ON THE IMPACT OF HISTORY ON MODERN RESEARCH AND TEACHING

Satyanad KICHENASSAMY

Laboratoire de Mathématiques de Reims (CNRS UMR 9008, Université de Reims Champagne-Ardenne)

Talk delivered on Dec. 20, 2020 at the "International Web-Conference on History of Mathematics" organized by the Indian Society for History of Mathematics, Delhi, India.

PREVIOUS RESULTS

- Paradox: Brahmagupta, Baudhāyana, and Tartaglia recorded original results but seem not to have recorded derivations or even the proper assumptions of their own theorems.
- Indeed, did not use dogmatic form often considered standard.
- Solution: Derivations etc. are encoded in the discursive structure : *apodictic discourse (= motivated + conclusive).* Hence, there are several types of rigorous discourse.
- **Pb.: Overestimation of dogmatic discourse?**

PROBLEM

Why was dogmatic discourse (prototype : Euclid's *Elements*) taken as a standard in the last two centuries, given that people like Tartaglia (first translator of the *Elements* into a vernacular) do not use it when they defend themselves?

Answer: (i) Rediscovery and overestimation of Euclid in the 19th c. for teaching, in Great Britain...

(ii) ...while research scrutinized the *Elements* and built modern Mathematics as a critique of them.

Upshot: Close reading of modern apodictic discourses should help in research. Example: reading L. de Broglie's thesis leads to new results.

OUTLINE

- A. History for (mostly British) teaching has led to an overestimation of Euclid.
- **B.** History for research has shown that
 - 1) Euclidean Geometry is not quite mathematically consistent and cannot be amended ;
 - 2) modern Mathematics is "multicultural", partly Indian, and Mesopotamian, and...
- 3) Mathematics is not cumulative (loss of content).
- C. Viewing rigorous M. as apodictic discourse helps solve ancient & modern open problems. (Not just a program...)

PREVIOUS WORK: RIGOROUS MATH. AS APODICTIC DISCOURSE

Refs.: <u>https://www.normalesup.org/~kichenassamy</u>

- (How Brahmagupta obtained his results on the cyclic quadrilateral) Historia Mathematica, <u>37(1)</u> (2010) 28-61 and <u>39(4)</u>, (2012) 387-404.
- (How Brahmagupta obtained his results on congruences) Gaņita Bhāratī, to appear
- (How Tartaglia obtained his results on cubic equations) Historia Mathematica, 2015, <u>42</u> (4), 407-435.
- (How Baudhāyana obtained his approx. quadrature of the circle) Historia Mathematica, <u>33</u>, 2006, pp.149-183.

REFERENCES : DISCURSIVITY IN MATHEMATICS AND PHILOSOPHY

- « L'analyse littéraire au service de l'Histoire des mathématiques », Comptes-rendus des séances de l'Académie des inscriptions et belles-lettres, <u>2012-II</u> (4), pp.781-796.
- (sat & asat) Journal Asiatique, 2018, 306 (1), 85-99.
- « L'emploi métonymique de l'arbre kallāl dans la philosophie médiévale en pays tamoul. » P.-S.
 Filliozat et M. Zink (eds.). L'Arbre en Asie, De Boccard, Paris, 2018, pp. 279-299.
- « L'irruption de l'infini : la légende de la colonne de lumière » (= lingodbhava), Comptes-Rendus des Séances de l'Académie des Inscriptions et Belles-Lettres, <u>2018</u> (4), to appear.

REFERENCES : "MODERN MATHEMATICS"

- "Conformal Curvature Flows: From Phase Transitions to Active Vision," Archive for Rational Mechanics and Analysis, <u>134</u> (1996) 275-301 (with A. Kumar, P. J. Olver, A. Tannenbaum and A. Yezzi).
- Fuchsian Reduction : Applications to Geometry, Cosmology and Mathematical Physics, Birkhäuser, Boston, October 2007,
- "On a Conjecture of Fefferman and Graham," Advances in Mathematics, <u>184</u> (2) (2004) 268-288.
- « Improving Hölder's inequality », Houston Journal of Mathematics, <u>36 (1)</u> (2010) 303-312,
- « Mécanique ondulatoire et C-équivalence », Annales de la Fondation Louis de Broglie, <u>45</u> (2020), 99-111.

A. ELEMENTS FOR TEACHING ?

- "During the second half of the 18th c. England had come to be the only country where Euclid was practically the only geometrical text used." (Cajori (1910) p. 193)
- "Elements of Plane Geometry" (AIGT) not used at home, but in the British colonies" (Cajori, p. 197). "...merely a smoothed down and polished presentation of the first six books of E.'s Elements" (Klein, quoted ibid.)
- 3. Syllabus based on Euclid in Chennai (Senthil Babu, TIFR 2012, Table 1 p. 57-59),

A. ELEMENTS FOR TEACHING ?

- 4. Reaction to "modern math." : "A Euclidean course exists for some as an alternative to a modern course." Fielker (1986)
- "The 11-16 geometry curriculum in England continues to concentrate on techniques for working in 2 dimensions, such as the plane geometry derived from Euclid, together with elements of transformation, vector and coordinate geometry." Royal Society (2001).

A. OVERESTIMATION OF EUCLID

Hence, illusion that (i) Euclid can be amended; (ii) Euclid is the standard of mathematical exposition (iii) Modern M. supposedly an outgrowth of Euclid's Elements, while it is a critique of E. based in part on input from other cultures (see below).

But : modern (university) teaching = essentially (toned down) Bourbaki + other math. (PDE, Differ. Geom...). Kept from Euclid the need to give a connected, gapless argument : may skip simple steps but not significant ones.

B1 : PROBLEMS WITH THE *ELEMENTS*

 The notion of angle as magnitude attached to the meeting of lines or curves leads to a paradox (Proclus).

Conflation of angle/solid angle and vertex (Lakatos) hence, no good theory of polygons/polyhedrals.

Need to add and subtract angles and to measure them : measuring angles = rectification of an arc of a circle (d'Alembert, Dieudonné): need real numbers and series.

B1 : MODERN MATHEMATICS AS CRITIQUE OF THE *ELEMENTS*

- 2. The infinite is shunned "The whole is greater than the part" excludes infinite sets.
- 3. Division with remainder, improperly called "Euclidean division", is not in Euclid. (Euclid's algorithm is a mutual subtraction algorithm, not a mutual division algorithm.).
- 4. E. miss some axioms (Pasch, Hilbert), etc.
- 5. Lack of algebra, appeal to figures, etc.

B2. MODERN MATHEMATICS AS CRITIQUE OF THE *ÉLÉMENTS:* **CHRONOLOGY**

- Legendre (late 18th c.) : Hellenistic works not satisfactory for basic reasons (see his Number Th.) hence, new "Elements"
- 2. From 1819, tr. + adopt. French texts in the US
- 3. Meanwhile, discovery of non-Euclidean Geometry : Hellenistic Geometry is not a representation of reality
- 4. Gauss : surveying needs Differential Geometry [1827];

B2. MODERN MATHEMATICS AS CRITICISM OF EUCLID: CHRONOLOGY (CONT'D)

6. Riemann : same in 3D [1854].

7. Felix Klein, "Erlangen Program" [1872] + lectures on "Elementary math. from a higher standpoint" [1908]

8. General Relativity [1915] : need a Lorentzian Geometry.

B3. MOD.MATH. ALSO FUELED BY NEW PRIMARY SOURCES

- 628 : Brahmagupta [1817]
- 12th c. : Bhāskara II [1817]
- Kerala School [KV Sarma, MS Sriram, MD Srinivas, K Ramasubramanian, V. Pai... 21st c.]
- Al-Khwārizmī (Indian influence) [Rosen, 1831; Ruska, 1917; Gandz, 1936]
- 499 : Āryabhața [Kern, 1874] ; [Keller, 2006]
- Śulva-s. (c. 800-400 BC) "Treatises of the Cord" [Thibaut, 1875]. Indus [1924-1986...]
- Elts. [Peyrard, 1804, 1814-8; Heiberg, 1883-5]

B3. MOD.MATH. ALSO FUELED BY NEW PRIMARY SOURCES

- Old Persian [Grotefend, 1802]
- Egypt : Champollion [1822]...
- ...Rhind Math. Papyrus [purchased 1858]
- China : 19th c. [ex.: Biot, Zhou Bi 周髀, 1841]
- M. in Sumer & Akkad [Thureau-Dangin, 1938]
- Italian school (13th to 16th c.) [Cossali, 1797-9; Libri 1838-41,..., Masotti, 1959; ...]
- Archimedes with figures [Netz, 2017 !]

B3. MATHEMATICS NOT CUMULATIVE: BREAKS IN THE CONTINUITY OF KNOWLEDGE

- Pacioli's & Tartaglia's euidentiae (protoidentities) forgotten after him.
- Pacioli's & Tartaglia's tradition of multiple unknowns of the « Ancients » cut off (used it but did not relate it to a tradition).

B3. MATHEMATICS NOT CUMULATIVE :

- Heterometry (Baudhāyana) : (i) number embedded in Geometry through the choice of units ; (ii) units are scalable (allometry) ; (iii) there may be several incommensurable units in one problem. (Hence, no prime numbers.)
- 2. The non-manifest (avyakta = unknown) underlines the manifest (rejection of the Lokāyata) : perception is not the only pramāņa : inference is needed.
- 3. Brahmagupta's 'triquadrilateral' (tricaturbhuja) forgotten after him.

C. NEED HISTORY: ANALYSIS OF L. DE BROGLIE'S THESIS

- 1. His "chunk of energy" is represented by an extended wave with its own time/length units.
- 2. That means each "chunk" defines its own "rest" system.
- This system is a pseudo-inertial system in the sense of C-equivalence (S.K., 1963) = inertial system with non-standard clocks/rods.
- 4. Can measure these new units (via Mössbauer or via measurements of acceleration).

CONCLUSIONS

- (i) Mathematics is partially Indian, and Mesopotamian, and...) and therefore essentialism is futile.
- (ii) Modern mathematics has not incorporated all the results of the past. Math. is not cumulative.
- (iii) The internal development of a cultural tradition may fail to get rid or its blinkers (e.g. needed input through the Arab world).

(iv) Rigorous mathematics: apodictic or dogmatic discourse.

History is a dimension of Mathematical activity.

History alone gives meaning to the present and paves the way for the future.