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Stabilization of non affine systems: a constructive
method for polynomial systems

Emmanuel Moulay and Wilfrid Perruquetti

Abstract—This article focuses on the stabilization of non Il. PROBLEM FORMULATION

affine systems described by continuous non linear ordinary n i, - .
differential equations. First, conditions of stabilization using eB™ is the open ball irR" centered at the origin of radius

control Lyapunov function give theoretical but non construcive € =~ 0 andulil = (ugts .o ugm) Wherej a”d_Oéh S,y are
and restrictive results. Secondly, some particular non affine integers such that; + ... + oy, = 7. If £/ is a non empty
systems are considered: this is polynomial system in the control subset ofR™, cl(F) denotes its closure arn@ (F) the smallest
order systems). The main result is a method of conatfuction-of C10Sed CONVeX set containing. 4 denotes a non empty open
) o L 2 .

feedbacks for this class of polynomial systems. In the end, the Se.t _OfR gontalnlng the origin an® ?.nelghbo.rhoc’d qf the
polynomial example of the levitation system is stabilized using Origin in R™. LetC’P be the set of positive definite continuous
an extension of this method to discontinuous feedback. functionsV : R™ — R, with continuous partial derivatives.
Let f : R x U/ — R™ be a continuous function such that

£(0,0) = 0 with which one associates the following system
= f(z,u), ve€R"andu ecll. Q)

Index Terms—Non affine systems, polynomial systems, stabi-
lization, control Lyapunov function.

Under smoothness hypothesis ff a polynomial expansion
of this function with respect to the control variable will be

A standard problem in control theory is the stabilization of k ‘
nonlinear systems. A seminal result is Artstein’s theordm [ &= fo(z) + > fi(x)ul! + Rz, u), 2)
Theorem 5.1] which proves, for affine systems, the existefice j=1
a control Lyapunov function is equivalent to the existenta o with » ¢ R andu € ¢’ C U. The general stabilization
continuous feedback control. This result is a corollary @fen proplem of such a system is a challenge, which becomes
general results involving relaxed control (see [1, Theoreffhciable in the casé < 3 and R(z,u) = 0 (that will be
4.1]). For such affine systems, Sontag gives a general farmppnsidered later on (see section 1V)).
for the feedback law construction using a control Lyapunov pefinition 1: System (1) isalmost stabilizablgif there exists

function (see [2]). o _ a feedback control law : V — U continuous oV’ \ {0} such
Here, the problem is the stabilization of non affine systemg,a;-

Sufficient conditions of stabilization using control Lyagoy e u(0)=0
function are addressed in section Ill. The first result isilgim i
to the one obtained by Artstein in [1, Theorem 4.1] invoking
a convexity property which gives a sufficient condition for
the existence of an almost continuous stabilizing controt, = f(z,u(z)), x€V. 3)
the proof is non constructive. The second one involving a
robustness property is quite restrictive. These methodsata

be generally used for polynomial systems in the control'noyiion 2. The system (1) iglobally stabilizableif 1 —
variable. So, we focus in section IV on the class of polynd)mlﬁn in Definition 1

systems in the control variable (order two and three). Ounma Let V € CP, V is said to be aontrol Lyapunov function
result uses a control Lyapunov function and Cardan formu ) if: ’

to construct an explicit stabilizing control. Finally, teection . V.(O) —0

V contains an example of a polynomial system: the levitation - i _

system, for which a discontinuous control is designed bygisi ~ * Ve € V\ {0}, ugﬁ{m (VV(z), f(z,u)) <O

I. INTRODUCTION

« the origin is a uniformly asymptotically stablequilib-
rium of the closed-loop system:

Moreover, ifu is continuous oV, we say that the system
8}) is stabilizable

analogous argument. The lie derivativeof V : R” — R along f : R" — R™ is
defined by:
Thi k i A is-T. Maths- n
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is ¢ > 0 such that, ifz € §B™\ {0}, then there is at leastwhereu € R, ¢ is a convex function such thaj(0) =

u € eB™ such that(VV (z), f(z,u)) < 0. 0, and the functionV (z) = 2i(z + 23). One sees
that (VV(z), f(z,u)) = —2? + 23g(u). For z # 0,

I1l. STABILIZATION USING CONTROL LYAPUNOV inf (VV(2), f(z,u)) <0, soV is a control Lyapunov func-
FUNCTION tion for the system. For alt € R?\ (0,0), u — —2% +x3g(u)

The stabilization problem of affine systems involving thé convex, so using the proposition 3, one knows that the
control Lyapunov functions is described by Artstein in [15ystem is almost stabilizable. For exampley(if)) = u® —2u,
Theorem 5.1]. He also gives a necessary and sufficient céfi€ system is stabilizable by the continuous feedbaak =
dition for the stabilization of non affine systems involvingli%.
relaxed controls which are probability measures (see [&-Th The stabilization of affine systems is well known (see [1],
orem 4.1]). Here, using a convexity assumption, a sufficief&t]). Now, we want to use a control Lyapunov function with
condition is obtained to guarantee the existence of a contan robustness property to stabilize non affine systems. Let us
uous stabilizing control (except possibly at the originy foconsider the system
non affine systems. For this, one needs the convexfy )

u — (VV(2), f(z,w) for all 2 € V\{0}, whereV is a &= fo(z) + fi(z)u+ R (z,u), (4)

control Lyapunov function. wherez € R", w € U, f1 = (f1,),<,<,, and R are continu-

Proposition 3:If there exists a control Lyapunov functidn ous. One subposes that there exisfe
. . s Ugm) EU
for the system (1) such that— (VV(z), f(z,u)) is convex ¢ . that PP igfs= (0.1 to,m)

for all x € V\ {0}, then the system (1) is almost stabilizable.
In addition, if V' satisfies the small control property then the
system (1) is stabilizable.

Proof. There exists a neighborhood of the origin such
that for all z € V\ {0}, one defines the set valued funcfion With the system (4), we associate the affine system
®: V\ {0} — 2¥, 2 — ®(x) where2” will denote the family

of non-empty subsets éf and: b= folz) + zm: fui()un -
®(z) ={veld: (VV(x), f(z,v)) <0}. i=1

£0(0)+ > f1,;(0)ug ; + R (0,up) = 0.
j=1

and defines
As ®(x) is a non-empty, closed, convex set forale V\ {0},
and @ is lower semi- continuods one may apply Michael’'s a(z) = Ly, V(x)
theorem (see [3] or [4, Chapter 1, section 11]) to find a bi(z) =LV (2), 1<i<m.

continuous selection : V\ {0} — U such thatu (0) = 0.
Then, V is a Lyapunov function for the closed loop systenNow, one can give a sufficient condition for stabilization of

(). the system (4).
If V satisfies the small control property, one may assumeProposition 5:1f there exists a control Lyapunov function
that limu(x) = 0 as it is shown in [1]. m V for the affine system (5) such that for alle V, and all
0

If the system is affine in the control, a control Lyapuno¥ © u,
function is always a convex control Lyapunov function. More (VV(2), R(z,u)) <0
over, one may notice that fVV(z), f(z,u)) is a quadratic
form (VV(z), f(z,u)) = «TQ (z)u with Q (z) a positive
definite function, theru — (VV (x), f(x,u)) is convex. It is
important to note that when dealing with (2) the set is n
convex in general. This is an obstacle for the generalinati
of Sontag’s formula.

One gives an example of a non affine system which is kno
to be almost stabilizable with the proposition 3.

Example 4:Let us consider the system

{:'clz—:cl—xg \I’(SU)Z{UEU:a(w)+ZZlbi(a:)vi<0}.

o = x1 + x29(u)

then the two systems (5) and (4) are almost stabilizable &y th
same feedback control law. In addition, if the control Lyapu
fgnction satisfies the small control property then the syste
z ) is stabilizable.

Proof. There exists a neighborhood of the origin such
that for all z € V\ {0}, one defines the set valued function
i W\ {0} — 24 z s ®(z) where2X will denote the family
of non-empty subsets éf and:

As U (zx) is a non-empty, closed, convex set forale V\ {0},
2A function f : R® — R™ is convex if for all (z,y) € R" x R* and and ¥ is lower semi- continuous, one may apply Michael's
Aelo,1], theorem [3], [4] to extract a continuous selection)\ {0} —
FO+ (1= A)y) < Af(@) + (1= A) F). U (that is a continuous functiom on V_\ {0} such thatu(x) €
¥(z)), extended by (0) = 0. So,V is a Lyapunov function
3 ) ) for the closed loop system associated with the system (5).
A set valued functio® on the vector spacé to the vector spacé is a

function that associates with amye € a subset® (z) of F. Thus, for allz € V\ {0},
4@ is lower semi-continuou {z € £ : ® (z) N O # 0} is open in& for

every openO C F. a(z) + Zil bi (z) ui(z) +(VV(2), R (z,u(z))) <O0.



So,V is a Lyapunov function for the closed-loop system (4)A. Order two control systems
and using the Lyapunov theorem one knows that the origin| et ys consider the polynomial system
of the closed loop system associated with the system (4) is

asymptotically stable.m & = folz) + fi(@)u+ fa(x)u?, (8)
Example 6:Let us consider the system wherer € R", v € R, f; : R® — R" and f,(0) = 0. For a
&1 = 2122 — x1h1 (1) ©) positive definite functiorl/, let us introduce:
i’g = —2o +U— (Eth(’u)

a(z) = Lp,V(2),
whereh; : R — R>o are positive definite. One sees that the b(z) = Ly, V(z),
smooth function o(x) = L,V (x)
x%e%? + x% = %o :

Vi(z)= -9 First of all, let us note that if there exists a positive deini

is a control Lyapunov function for the affine system function V- such that for all- € V.,

{ i’l = X1T2 (7)

o =—x2tu then the system (8) is stabilizable by any feedback. Indeed,
we know that for allz € V and allu € R,

b(x)? — da(x)c(z) < 0 anda (z) <0

Let R (z,u) = (—z1h1(u), —x2ha(u)), for all z € R? and
all u € R, we have a(z)u? + b(x)u + c(x) < 0.

(VV(2), R (,u)) = _ﬁezwghl(u)_(xgﬁ + x%) ha(u) < 0. So, we may choose every control, in particular no control

Thus, using the proposition 5, one knows that the system 6 is u(z) =0, zel.
almost stabilizable by the Sontag's feedback control given  proposition 8: If there existsV e CP such that for all

(2] z € V\ {0}, b(x)? — 4a(z)c(z) > 0, a(z) # 0, then the
—x3 + /2 + (23e2e2 4 m2)4 system (8) is almost stabilizable with control
u(z) = r2e2e2 4 14 w(z) = { w(zx) ?f x e V\ {0} ©)

which stabilizes the affine system 7. 0 if 2=0

The following exemple emphasizes that the proposition (5) —b(z) + \/b(x)% — 4a(z) (c(z) + o(z))
is not generally well adapted for polynomial systems in th&herew(r) = 2a(z) and
control variable. _ ¢ is a continuous positive definite function such that for all

Example 7:Let us consider the system z € V\ {0}, b(z)? — 4a(z)c(z) > 4a(z)p(x).

Proof. Let » be a continuous function om € V \ {0},

positive definite such that for ait € V' \ {0},
All smooth positive definite scalar functions are equivalen 9
the functionV () = %'. Then (VV (x), R (,u)) = 22u® > b(@)” — da(2)e(w) = da(z)p(w).
0 is not negative. Thus, the proposition 5 fails to stabilize t Sinceb(z)? — 4a(z)c(z) > 0, one may choose defined by
system for all control Lyapunov functions. Neverthelesghs

i = xe®® + (23(;2 + 623”) u+ zu’.

a system is stabilized in example 9 with our novel control b(z)” — da(z)c(z) if xeV\{0}
design tool for polynomial systems in the control variable #\*) = 4la(z)| ) (10)
developed in the following section IV. if 2=0
Then, the control defined by (9) satisfies the condition:
IV. POLYNOMIAL SYSTEMS V(x) = a(z)u(x)? + b(z)u(x) + c(x) = —p(z) for

Nowadays, the class of polynomial systems appears in maaly = < V \ {0}. Thus,u (x) is an almost smooth feedback
practical fields, as in magnetic problems (see section V@r&h control for the system.m
exists two main difficulties in the use of the two proposifon Example 9:Let us consider the system
3 and 5. The first one is that the feedback control is not
constructive in the proposition 3. The second one is that
the class of systems which are known to be stabilizable : _ 22 2
propositions 3 and 5 does not contain the important cla%}gd the functionV’ (z) = . We have for allz € R*\ {0},
of polynomial systems. Indeed, the convexity and robustnes a(z) = 2° #0,
properties exclude a large part of the class of polynomial b(x)? — da(x)c(z) = 42° + 22 > 0.
systems, as it can be seen in example 4, 6 and 7. So, we N o )
want to give results for constructing controllers for paymial |f we set the positive definite function
systems, mainly for order two and three cases. We use algebra { (e* —1) if x>0

= xze® + (2372 + e%) u+ zu?

formulae to find a feedback control by radical, when it is V() = ! B if —1<2<0

. 1464 .
possible. lete if r<—1



Az

then (z) < "T ¢ (z) = 2* + ¢ (x) is a positive definite wherez € R", u € R™, f; ; : R® — R" and f,(0) = 0. For
function such thab(4x)2 da(x)e(x) > 4a(z)p(z), i.e. such a positive definite functio’’, one defines
that o(z) < z* + £-. So one may apply the proposition 8

and thus aj(x) =Ly, ,V(z),
=223 — ze® + (/426 + 22 (% — 4p(x)) bj(x) = Ly, ;V (@),
u(@) = 207 e(a) = Ly, V().
is a feedback control for the system and leads to the follgwin Proposition 11:If there existsV € CP such that for all
simulation given in figure 1. zeV\{0}and allj € {1,...,m},
01 : ‘ \ \ w w w w w bj (.CC)Q — 4aj (l)C(I) > 0,

a’j(x) = ’Cf2,jv(x) 7é 0,

then the system (12) is almost stabilizable (see the foligwi
proof for the construction of the controls).

0.06- 1 Proof. We can build a continuous functignonz € V\ {0},
positive definite such that for alt € Vv \ {0} and allj €
2 o004t 4 {17~-~7m}.

bj(w)* — da;(z)c(z) > daj(w)p(x)

For example, one may take:

0.02-

o ] (@) — min )~ 4a;(@)ec()
1<j<m 4la;(z)]
70'020 0.<‘)2 0“04 0,66 o“os qul 04‘12 0,‘14 0.‘16 0,‘18 0.2 The Contl’0|:
wi(x) if zeV\{0
Fig. 1. Simulation ofz(¢) under the feedback contral(t) uj(r) = { 0 (@) if 2=0 O}
There exists another case, when it is possible to build a

. ) . )+ +/b; —4da;(z) (c(x) + p(x

continuous feedback: with w;(z) = \/ 2a( )j (z) (clx) + p(z))
J

Proposition 10:If there exists a control Lyapunov function
V for the system (8) such that for alle V \ {0}

b(x)® — da(z)c(x) > da(w)/a(x) 4 c(x)? c(x) + Z bi(z)uj(x) + Z aj(z)uf(z) = —mep(z).
then the system (8) is almost stablllzable with control J=1 =1
() = { awl(a(w), b(z)?,c(x)) if z#0 1) So,u (x) is a feedback control for the system (1.

satisfies for allz € V \ {0}:

if =0
g(a,b,c) if a0 B. Order three control systems
o1(a,b, ) = c+ Vb2 + ¢ it a—0andb£0 Here, we consider the polynomial system
) b) f —_ )
0 if a=b=0 &= fo(x) + fi(@)u+ fo(x)u® + fe(x)u®,  (13)
b— \/bg —da(c+ Va2 T2+ ) wherez € R", u € R, f; : R® — R" are continuous and
whereg(a, b, c) = 5 . fo(0) = 0. For a positive definite functio, one defines
a
.Proof. Let (a,b,c) € S with S = S5 U S, a(z) = L,V (@)
with Sy = {(a,b,c)eR¥*:a#0} and S = b = oV
{(0,b,c) eR*:b>00rc<0}. Then ¢, is continuous (@) =L,V (@)
on S. By assumption, we know thau(z), b(z), c(z)) € S. c(z) =Ly V(z)
Thus, control (11) is a continuous feedback control for the d(z) = L,V (z)
system (8) Indeed, (z) = 3a(z)c(z) — b(x)?
afa)u(x)” + blw)u(x) —Va(@)” +b(@)" + cfa)? P Ba(ay?
which is negative definitem q(z) = d(z) _b(z)e(z) 2 blx)’
The multi-input case is much more difficult but for the a(z)  3a(z)®? = 27a(z)?
following special case it is very close to the single-inpase. A(r) = 4p(x)® + 27¢(x)%.

One considers the system: . .
Proposition 12:1f there existsV € CP such that for all

P — - . , - , 2 z € V\ {0}, A(z) > 0 anda(z) # 0, then the system (13) is
&= fola) + Z‘f L()u 3 By, (12) 2 bl



Proof. We know that there exists a continuous functipn wherel < deg,, P; (z) [u] < 3 and to apply, if it is possible,
onx € V\ {0}, positive definite such that for al € V\ {0}, the previous results to find (x) such thatP; (z) [u (z)] = 0.
) Thus,u (x) will be a feedback for the general system (15).
c(z)” — db(z)d(z) = 4b(z)p(2). If a; are more regular and if may be chosen more regular
Let (in particular analytic), one may apply general theorems on
. d(z) + (@) ) b(z)c(x) N 2 b(z) polynomial decomposition (a survey is presented in [5]).
nr = a(x) 3a(x)?

and we have for alk € V' \ {0}:

w

[N}
N
o
=
)
3
w

V. AN EXTENSION TO DISCONTINUOUS CONTROLLER
In this section, we will give a method to extend proposition

A(z) = 4p(z)® + 27G(x)? > A(z) > 0. 8 to discontinuous controllers. The same is true for propo-
) sition 12. Let us consider the system (8) and the gets
Using the Cardan formula, we know that: (zeV:ialx)£0}, F={zeV:a(x)=0andb(z)#0}
if and G ={z €V:a(x)=0andb(z) =0}. If there exists
u(z) = { g(”” . ig\ {0y (14) V e CP such that for all: € V\ {0}, b(x)® — da(x)e(z) > 0,
then we set
. B s/ d(z) q(x)®  p(z)? w(z) it zef\{0}
with  v(z) = \/ > + 1 + o + u(z) = *C(a;)(;)w(I) it zeF\{0}
~ ~ 2 3 0 |f T € g U {0}
o/ _d@) _ [4@) + p) is an almost smooth feedback o . . .
2 4 27 where w(x) is given by (9) with o a continuous positive
control. m function on& \ {0} such that for alkz € £ \ {0},
If c(x)? —4b(x)d(x) is positive definite, one may choose )
as follows: b(z)” — da(z)c(z) = da(z)p(z)
o(x)? — db(@)d(z) o eV {0} and ¢ is a continuous positive function of \ {0}. If
o(x) = 4|b(x)] . is continuous, one tries to conclude with the theorem of
if =0 LaSalle for differential equations (see [6, Theorem 4.4f]).

a?yis discontinuous, one considers the differential inclosio

ﬂf(x,u(x+eB)))

e>0

Let us give an academic example using the previous coroll
Example 13:We consider the system
T € co

& =x—2u° z,u € R.

. x? which solutions are called Krasovskii solutions (for more
UsingV'(z) = = andp(x) = x2_’ we have for a!h_ €R\OL Getails on differential inclusions see [7]). Then one usden
a(x) = —2x # 0. We know with the proposition (12) thatit js possible, the LaSalle’s theorem for differential ingions
u(r) = /z is a feedback control for the system. Moreovef, (g Theorem 3.2] to conclude that stabilizes the system
hereu is continuous at the origin. (8). Let us give the example of the magnetic levitation syste

Example 14\We consider a metallic ball within a magnetic
C. High order systems field derived from a coil. The current feeding the coil is
the control variable and the goal is to maintain the ball in
levitation at a desired position with respect to the grouritke
= fo(z) + filx)u+ ...+ fp(x)uP, (15) most famous application is high-speed ground transportati
systems. The levitation system is described by the follgwin
equation (see [9] for more details)

Now, we consider the system

wherez € R", u € R, f; : R* — R"™ are continuous

and fo(0) = 0. For a positive definite functiori’, one

definesa; () = L V(x). The problem is to findV" a €1 = e

positive definite continuous function agda positive definite éo =g — Meiiox)”ﬂ (16)
0 1T Z1ref

continuous function outside the origin such that foraal¢ 0,
, wheree; is the error betweemn; the vertical position of the
@ (x) +ao(z)+ar(@)ut...+ap(x)u’ =0. ball with respect to the ground and,.; (a constant desired

For such general system (15) with> 4, we have no hope Vertical position)e; = ¢, = , is the speedg is the gravity

to have a formula by radical for a feedback control. But sin@®celeration and, andl, are some p03|t2|ve pgrameters. Let

the polynomialP (z) [u] = ¢ (z) + ao (z) + a1 (z)u+ ...+ US consider theP func_tlon Viz) = axy + a3 with 0 <

a, (z) uP belongs to the ring>® (R) [u], it is sometimes pos- & < 20 and let us restrict our attention to the following set
’ 2 . . .

sible to splitP (z) [u] into several polynomials i (R) [u] U = {l“ €R*: V(z) < 427} which is reasonable knowing

with small degree. The main goal is to spit(z) [u] in the that in practicele;| < £5. One sees that

following sense 9

16€2k0

P(z)[u] = Py (z)[u] Py (x)[ul b(e)? — dale)c(e) = T (ae1 +g) .-




Since we restrict our attention td, one getse;| < 5=. One
deduces that, within the sitwe obtainb(e)? —4a(e)c(e) > 0
for eo # 0. With the proposition (8), one knows that

o ter+mirep| [ea(ez(er +g) + le))
vp(e) = — o "o

is a continuous feedback for the system outside the manifol
M={zeR? :25=0}
wherey is a continuous positive function outside such that

eap(e) > —des (e + g) . 17 e

If one chooses

ple) = Blezf (aer +9),

with 3 such that(ae; + g) (1 + Bsgn(ez)) > 0 (in practice
0 < B < 1) then one sees that(e) = vg|c,|(ae,+¢)(€) =
(ael+g)(1k+ﬂsgn(ez))

—|lo +e1 + Tiref] sgn(eg)\/ - stabilizes
the levitation system outsid&1. The problem is that: is not
continuous everywhere. Let

-1 if z<0

SGN(z)=< [-1,1] if z=0

1 if x>0
we have for allv € (e2,9 — (ae1 +g) (1 + BSGN (e2))), o
(VV(e),v) = —pflez|(ae1 +g). Applying the Lyapunov [2]

theorem for differential inclusions (see [10, Theorem &g@] 3]
[7]), one deduces that the closed loop system associatéd wit
the levitation system (4]

(5]
(6]
(7]

{ él = €2
és € g — (ae1 + g) (1 + BSGN (e2))

is stable everywhere and asymptotically stable outsidedhie
ety M. Let us consider the s& = cl{e € R? : (VV (e),v) =
0 for all v € (e2,9— (cver +g)(1+ BSGN (e2)))}, then
S = Rx {0} and the largest invariant subset &fis (0,0).
Using LaSalle’s theorem for differential inclusions (s&3),
one deduces that the closed-loop levitation system is asympj
totically stable. Thus:(e) stabilizes the levitation system and
leads to the following simulation fof«, 5) = (15,0.01) on
figure 2.

Remark 15:e; reaches the origin irrs with a degree of
precision of the order of3.10~3m. The time of convergence
and the degree of precision can be adjusted by the positive
constanty «, 3).

(8]

(20]

VI. CONCLUSION

This article presents different ways to study the problem of
stabilization of continuous non affine systems. If the peafl
of stabilization of affine systems is now well known and
exhibits a universal formula (due to Sontag), the problem of
stabilization of more general non affine systems has not yet
a universal construction and is an active research field. For
such systems, we provide that continuous feedback stabiliz
for system polynomial in the control variable up to order
three. And derived from these results, discontinuous faekib
controllers are also underlined.

Time

Fig. 2. Simulation ofe; andesx
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