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Abstract

In this paper, we study the stabilization of general nonlinear switched systems by
using control Lyapunov functions. The concept of control Lyapunov function for
nonlinear control systems is generalized to switched control systems. The first part
of our contribution deals with a necessary and sufficient condition of stabilization.
The main idea is to use a common control Lyapunov function, this is achieved with
the converse Lyapunov theorem dedicated to switched systems. In a second part,
an explicit construction of a common control Lyapunov function is addressed to a
finite family of switched systems. The approach uses a family of control Lyapunov
functions attached to the subsystems.

Key words: Stabilization, Nonlinear switched systems, control Lyapunov function.

1 Introduction

Current interest in intelligent control has led to the development of the study
of switched systems. Informally, a switched system is an indexed family of
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continuous-time and a rule that determines the switching between them. As a
survey on the subject, the paper [1] presents the recent results, and lots of open
problems may be studied. Many papers appear in the last decade dedicated
to the stability of hybrid dynamical systems : [2], [3], [4]. The problem of
perturbed switched systems has been addressed in [5], using time dependant
varying control. Our paper is based on the paper of J.L. Mancilla-Aguillar
[6] which deals with the stability of general nonlinear switched systems. We
use its converse theorem to treat the problem of stabilization of nonlinear
switched systems. In [7], an other converse theorem dedicated to pairwise
commuting asymptotically stable systems appears. Even if the results are more
constructive, the class of systems studied in [7] is included in the one studied
in [6].
In this paper, the switching signal is imposed, typically a system controlled
by an exterior operator as a driver and its gearbox. If it is controllable, it is
rather easy to obtain the stabilization of switched control systems by using
the fact that a control Lyapunov function for a subsystem is also a control
Lyapunov function for the global switched system (see [8]).

The outline of the paper is as follows. In section 2, we recall the basic notations
and definitions which will be used. In section 3, we present a necessary and
sufficient condition for the stabilization issue. Then, in section 4, we give an
explicit formula of the control law, by using the Lin-Sontag feedback control.
To ensure the stabilization, we need to find a common control Lyapunov func-
tion. In section 5, we propose a constructive method of this function, by using
a family of control Lyapunov functions attached to the subsystems. We make
concluding remarks and sketch some directions for future research in section
6.

2 Notations and Definitions

We first introduce some notations and definitions for subsequent use. Rn de-
notes the usual n−dimensional Euclidean space and ‖.‖n its Euclidean norm.
In the following, V will be a neighborhood of the origin in Rn.

We assume that a subset A of a topological space is given the induced subset

topology, and we use A to denote its closure,
◦
A its interior, ∂A = A \

◦
A its

boundary. Let E, F be topological spaces and p : E → F a continuous map.
The map is called continuous proper if for every compact set K ⊆ F , the
preimage p−1 (K) is compact in E.
Let V : V → R≥0 be a continous function and c > 0, we define the set

Ic = {x ∈ V : V (x) ≤ c} .
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We denote with C0 (Rn) the class of continuous vector fields on Rn, equipped
with the topology of uniform convergence on compact sets, C1 (Rn) the class
of differentiable functions with continuous partial derivatives. L∞loc (Rn) is the
set of measurable functions f : Rn → Rn such that for all compact set K of
Rn, there exists CK > 0 such that ‖f (x)‖ < CK a.e. in K. εBn denotes the
open ball centered at the origin of radius ε in Rn. Bn is the unit open ball,

and
•
Bn = Bn\{0}.

A continuous function α : [0, a] → R≥0 belongs to class K if it is strictly
increasing and α(0) = 0. It is said to belong to class K∞ if a = +∞ and
α(r) → +∞ as r → +∞.
Let us consider the C1−function γ : Rn → R, then ∇jγ denotes the j-th
component of the gradient of γ.
A set-valued function Φ from X to Y is a function that maps x ∈ X to a set
Φ (x) ⊂ Y . Let X and Y be two vector spaces and Φ : X → Y a set-valued
function, Φ is lower semi-continuous if {x ∈ X : Φ (x) ∩O 6= ∅} is open in X
for every open set O ⊂ Y . Φ is locally Lipschitz if for any x0 ∈ X , there
exists a neighborhood N (x0) ⊂ X and a constant l ≥ 0 such that for all
x, x′ ∈ N (x0),

Φ(x) ⊂ Φ(x′) + l ‖x− x′‖X BY
where BY is the unit ball in Y and ‖.‖X is the norm on X . Let Γ be an index
set.

Definition 1 P(Γ) is the set {fσ ∈ C0 (Rn) : σ ∈ Γ} such that,

(1) P (Γ) is equibounded, i.e. sup
σ∈Γ

‖fσ (x)‖n < +∞ for all x ∈ Rn,

(2) P (Γ) is uniformly locally Lipschitz, i.e. for each δ ∈ N, there exists lδ ≥ 0
such that

‖fσ (x)− fσ (y)‖n ≤ lδ ‖x− y‖n

for all (x, y) ∈ δBn × δBn and all σ ∈ Γ.

•
P(Γ) is the set {fσ ∈ C0 (Rn \ {0},Rn) ∩ L∞loc (Rn) : σ ∈ Γ} such that,

(1)
•
P (Γ) is equibounded,

(2)
•
P (Γ) is uniformly locally Lipschitz outside the origin, i.e. for each δ ∈ N,
there exists lδ ≥ 0 such that

‖fσ (x)− fσ (y)‖n ≤ lδ ‖x− y‖n

for all (x, y) ∈ δ
•
Bn × δ

•
Bn and all σ ∈ Γ.

Let us recall the classical definition of switching signal. Given a nonempty set
C, we say that a function s : R≥0 → C is a C−switching signal if s : R≥0 → C
is a piecewise constant function, i.e. the set of points where the function s has
jumps is a discrete set, and s is constant between jumps. We do not take in
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consideration the accumulation points to avoid a Zeno phenomena (for more
information on this point, see [5]). In what follows, we will denotes by S (C)
the family of all C−switching signal.

Let us consider the system

ẋ = fs (x) , x ∈ Rn, s ∈ S (Γ) (1)

where fs ∈ P (Γ) and fs (0) = 0, for all s ∈ S(Γ). Associated with each
s ∈ S (Γ), there exists a sequence of real numbers 0 = t0 < t1 < . . . < tk < . . .
and a sequence of indexes σ0, σ1, . . . , σk, . . . such that s (t) = σk for all tk ≤
t < tk+1. A solution of (1) starting from ξ ∈ Rn is an absolutely continuous
function x : [0, T ) → Rn such that x (0) = ξ, and for all k ∈ N,

ẋ (t) = fσk
(x (t))

a.e. in [tk, tk+1)∩ [0, T ). Due to the local Lipschitz property of the elements of
P (Γ), for each s ∈ S (Γ) and for each initial condition ξ ∈ Rn there exists a
unique maximally defined solution denoted by x (t, ξ, s).
As usual, the system (1) is asymptotically stable if

(1) the system (1) is stable : i.e. for all ε > 0 there exists δ > 0 such that for
all ξ ∈ δBn, x (t, ξ, s) ∈ εBn for all s ∈ S(Γ),

(2) lim
t→+∞x (t, ξ, s) = 0 for all s ∈ S(Γ).

Definition 2 [6] A common Lyapunov function V for P(Γ) is a C1 proper
function V : Rn → R≥0 such that there exist two functions α1 and α2 of class
K and a continuous positive definite function α3 that verify:

(1) α1(‖x‖n) ≤ V (x) ≤ α2(‖x‖n), ∀x ∈ V,
(2) 〈∇V (x), fs(x)〉 ≤ −α3(‖x‖n), ∀x ∈ V ,∀s ∈ S(Γ).

Remark 3 If the common Lyapunov function is globally defined on Rn, in
addition we suppose that α1, α2 ∈ K∞. The common Lyapunov function is said
to be decrescent. This ensures that lim

‖x‖n→+∞
V (x) = +∞.

Let us consider the control system

ẋ = fs (x, u) , x ∈ Rn, u ∈ Bm, s ∈ S (Γ) . (2)

Definition 4 Let s ∈ S (Γ), the system (2) is weakly stabilizable (respectively

stabilizable) if there exists us ∈
•
P (Γ) (respectively us ∈ P (Γ)) such that the

closed-loop system

ẋ = fs (x, us (x)) (3)

is asymptotically stable.
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Remark 5 For the weakly stabilization case, the closed-loop system is discon-
tinuous at the origin. This problem can be solved, as it is shown in [9]. Indeed,
the closed-loop system can be extended to an asymptotically continuous one,
because of the autonomous property. The fact that us may fail to be even con-
tinuous at the origin for all s ∈ S(Γ) causes no problems regarding uniqueness
of solutions, as it is easy to verify from the definition of asymptotic stability.

Remark 6 In this paper, we will consider, with no loss of generality the closed
unit ball Bm. Indeed, any compact set can be included in a closed ball, and any
closed ball is topologically equivalent to the unit closed ball. So our results are
also true for any compact set.

Definition 7 A C1 proper positive definite function V : V → R≥0 is said to
be a common control Lyapunov function for the system (2) if for all x ∈ V\{0}

min
u∈Bm

〈∇V (x), fs(x, u)〉 < 0, ∀s ∈ S(Γ). (4)

Such a control Lyapunov function satisfies the small control property if for
each 0 < ε ≤ 1, there exists δ > 0 such that, if x ∈ δBn ⊂ V, then for all
s ∈ S (Γ), there exists some us ∈ εBm such that

〈∇V (x), fs(x, u)〉 < 0.

3 A necessary and sufficient condition for the stabilization’s prob-
lem

In this section, we first recall the main results on the stability of switched
systems.

Theorem 8 [6] The system (1) is asymptotically stable if and only if there
exists a common Lyapunov function for P(Γ) where P(Γ) is defined in Defi-
nition 1.

Let us recall the fundamental theorem of Mickael which is in [10, Theorem
9.5.3] and [11].

Theorem 9 (of Mickael) Let X be a compact Hausdorff space and Y a Ba-
nach space, for every lower semi-continuous (respectively locally Lipschitz)
set-valued function Φ : X → 2Y , x 7→ Φ(x) where 2Y will denote the family of
non-empty, closed, convex subsets of Y, it is possible to extract a continuous
(respectively locally Lipschitz) function f such that f (x) ∈ Φ(x) for all x ∈ X .
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In order to use the Mickael’s theorem, we introduce the affine system :

ẋ = fs(x) + 〈gs(x), u〉, x ∈ Rn, u ∈ Rm, s ∈ S(Γ) (5)

where fs : Rn → R, gs : Rn → Rm are in P(Γ) and fs(0) = 0 for all s ∈ S(Γ).
Let us introduce some more notations. For a C1 positive definite function V ,
we will denote with

as(x) = 〈∇V (x), fs(x)〉,
Bs(x) = 〈∇V (x), gs(x)〉 ∈ Rm,

bs = ‖Bs(x)‖2
m .

Remark 10 If m = 1, the small control property is equivalent to

lim sup
‖x‖n→0

as(x)

|Bs (x)| ∈ R≤0 ∪ {−∞}

for all s ∈ S(Γ).

The main result of this paper may be stated as follows:

Theorem 11 The system (5) is weakly stabilizable if and only if there exists
a common control Lyapunov function V for the system (5).
In addition, if V satisfies the small control property, the system (5) is sta-
bilizable. Moreover, the system (5) is globally stabilizable if and only if V is
globally defined.

Proof. If the control system (5) is weakly stabilizable, then the closed-loop
system

ẋ = fs(x) + 〈gs(x), us(x)〉 (6)

is asymptotically stable. This system which can be discontinuous at the origin
can be extended to an equivalent one (Seq) continous everywhere (see [9]). By
using Theorem 8, there exists a common Lyapunov function V for the system
(Seq) which is also a common Lyapunov function V for the closed-loop system
(6). Then, V is a common control Lyapunov function for the system (5).
Conversely, suppose that there exists a common control Lyapunov function
V : V → R≥0 for the system (5). We have

inf
u∈Rm

〈∇V (x), fs(x, u)〉 ≤ min
u∈Bm

〈∇V (x), fs(x, u)〉 < 0, ∀s ∈ S(Γ).

Let s ∈ S(Γ), then we introduce the set valued function Φs defined for x ∈
Ic \ {0} by

Φs(x) = {v ∈ Rm : as (x) + 〈Bs (x) , v〉 < 0} .

As v 7→ as(x) + 〈Bs (x) , v〉 is affine, it implies that for all x ∈ Ic \ {0}, Φs(x)
belongs to the family of closed convex subsets of Rm. As fs and gs belong to
the class P(Γ) and V is a C1−function, as (x)+ 〈Bs (x) , v〉 is locally Lipschitz
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for all x ∈ Ic \ {0}. We apply the theorem 9 of Mickael to find a function
us locally Lipschitz on x ∈ Ic such that us(x) ∈ Φs(x). We may find in [12]
the fact that us can be chosen in L∞loc (Rn). If the compact set us(Ic) is not
included in Bm, we choose with no loss of generality δ > 0 such that us(Ic)

is included in δBm. Finally we have that us is in
•
P(Γ). So the system (5) is

weakly stabilizable under the feedback control us.
Besides, suppose that V satisfies the small control property. It is shown in [9,
Theorem 4.3] that we may extend Φs on Ic by Φs(0) = {0} such that Φs is
now lower semi-continuous on Ic. Applying the theorem 9 of Mickael, there
exists us ∈ P(Γ) that stabilizes the system (5).

Remark 12 The feedback control us : Ic → δBm is defined on the compact
set Ic which is attractive for the system, i.e. all solutions starting from Ic stay
in Ic. Moreover, it is bounded with values in δBm.

4 An explicit formula for the control law

Let us adapt the Lin-Sontag universal formula for stabilization with bounded
control :

Theorem 13 [13] If V is a common control Lyapunov function for the system
(5), then the feedback control

us(x) =





−as(x)+
√

as(x)2+bs(x)2

bs(x)(1+
√

1+bs(x))
BT

s (x) if x 6= 0

0 if x = 0
(7)

belongs to
•
P (Γ) and weakly stabilizes the system (5). Moreover, if V satisfies

the small control property, then the feedback control (7) belongs to P (Γ), and
thus the system (5) is stabilized.

Remark 14 If V ∈ Ck(Rn\ {0} ,Bm) then us is in Ck−1(Rn\ {0} ,Bm).

In order to illustrate Theorem 13, we study an academical example, which can
also be treated by using robust control strategy with uncertain parameters.
This example shows the limits of the theoretical theorem 13.

Example 15 Let us consider the system





ẋ1 = x1x2

ẋ2 = −x2+u
1+k
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where k ∈ {1, 2, 3, 4}, u ∈ R, and the common control Lyapunov function
candidate

V =
x2

1 + (x2
1 + x2)

2

2
.

We have

ak(x) = x2
1x2 + (x2 + x2

1)(2x
2
1x2 − x2

1 + k
),

Bk(x) =
x2

1 + x2

1 + k
.

It is obvious that V is a common control Lyapunov function for the switched
system over any compact set Ic with c > 0. Indeed, for x 6= 0, Bk(x) = 0
implies ak(x) = −x4

1 < 0 and all the sets Ic are invariant and attractive.
Also we have,

ak(x) = − x2
2

1 + k
− 2x4

1Bk(x) + 2 (x1Bk(x)(1 + k))2 .

It follows from Remark 10 that the small control property holds. So the sys-
tem is stabilizable over all sets Ic by using the following continuous bounded
feedback control

uk(x) =





−ak(x)+
√

ak(x)2+bk(x)2

bk(x)(1+
√

1+bk(x))
BT

k (x) if x 6= 0

0 if x = 0
.

This leads to the simulation on Fig.1.

5 A constructive method for the common control Lyapunov func-
tion

In this section, we give a constructive method for a switched system globally
defined where Γ is a finite set of indexes.

Let us consider a family of dynamical systems :

ẋ = fi(x) + 〈gi(x), u〉, x ∈ Rn, u ∈ Bm, i ∈ Γ

where for all i in Γ, fi,gi are locally Lipschitz. This gives rise to the following
switched system

ẋ(t) = fs(t)(x(t)) + 〈gs(t)(x(t)), u〉, (8)

where s : R≥0 → Γ is a switching signal with finite values.

Let us introduce the notion of control Lyapunov function for the system (8).
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Fig. 1. Phase portrait of the closed-loop system

Definition 16 Let i ∈ Γ. A C1 positive definite proper function Vi : Rn →
R≥0 is said to be a control Lyapunov function for the subsystem

ẋ = fi(x) + 〈gi(x), u〉, x ∈ Rn, u ∈ Bm (9)

if for all x ∈ V\{0},
min
u∈Bm

〈∇Vi(x), fi(x) + 〈gi(x), u〉〉 < 0. (10)

As the function u → 〈∇Vi(x), fi(x) + 〈gi(x), u〉〉 is continuous on the compact
set Bm, for all x ∈ V there exists a non-empty open set Ui(x) ⊂ Bm such that

〈∇Vi(x), fi(x) + 〈gi(x), u〉〉 < 0

for all u ∈ Ui(x). In the following, we will use the notation Ui(x).

Now we give a criterion allowing to build a common control Lyapunov function,
by using the control Lyapunov functions of the subsystems.

Criterion 17 Let a function γ : Rn → R of class C1 be given such that
γ(Rn

≥0) ⊆ R≥0 and ∇jγ(V1(x), . . . , Vn(x)) > 0. Suppose that we have the fol-
lowing assumptions :

(1) for each i ∈ Γ, Vi : Rn → R≥0 is a control Lyapunov function for the
subsystem (9),
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(2) for all i ∈ Γ and all x ∈ Rn\{0}, there exists u0 ∈ Ui(x) such that

∑

j∈Γ
j 6=i

〈∇jγ(V1(x), . . . , Vn(x))∇Vj(x), fi(x) + 〈gi(x), u0〉〉

< −〈∇iγ(V1(x), . . . , Vn(x))∇Vi(x), fi(x) + 〈gi(x), u0〉〉,

then V (x) = γ(V1(x), . . . , Vn(x)) is a common control Lyapunov function for
the system (8), and the feedback control is given by :

ui(x) =





−ai(x)+
√

ai(x)2+bi(x)2

bi(x)(1+
√

1+bi(x))
BT

i (x) if x 6= 0

0 if x = 0
(11)

where :

ai(x) = 〈∇V (x), fi(x)〉,
Bi(x) = 〈∇V (x), gi(x)〉 ∈ Rm,

bi = ‖Bi(x)‖2
m .

Moreover, if V satisfies the small control property then the feedback control
(11) is continuous at the origin.

Proof. Let x ∈ Rn and i ∈ Γ. Suppose that there exists γ satisfying the
conditions of the theorem, we have :

〈∇V (x), fi(x) + 〈gi(x), u〉〉 = 〈∑
j∈Γ

∇jγ(V̂ (x))∇Vj(x), fi(x) + 〈gi(x), u〉〉

= 〈∇iγ(V̂ (x))∇Vi(x), fi(x) + 〈gi(x), u〉〉+
∑

j∈Γ
j 6=i

〈∇jγ(V̂ (x))∇Vj(x), fi(x) + 〈gi(x), u〉〉

with V̂ (x) = (V1(x), . . . , Vn(x)).
By using assumption (2), we know that there exists u0 ∈ Ui(x) such that

∑

j∈Γ

〈∇jγ(V1(x), . . . , Vn(x))∇Vj(x), fi(x) + 〈gi(x), u0〉〉 < 0.

So, we have, for all x ∈ Rn\{0},

min
u∈Bm

〈∇V (x), fi(x) + 〈gi(x), u〉〉 < 0.

Thus V is a common control Lyapunov function for the system (8).

So, using Theorem 13, we know that the feedback control (11) stabilizes the
system (8).
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For example
γ(x) =

∑

i∈Γ

xi

leads to
V (x) =

∑

i∈Γ

Vi(x).

Remark 18 If we choose

V (x) = min
i∈Γ

Vi(x)

the common control Lyapunov function is not differentiable. Using such a com-
mon control Lyapunov function leads to introduce the proximal subdifferential
of V . Then, there exists a condition on the proximal subdifferential equivalent
to condition (4). So a feedback control can be built but it is discontinuous. For
more details on this point, the reader can see [14].

In order to illustrate Criterion 17, we now propose to study the following
example.

Example 19 Let us consider the system that switches between the two sub-
systems : 




ẋ1 = −x1 + x2

ẋ2 = x2 + u
(S1)

and 



ẋ1 = −x2

ẋ2 = x1 + ux2

. (S2)

The two candidate control Lyapunov functions are V1(x) = x2
1 + x2

2 for (S1)
and V2(x) = 3

2
x2

1 + x2
2 − 2x1x2 for (S2).

Given (i, j) ∈ {1, 2}2, let us introduce the following notations :

aij(x) = 〈∇Vi(x), fj(x)〉,
Bij(x) = 〈∇Vi(x), gj(x)〉,

where fj and gj are the components of the subsystem Sj. We have :

a11(x) = −2x2
1 + 2x2

2 + 2x1x2, B11(x) = 2x2,

a21(x) = 3x1(x2 − x1), B21(x) = 2(x2 − x1),

a12(x) = 0, B12(x) = 2x2
2,

a22(x) = −2x2
1 − x1x2 + 2x2

2, B22(x) = 2x2(x2 − x1).

For all i ∈ {1, 2} and all x 6= 0, Bii(x) = 0 implies that aii(x) < 0, which
shows that Vi is a control Lyapunov function for the subsystem (Si). As a12 = 0
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and as B21(x) = 0 implies that a21(x) = 0, we can deduce that for i 6= j, Vi is
not a control Lyapunov function for the subsystem (Sj).
We now check the conditions of the criterium 17 with the function γ(x) =
x1 + x2 to build our common control Lyapunov function. So we must verify
that for x ∈ R2\{0}, a11(x) + a21(x) < 0 when b11(x) + b21(x) = 0 and
a22(x) + a12(x) < 0 when b22(x) + b12(x) = 0. This leads to

• b11(x) + b21(x) = 4x2 − 2x1 = 0 for x1 = 2x2, which implies that a11(x) +
a21(x) = −6x2

2, which is strictly negative.
• b22(x)+b12(x) = 2x2(2x2−x1) = 0 for x2 = 0 or x1 = 2x2, which implies that

if x2 = 0, a22(x)+a12(x) = −2x2
1 and for x1 = 2x2, a22(x)+a12(x) = −8x2

2.
So the condition is checked.

Thus, the function V (x) = V1(x)+V2(x) is a common control Lyapunov func-
tion for the switched system over any compact set Ic with c > 0. The feedback
control (11) stabilizes the switched system on each set Ic and it is bounded.
The figure 2 represents the phase portrait of the closed-loop system, with the
function t 7→ sin(t) as switching signal.

-5 -4 -3 -2 -1 0 1 2 3 4 5
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Fig. 2. Phase portrait of the closed-loop system

6 Conclusion

In this paper, we first emphasize a necessary and sufficient condition for the
stabilization of nonlinear switched systems, by using the notion of common
control Lyapunov function. Then we build an explicit feedback control by
using the Lin-Sontag formula. Nevertheless, in practical, it is quite difficult to
find such a function. This is the reason why we develop a practical criterion in
order to build a common control Lyapunov function from a family of control
Lyapunov functions attached to the subsystems.
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Our feedback control does not depend of the C−switching signal, which is a se-
vere condition. This implies that the class of systems studied is restricted. For
future directions, we will try to develop a control law for a given C−switching
signal which can be adapted to a larger class of systems.
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