-
ically stable).

The control system (2) isfinite time stabilizable(respec-
tively globally finite time stabilizable) if the closed-loop sys-
tem (3) is finite time stable (respectively globally finite time
stable).

III. STABILITY AND STABILIZATION OF SYSTEMS

DEPENDING ON A PARAMETER

For the convenience of the reader, we first recall a result
dedicated to homogeneous vector fields which can be found
in [1, Theorem 6.1].

Lemma 3:Suppose that the vector fieldf is homogeneous.
If A ⊂ R

n is a compact set that contains the origin and is

strictly positively invariant underf , then the system (1) is
globally asymptotically stable.

Let us recall a Lyapunov theorem dedicated to the homo-
geneous systems which appears in [7, Theorem 2].

Lemma 4:Suppose that the vector fieldf is continuous on
R

n andr−homogeneous of degreed. Let p be a positive inte-
ger. If the system (1) is asymptotically stable, then there exists
aCp−Lyapunov function for the system (1)r−homogeneous
of degree

k > p max
1≤i≤n

ri.

Now, let us consider a continuous function

f : Λ × R
n → R

n

whereΛ is a topological space, and forω ∈ Λ the system

ẋ = f(ω, x), x ∈ R
n. (4)

For everyω ∈ Λ, we suppose in the following that all Cauchy
problems associated with the system (4) have unique forward
solutions for all positive times.

The following theory is based on a well known topological
lemma called the tube lemma. Let us recall this lemma whose
proof can be found in [8, Lemma 26.8].

Lemma 5 (tube lemma):Let X and Y be topological
spaces withY compact and consider the product spaceX×Y .
If N is an open set ofX×Y containing the slice{x0}×Y of
X × Y , thenN contains some tubeW × Y about{x0} × Y ,
whereW is a neighborhood ofx0 in X.

We can now state the main result of this paper.
Theorem 6:Let Λ be a topological space and suppose that

f is a continuous vector field onΛ×R
n such thatx 7→ f (ω, x)

is (r1(ω), . . . , rn(ω))−homogeneous1 ∈ R
n
>0. If the system

ẋ = f(ω0, x), x ∈ R
n (5)

is globally asymptotically stable forω0 ∈ Λ, then there exist
a neighborhoodΛ′ of ω0 in Λ such that for allω ∈ Λ′, the
system (4) is globally asymptotically stable. Moreover, ifthe
weights r = (r1, . . . , rn) ∈ R

n
>0 do not depend onω, then

for anyr−homogeneous smooth Lyapunov functionV for the
system (5) there exists a neighborhoodΛ′′ of ω0 in Λ such
that V is also a Lyapunov function for the system (4) for all
ω ∈ Λ′′.

Proof: As the system (5) is globally asymptotically stable,
the theorem of Kurzweil given in [9, Theorem 7] ensures there
exists a smooth Lyapunov functionV : R

n → R≥0 for the
system (5). Let us denote by

V̇ω (x) =

n
∑

i=1

∂V

∂xi

(x) fi (ω, x) .

As V is proper,
S = V −1 ({1})

is compact. Define the continuous function

ϕ : Λ × S → R

(ω, x) 7→ V̇ω (x)

1In general, the weights(r1(ω), . . . , rn(ω)) depend onω.



3

thenϕ−1 (R<0) is an open subset ofΛ×S containing the slice
{ω0} × S. SinceS is compact, there exists a neighborhood
Λ′ ⊆ Λ of ω0 such thatϕ−1 (R<0) contains some tubeΛ′×S
about{ω0} × S (see Lemma 5). We havėVω (x) < 0 for all
(ω, x) ∈ Λ′ × S. The compact set

A = V −1 ([0, 1])

is strictly positively invariant underx 7→ f (ω, x) for all ω in
Λ′, due to the fact that

S = ∂A.

By using Lemma 3, we deduce that the system (4) is globally
asymptotically stable for everyω in Λ′.

Now, suppose that the weightsr = (r1, . . . , rn) ∈ R
n do

not depend onω. By using Lemma (4), we know there exists
a smooth Lyapunov functionV : R

n → R≥0 for the system
(5) r−homogeneous of degreek. As before, there exists a
neighborhoodΛ′′ of ω0 in Λ such thatV̇ω (x) < 0 for all
(ω, x) ∈ Λ′′ × S. As x 7→ f (ω, x) is r−homogeneous of
degreed (ω) andV is r−homogeneous of degreek, it follows
that V̇ω (x) is r−homogeneous of degreed (ω) + k for all
ω ∈ Λ′′ (see for instance [10], [11]). ThuṡVω (x) < 0 for
all (ω, x) ∈ Λ′′ × R

n∗ andV is a Lyapunov function for the
system (4) for allω ∈ Λ′′.

Remark 7:Theorem 6 gives the existence of a neighbor-
hood Λ′ and not a precise specification of the knowledge of
the domain of stability. Numerical techniques could be used
to determine a more precise domain of stability. Nevertheless,
when the degree of homogeneity of the system (4) depends
on the constant weights(r1, . . . , rn) ∈ R

n
>0 for all ω ∈ Λ, the

knowledge of a Lyapunov function can be useful to specify
the neighborhoodΛ′′.

For systems without any homogeneity property, we still have
the following result:

Corollary 8: If the system (5) is globally asymptotically
stable forω0 ∈ Λ, then there exists a compact setA and a
neighborhoodΛ′ of ω0 in Λ such thatA is strictly positively
invariant underx 7→ f (ω, x) for all ω in Λ′.

The next result is a corollary of Theorem 6 which deals
with the problem of stabilization.

Corollary 9: Consider the control system (2) and the con-
tinuous function

u : Λ × R
n → R

m

(ω, x) 7→ u (ω, x)
.

Suppose that for everyω ∈ Λ the vector field x 7→
f (x, u (ω, x)) is homogeneous and all Cauchy problems as-
sociated with the closed-loop system

ẋ = f (x, u(ω, x)) , x ∈ R
n (6)

have unique forward solutions for all positive times. If the
control system (2) is globally continuously stabilized under
the feedback controlu (ω0, x) with ω0 ∈ Λ, then there exists
a neighborhoodΛ′ of ω0 in Λ such that for allω ∈ Λ′,
the system (2) is globally continuously stabilized under the
feedback controlu (ω, x).

IV. A PPLICATION TO FINITE TIME ROBUST STABILIZATION

An application of the previous theory is in studying the
global finite time robust stabilization of the chain of integra-
tors (see [1, Proposition 8.1]). In this example, a nonlinear
robust feedback control is derived from a linear one by using
Corollary 9.

The chain of integrators is given by


















ẋ1 = x2

...
ẋn−1 = xn

ẋn = u

(7)

denoted in short by

ẋ = Γ (x, u) .

The following characterization of the homogeneity property of
the chain of integrators will be useful.

Lemma 10:The system (7) isr−homogeneous of degreed
if and only if

ri+1 = ri + d, 1 ≤ i ≤ n− 1

with d ∈
(

− rn

n−1
, rn

]

and u is r−homogeneous of degree
rn + d.

In [1, Proposition 8.1], a control algorithm is built for the
chain of integrators (7). In the following, we extend this result
to a robust feedback control in the sense that we obtain a
sector margin for the choice of the control gain. Indeed, we
built a closed-loop chain of integrators which is robust to
perturbations of the feedback control gains. Moreover, a more
precise specification of the domain of stability is given by
using Corollary 9 and Lemma 10.

Proposition 11: Let k = (k1, . . . , kn) ∈ R
n such thatC (k)

is Hurwitz. There existsǫ ∈
[

1 − 1

n−1
, 1

)

and ǫi > 0 for
1 ≤ i ≤ n such that for all

α ∈ (1 − ǫ, 1) ,

k′i ∈ (ki − ǫi, ki + ǫi) ,

the system (7) is globally finite time stabilizable under the
continuous feedback control

u (α, k′1, . . . , k
′
n, x) = −k′1 ⌊x1⌉

α1 − . . .− k′n ⌊xn⌉
αn (8)

with
⌊x⌉α

= |x|α sgn (x) , x ∈ R

and






αi−1 = αiαi+1

2αi+1−αi

, 2 ≤ i ≤ n

αn = α,

αn+1 = 1

(9)

Moreover, the closed-loop system

ẋ = Γ (x, u (α, k′1, . . . , k
′
n, x)) (10)

is
(

1

α1
, . . . , 1

αn

)

−homogeneous of degreed = α−1

α
.
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Proof: Homogeneity property: With Lemma (10), it is
easy to verify that the system (10) is homogeneous of degree
d if and only the the following inequalities hold

−
1

α (n− 1)
<
α− 1

α
<

1

α
, n > 1.

So the system must satisfy

0 < 1 −
1

n− 1
< α < 2

which is equivalent to the fact that

−
1

n− 1
< d <

1

2
.

Asymptotic stability:It is well known that the system

ẋ = Γ (x, u (1, k1 . . . , kn, x))

is globally asymptotically stable. Corollary 9 implies that there
exists(a, b) ∈ R

2
>0 with

1 −
1

n− 1
< a < 1 < b < 2

and ǫi > 0 with 1 ≤ i ≤ n such that the system (10) is
globally asymptotically stable for allα ∈ (a, b) and k′i ∈
(ki − ǫi, ki + ǫi).

Finite time convergence:It follows from [1, Theorem 7.1]
that the closed-loop system (10) is finite time stable if the
degree of homogeneityd is negative. Finally, we have

1 −
1

n− 1
< α < 1.

Remark 12:Due to the fact that the functionx 7→ ⌊x⌉α is
not differentiable for0 < α < 1, the closed-loop system (10)
is not equivalent to the closed-loop system

ẋ = Γ (x, u (1, k1 . . . , kn, x))

or a well known stabilizable system under a diffeomorphic
change of coordinates in the state space. This is the reason
why we had to find a new way of doing.

Example 13:Let us give the example of the triple integrator






ẋ1 = x2

ẋ2 = x3

ẋ3 = u

.

For α = 11

20
, k1 = −1, k2 = k3 = − 3

2
, the feedback control

(8) becomes

u

(

11

20
,−1,−

3

2
,−

3

2
, x

)

= −⌊x1⌉
11
38 −

3

2
⌊x2⌉

11
29 −

3

2
⌊x3⌉

11
20 .

Then, the system is
(

38

11
, 29

11
, 20

11

)

−homogeneous of degree
− 9

11
. A simulation of the system leads to Figure 1 which

gives an estimate of the settling time.
With Proposition 11, we know that forα = 1

2
we lose the

finite time property as displayed by Figure 2.
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V. CONCLUSION

This paper analyzes the stability and stabilization of systems
depending on a parameter. The main goal of this paper is to
develop a topological tool to obtain the global stability and
stabilization of a system class depending on a parameter. The
tube lemma plays a key role in the presented theoretical results.
These are particularly suited for deriving a nonlinear feedback
control from a linear one as for the chain of integrators.

A possible direction for future research is to build a state
space varying parameterω (x), with values in the neighbor-
hood Λ′, in order to optimize the properties of the feedback
controlsu (ω (x) , x), as for instance the speed of convergence.
It will be interesting to find a more precise specification of the
neighborhoodΛ′, or at least of∂Λ′, in order to bound the state
space varying parameterω (x).
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