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A Charge Density Wave (CDW) submitted to an electric field displays a strong shear deformation because of pinning at the lateral surfaces of the sample. This CDW transverse pinning was recently observed but has received little attention from a theoretical point of view until now despite important consequences on electrical conductivity properties. Here, we provide a description of this phenomenon by considering a CDW submitted to an external dc electric field and constrained by boundary conditions including both longitudinal pinning due to electrical contacts and transverse surface pinning. A simple formula for the CDW phase is obtained in 3D by using the Green function and image charges method. In addition, an analytical expression of the threshold field dependence on both length and sample cross section is obtained by considering the phase slip process. We show that the experimental data are well reproduced with this model and that bulk pinning can be neglected. This study shows that the dynamical properties of CDW systems could be mainly driven by boundary effects, despite the comparatively huge sample volumes.

Introduction

When a sufficiently large electrical current is applied to a charge density wave (CDW) system, a non-linear current may be induced [START_REF] Cox | Sliding charge-density wave in manganites[END_REF][START_REF] Grüner | The dynamics of charge-density waves[END_REF]. This current has a periodic structure both in time [START_REF] Onishi | Narrowband noise study of sliding charge density waves in NbSe3nanoribbons[END_REF] and space [START_REF] Bolloc'h | Observation of correlations up to the micrometer scale in sliding charge-density waves[END_REF][START_REF] Jacques | Evolution of a large-periodicity soliton lattice in a current-driven electronic crystal[END_REF] and is believed to be due to a collective transport of charge based on a traveling periodic array of topological 2π solitons [START_REF] Rojo-Bravo | Collective transport of charges in charge density wave systems based on traveling soliton lattices[END_REF]. The CDW can be described as an elastic medium evolving under the application of an external electric field [START_REF] Feinberg | Elastic and plastic deformations of charge density waves[END_REF]. When this field exceeds a threshold value E th , the CDW periodicity is broken and a soliton is created reducing the total elastic energy. This phase-slip mechanism [START_REF] Gor'kov | Conditions aux limites et gnration des bruits priodiques par une onde de densit de charge[END_REF][START_REF] Lp Gorkov | Generation of oscillations by a running charge density wave[END_REF] has been widely discussed in the literature as a thermally activated nucleation [START_REF] Ramakrishna | Phase slip in charge-densitywave systems[END_REF][START_REF] Gill | Thermally initiated phase-slip in the motion and relaxation of charge-density waves in niobium triselenide[END_REF] or as a quantum process [START_REF] Duan | Homogeneous quantum phase slippage in bulk charge-density-wave systems[END_REF][START_REF] Maki | Quantum phase slip in charge and spin density waves[END_REF].

The sliding CDW phenomenon was extensively studied as a function of temperature [START_REF] Sinchenko | Sliding charge-density wave in two-dimensional rare-earth tellurides[END_REF], under a continuous laser photo-illumination [START_REF] Ogawa | Optical investigation of the origin of switching conduction in charge-density waves[END_REF] or as a depinning process induced by a short laser pulse excitation [START_REF] Jacques | Laser-induced charge-density-wave transient depinning in chromium[END_REF]. In all these phenomena, CDW pinning plays a fundamental role. The aim of this paper is to theoretically treat pinning effects as a whole including pinning at lateral surfaces when the CDW is submitted to an applied field and the incidence of this pinning on the threshold electric field E th as a function of sample dimensions.

There are two types of pinning at the sample boundaries. Longitudinal pinning due to the two electrical contacts along the CDW wavevector 2k F has been observed by several techniques. At the contact position, the CDW phase is constant as a function of external current. Resistivity measurements show that the threshold field diverges with decreasing sample lengths in NbSe 3 [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF][START_REF] Yetman | Size-dependent threshold fields for frhlich conduction in niobium triselenide: Possible evidence for pinning by the crystal surface[END_REF] and in TaS 3 [START_REF] Mihly | Local distortion of pinned charge density waves in orthorombic tas3[END_REF]. On the other hand, the consequence of longitudinal pinning under current leads to CDW compression/expansion in the vicinity of the two contacts as reported by x-ray diffraction [START_REF] Requardt | Direct observation of charge density wave current conversion by spatially resolved synchrotron x-ray studies nbse3[END_REF][START_REF] Brazovskii | Plastic sliding of charge density waves: X-ray space resolved-studies versus theory of current conversion[END_REF] and transport measurements [START_REF] Lemay | Spatial distribution of chargedensity-wave phase slip in nbse3[END_REF].

However, longitudinal pinning is not the only constraint applied to the CDW. Resistivity measurements have shown that transverse pinning at lateral sample surfaces may also play an important role since the threshold field E th diverges with decreasing sample cross sections in NbSe 3 [START_REF] Mccarten | Charge-density-wave pinning and finitesize effects in nbse3[END_REF][START_REF] Yetman | Size-dependent threshold fields for frhlich conduction in niobium triselenide: Possible evidence for pinning by the crystal surface[END_REF] and in TaS 3 [START_REF] Borodin | Nonlinear effects in small o-tas3 samples[END_REF]. In a recent paper [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF], transverse pinning was indeed observed at the local scale by scanning x-ray microdiffraction in NbSe 3 . The CDW displays a large and continuous transverse deformation over an impressively large distance, spanning from one lateral surface to the other. This represents several tens of micrometers which is 4 orders of magnitude larger than the CDW wavelength.

From a theoretical point of view, the threshold field E th has been mainly estimated by considering 1D models and the distance L x between the two electrical contacts. Feinberg and Friedel [START_REF] Feinberg | Elastic and plastic deformations of charge density waves[END_REF] proposed a phenomenological relation between E th and L x by considering CDW bulk impurity pinning. On the other hand, Batistic et al [START_REF] Batisti´c | Generation of the coherent pulses by the cdw-motion. solutions of the microscopic model equations[END_REF] computed E th by considering longitudinal pinning and found a power law dependence E th ≈ 2.55L -α x where arXiv:2006.08964v1 [cond-mat.str-el] 16 Jun 2020 α = 1.23 ± 0.05. In this 1D model, E th drops to 0 for large L x in contradiction with experiments showing that E th converges to finite values [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF]. We will show in the following that taking into account lateral surface pinning naturally leads to convergence towards a non-diverging finite threshold. On the other hand, Borodin et al [START_REF] Borodin | Nonlinear effects in small o-tas3 samples[END_REF] considered the effect of the sample cross section and found a power law behavior E th ∝ A -1/2 with A = L y × L z .

In this article, we calculate E th (L x , L y , L z ) by taking into account both longitudinal and transverse pinning in the known 3D free energy [START_REF] Duan | Homogeneous quantum phase slippage in bulk charge-density-wave systems[END_REF][START_REF] Hayashi | On the ginzburglandau free energy of charge density waves with a threedimensional order[END_REF] by considering the phase-slip process and using the Green function and image charges methods.

2 Behavior of a CDW under electric field with contact and surface pinning 2.1 CDW phase equation, Green function and image charges method A CDW is described through its periodic charge modulation ρ(r) = A(r) cos(2k F x+φ(r)) where A(r) and φ(r) are respectively the CDW amplitude and phase with spatial dependence. In this paper, we only consider the evolution of φ under an applied electric field with component E along the x direction. The CDW behavior can be described by the following free energy considering only the phase variations:

F[φ] ∝ V d 3 r C ij φ i φ j + V imp (φ) -ηExφ x (1) 
φ i = ∂ i φ, r ∈ V ≡ r ∈ R 3 |x i | ≤ L i /2
where i, j = x, y, z, C ij = c i c j δ ij with c x , c y , c z being the CDW longitudinal and transverse elastic coefficients, L x is the contact distance, L y and L z are the transverse sample lengths. We choose to consider a bulk impurity pinning potential V imp (φ) ≡ ω 2 0 [1 -cos(φ)] with the pinning frequency ω 0 often used in the literature [START_REF] Fukuyama | Dynamics of the chargedensity wave. i. impurity pinning in a single chain[END_REF][START_REF] Gruner | Density Waves In Solids[END_REF]. We will show in the following that this term can be neglected compared to the surface pinning effect. Finally, the last term corresponds to the interaction between the CDW and the applied electric field coupling the longitudinal gradient φ x and the applied electric potential Ex where η is a temperature dependent coupling coefficient [START_REF] Hayashi | On the ginzburglandau free energy of charge density waves with a threedimensional order[END_REF].

While a randomly distributed bulk impurity pinning can break the CDW long range order [START_REF] Fukuyama | Dynamics of the chargedensity wave. i. impurity pinning in a single chain[END_REF][START_REF] Lee | Electric field depinning of charge density waves[END_REF] x-ray diffraction experiment in NbSe 3 [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF] showed a continuous CDW deformation over tens of micrometers. Furthermore, as measured in another x-ray diffraction experiment [START_REF] Requardt | Direct observation of charge density wave current conversion by spatially resolved synchrotron x-ray studies nbse3[END_REF], the CDW wavevector variations are less than 0.25.10 -4 b * below E th , hence one can consider φ 2π in the following and use a Taylor development of V imp (φ) ≈ ω 2 0 φ 2 . Above E th , 2π solitons nucleate at the electrical contact, hence the phase solution is only correct in the linear current regime below E th which is the regime considered here.

Minimizing F[φ] with the Euler Lagrange equation ∂ i ∂F ∂φi -∂F ∂φ = 0 we obtain:

2 c 2 x φ xx + c 2 y φ yy + c 2 z φ zz -ω 2 0 φ ≈ ηE (2) 
The CDW longitudinal pinning at the two electrical contacts is taken into account by setting the phase at zero at x = ± Lx 2 [START_REF] Feinberg | Elastic and plastic deformations of charge density waves[END_REF]. In addition, the transverse pinning observed in [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF] is included in the model by considering boundary conditions at the lateral surfaces y = ± Ly 2 and z = ± Lz 2 . The two types of pinning leads to the following constraints:

φ(r) = 0, ∀r ∈ ∂V (3) 
By rescaling

x j = c j 2 η x j , L j = c j 2 η L j and ω 2 = ω 2 0
η , the phase equation Eq.2 and the boundary conditions Eq.3 become:

∆ -ω 2 φ = E (4) 
with the Dirichlet conditions:

φ(r ) = 0, ∀r ∈ ∂V (5) 
where

∆ = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 + ∂ 2 ∂z 2 is the rescaled laplacian operator.
Eq.4 is the screened Poisson equation that satisfies the uniqueness theorem as shown in appendix B. Therefore, a solution to this differential equation can be computed by using the Green function and image charge method [START_REF] Riley | Mathematical Methods for Physics and Engineering: A Comprehensive Guide[END_REF]. This technique is well established to solve electrostatic problems with boundary conditions. In our case, the source term is +E inside the sample volume. The Green function satisfying the equation ∆ -ω 2 G(r-r ) = δ(rr ) has a simple lorentzian expression in Fourier space:

G(q) = -1 |q| 2 + ω 2 (6) 
There is no simple analytic solution fulfilling Eq.4 with the boundary conditions Eq.5 in 2D and 3D. We will show later that its resolution requires the use of the Green function and image charges method. As a first step, we describe the image charge construction in 1D before generalizing the procedure to the 2D and 3D cases.

The CDW phase in 1D, 2D and 3D pinned by contacts and lateral surfaces

The Eq.4 in 1D with φ ± L x 2 = 0 has an analytical solution:

φ ana (x ) = E ω 2   cosh (x ω) cosh L x ω 2 -1   . (7) 
This 1D solution φ ana (x) will be later compared to the solution obtained from the Green function method. A step-by-step construction of the image charge density and the corresponding charge density wave phase calculation are described in appendix C. The phase solution from the Green function and image charge methods reads :

φ(x ) = - 4E π +∞ n=0 (-1) n cos (2n + 1)π x L x (2n + 1) (2n + 1) π L x 2 + ω 2 (8) 
This infinite sum converges quickly with n, decreasing as 1 n 3 . The contribution of the first term (n = 0) and the first 100 terms (n from 0 to 99) is shown in Fig. 1 and compared to the exact analytic expression Eq.7. Note that Eq.7 and Eq.8 start to differ outside the sample boundary -

L x 2 < x < L x
2 , which is not surprising since the two solutions have been defined to be valid in the sample limits.

The construction of the image charge density in 2D is similar to the procedure used in 1D and is described in appendix C. The final expression of the 2D CDW phase with contact and transverse surface pinning is the following:

φ(x , y ) = - 16E π 2 +∞ nx,y=0 (-1) nx+ny (2n x + 1)(2n y + 1) × cos (2n x + 1)π x L x cos (2n y + 1)π y L y (2n x + 1) π L x 2 + (2n y + 1) π L y 2 + ω 2 (9) 
This 2D CDW phase submitted to an applied field is shown in Fig. 2a along with its longitudinal (b) and transverse (c) derivatives that are proportional respectively to the longitudinal strain and transverse shear. The corresponding CDW is shown in Fig. 3b where we can observe a compression and a dilatation of the CDW period at the two electrical contacts induced by contact pinning. Furthermore, transverse surface pinning induces a shear effect with a curvature of the CDW wave fronts in the middle of the sample.

L x 2 L x 2 L y 2 L y 2 0 L x 2 L x 2 L y 2 L y 2 0 L' x 2 L' x 2 L' y 2 L' y 2 (x' , y') 0 a) x' y' x' y' x' y' b) c) x (x , y ) y (x , y )
Note that the shear is strong when the compressiondilatation is weak and conversely, the curvature is almost zero when the compression and the dilatation are large as can be observed in Fig. 2b andc. This feature is illustrated in Fig. 3a where the transverse phase derivative φ y is displayed as function of the longitudinal phase derivative φ x . To get this figure, φ x and φ y have been calculated at each point (x , y ) of Fig. 2b andc, and plotted as a 2D graph. From this graph and the 2D phase derivatives represented in Fig. 2b andc, we observe that |φ y | can be large only at position where |φ x | is low. This phenomenon is in agreement with X-ray diffraction experiments showing that the shear is ten times larger than the longitudinal dilatation-compression in the central part of the sample [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF] and that the longitudinal deformation is larger close to the contacts [START_REF] Requardt | Direct observation of charge density wave current conversion by spatially resolved synchrotron x-ray studies nbse3[END_REF][START_REF] Brazovskii | Plastic sliding of charge density waves: X-ray space resolved-studies versus theory of current conversion[END_REF]. In Fig. 3c andd, we compare the calculated CDW shear in the middle part of the sample with the one measured in [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF].

As detailed in appendix A, the phase slip-process occurs at a given threshold field E th when the strain along x (e xx = φx 2k F ) exceeds a threshold value. The partial derivative φ x is displayed in Fig. 2b showing that the longitudinal strain is larger near the contact as observed by several experiments [START_REF] Requardt | Direct observation of charge density wave current conversion by spatially resolved synchrotron x-ray studies nbse3[END_REF][START_REF] Brazovskii | Plastic sliding of charge density waves: X-ray space resolved-studies versus theory of current conversion[END_REF][START_REF] Lemay | Spatial distribution of chargedensity-wave phase slip in nbse3[END_REF]. Moreover, the longitudinal strain decreases to zero at the transverse surface y = ±L y /2. b) The CDW corresponding to φ(x , y ) of Fig. 2a) displays a shear effect with a curvature of the wave fronts in the middle part of the sample and a compression-dilation of the CDW period at the two electrical contacts. The CDW wavelength λ has been significantly increased for clarity (in reality λ = 14 Å in NbSe3, that is λ ≈ 10 -6 Lx). c) Comparison of the theoretical ρ(x , y ) with the CDW measured by x-ray diffraction under current from [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF]. Note that we used a different CDW wavelength between b) and c),d) for a better visualization.

From Eq.8 in 1D and Eq.9 in 2D, one can generalize the solution to the 3D case. The full expression φ(r ; E) (where we made explicit that φ depends on the field value E) is given in appendix D along with a surface plot of φ and its longitudinal derivative in Fig. 11. As in the 2D case, the longitudinal derivative φ x shows a maximum at the electrical contact (x = L x 2 , y = z = 0) and a minimum on the other side (x = -L x 2 , y = z = 0). Since φ(r) is based on a fast convergent sum, one can only keep the first term of the 3D expression:

φ(r) ≈ - 32 π 5 Eηβ cos(π x L x ) cos(π y L y ) cos(π z L z ) (10) 
with

β = 1 c 2 x L 2 x + c 2 y L 2 y + c 2 z L 2 z + ω 2 0 2π 2
At the first order, the CDW phase φ(r) is proportional to a simple product of cosine functions. Considering the first term only is a good approximation in the case Lx cx ∼

Ly cy ∼

Lz cz and ω 0 1 (see the 1D case in Fig. 1).

3 The threshold electric field E th

E th as a function of electrical contact distance

As described in appendix A, a soliton nucleates spontaneously whenever φ x exceeds a threshold value φ c . Therefore, the threshold electric field E th is defined by:

φ x L x 2 , 0, 0; E th = φ c ( 11 
)
Taking into account the derivative of φ(x , y , z ) in 3D (Eq.D.1 in appendix D) where the longitudinal strain is maximum at (x , y , z ) = L x 2 , 0, 0 . Making the reverse change of variable (Eq.4 and Eq.5) and using the following relation:

∞ nx=0 1 (2n x + 1) 2 + a 2 = π 4a tanh πa 2 , ( 12 
)
we obtain the threshold field E th versus the sample dimensions L x , L y ,L z and the bulk impurity pinning ω 0 :

E th = φ c π 3 c 2 x 8ηL x +∞ ny,z=0 (-1) ny +nz (2ny+1)(2nz+1)an y ,nz tanh πan y ,nz 2 
(13) where we defined for ease of notation:

a ny,nz = L x c x (2n y + 1) c y L y 2 + (2n z + 1) c z L z 2 + 1 2 
ω 0 π 2 1/2 (14) 
Since a ny,nz is proportional to L x , one can easily find the two limits. For small electrical contact distances L x → 0, using

∞ n=0 (-1) n 2n+1 = π 4 we find lim Lx γ E th = 4φ c c 2 x η 1 L x , where γ = 2c x π cy Ly 2 + cz Lz 2 + 1 2 ω0 π 2 
In this case, the threshold diverges as 1/L x in agreement with the experiments as we will see later. On the contrary, the threshold for longer samples:

lim Lx γ E th = φ c π 3 c x 8η 1 S(L y , L z ) with S(L y , L z ) = +∞ ny,z=0 (-1) ny+nz (2n y + 1)(2n z + 1) × 1 (2n y + 1) cy Ly 2 + (2n z + 1) cz Lz 2 + ω0 2π 2 (15) 
does not depend on L x anymore. The threshold remains constant above a given contact distance even if ω 0 = 0. This last point is crucial, because it shows that the experimentally observed saturation of E th for long samples is naturally reproduced by considering only surface and contact pinning, with no need of bulk pinning.

Eq.13 has been used to fit several transport measurements reporting the dependence of E th on sample length in NbSe 3 and TaS 3 [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF][START_REF] Zettl | Phase coherence in the currentcarrying charge-density-wave state: ac-dc coupling experiments in nbse3[END_REF][START_REF] Mihly | Local distortion of pinned charge density waves in orthorombic tas3[END_REF]. Eq.13 contains 6 free parameters (c x , c y , c z , ω 0 , η and φ ) assuming the crystal dimensions (L x , L y , L z ) are known. Nevertheless, this too large number of free parameters can be significantly reduced to the 4 following parameters :

         p 1 = φ c π 3 c 2 x 8η p 2 = cy Lycx p 3 = cz Lzcx p 4 = ω0 √ 2πcx
The expression of E th with those parameters is given in appendix E. This number can be again reduced by making several assumptions. Despite the lack of data about the phason mode in NbSe 3 , the phason dispersion curve has been measured in K 0.3 MoO 3 [START_REF] Pouget | Neutron-scattering investigations of the kohn anomaly and of the phase and amplitude charge-densitywave excitations of the blue bronze k0.3moo3[END_REF] showing that the two transverse elastic constants are similar. We assume that it also the case in NbSe 3 and set the constraint c y = c z .

Furthermore, standard NbSe 3 and TaS 3 crystals display very elongated shapes, few millimeters long, tens of micrometers wide but only few micrometers thick. We thus assume L y L z (p 2 p 3 ) and set p 2 = 0 in the fit since the two contributions add up in the formula.

Furthermore, the bulk impurity frequency pinning ω 0 is a phenomenological parameter introduced in previous models [START_REF] Feinberg | Elastic and plastic deformations of charge density waves[END_REF] to explain why the threshold does not tend towards zero for large L x distances. However, the impurity pinning ω 0 does not bring any crucial information in our model since the finite limit for large L x is naturally obtained by the lateral surface pinning introduced here (see appendix E). Therefore, impurity pinning frequency ω 0 is set to zero in the following.

The evolution of E th as a function of L x taken from ref [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF] has been correctly fitted for different sets of free parameters (see Fig. 12 in the appendix E). The overall E th profile including its convergence towards a constant value for large L x is well reproduced with ω 0 = 0 which confirms that the physical properties of sliding CDW is mainly driven by surface pinning effects and not by bulk pinning.

Within those assumptions, Eq13 correctly fits several measurements performed in different systems as in TaS 3 [START_REF] Mihly | Local distortion of pinned charge density waves in orthorombic tas3[END_REF] or in NbSe 3 [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF] as shown in Fig. 4 despite our constraints p 2 = p 4 = 0, showing that the phase-slip process combined with the transverse surface pinning can explain the nonlinear CDW current measured in these materials. Finally, the electrical potential V th = L x × E th as a function of L x taken from [START_REF] Zettl | Phase coherence in the currentcarrying charge-density-wave state: ac-dc coupling experiments in nbse3[END_REF] is also fitted in the inset of Fig. 4. The model also confirms the linear behavior of V th for large contact distance. Fig. 4. Threshold E th with Lx fitted by using our model including transverse pinning (Eq.E.1 in appendix E using {p1, p2 = 0, p3, p4 = 0}). The experimental dots are taken from [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF] measured in NbSe3 and the blue triangles from [START_REF] Mihly | Local distortion of pinned charge density waves in orthorombic tas3[END_REF] in TaS3. Inset : Fit of V th = Lx ×E th using Eq.E.1 of resistivity data from [START_REF] Zettl | Phase coherence in the currentcarrying charge-density-wave state: ac-dc coupling experiments in nbse3[END_REF].

A more systematic study knowing the exact sample dimensions (L y and L z ) would allow us to directly obtain the c x /c y and c x /c z ratios from resistivity measurements (the sample transverse dimensions are sometimes missing in the published data).

E th as a function of the sample cross section

Let's now study the effect of the sample cross section on E th using our model. It is interesting to consider this dependence since the observed increase of E th with decreasing cross sections can not be explained by the bulk pinning frequency ω 0 alone. We use data from [START_REF] Borodin | Nonlinear effects in small o-tas3 samples[END_REF] of the threshold field as a function of the sample cross section A = L y L z in small o-TaS 3 samples. The first (2n y + 1) cy Ly term in the expression of a ny,nz Eq14 can be neglected since

L y ≈ 10L z L z (A ≈ 10L 2 z ).
As in the previous section, we assume c y ≈ c z and the bulk impurity pinning is neglected (ω 0 = 0). It remains two free parameters are thus remaining, namely m 1 =

φ c π 3 c 2 x 8ηLx , m 2 ≈ cyLx √ 10 cx
and the fitting function reads:

E th,f it A (A, {m 1 , m 2 }) = m 1 × 1 +∞ ny,z=0 (-1) ny +nz (2ny+1)(2nz+1)an y ,nz tanh πan y ,nz 2 (16) 
with

a f it A ny,nz = m 2 (2n z + 1) √ A (17) 
Our model with ω 0 = 0, c y = c z and Ly L z correctly fits the experimental data (see Fig. 5) especially the two extreme cases, the threshold increase for small cross sections and the finite asymptotic value for large cross sections.

1 100

Cross-section ( m 2 )

1 10 E th (mV/cm) Fig. 5. The experimental threshold E th (blue dots) versus the sample cross section in small o-TaS3 samples from [START_REF] Borodin | Nonlinear effects in small o-tas3 samples[END_REF]. The fit using Eq.16 (red line) correctly reproduces the whole behavior especially the increase of E th for decreasing cross sections and the asymptotic constant value for large cross sections (no bulk pinning is used in the fit).

The increase of E th for decreasing cross sections can not be reproduced by bulk impurity pinning but is correctly described by considering only surface pinning. This adjustment with cross sections is the best illustration that the pinning volume plays little, if any role, in the CDW deformation under current.

It can also be noted that the critical strain is reached at larger fields for smaller cross sections. Due to surface pinning, part of the elastic energy induced by the deformation goes into the transverse shear, thus the longitudinal strain becomes smaller than in the case of a free CDW on the transverse surfaces.

Discussion

We have shown in this article that the macroscopic properties of a CDW can be more surface than bulk dependent especially in thin samples, in particular due to transverse pinning that was either neglected or little considered until now. However, this conclusion raises the question of macroscopic samples depending so much on it surfaces. Why is the bulk CDW phase so closely associated to boundary conditions?

The surfaces of many CDW systems have been studied especially by STM. The CDW phase is present at the top layer and can display a perfect long range order over hundreds of nanometers, like in the quasi-1D Rb 0.3 MoO 3 [START_REF] Brun | Charge-density waves in rubidium blue bronze rb 0.3 mo o 3 observed by scanning tunneling microscopy[END_REF], K 0.9 Mo 6 O 17 [START_REF] Mallet | Contrast reversal of the charge density wave stm image in purple potassium molybdenum bronze k 0.9 mo 6 o 17[END_REF], TaS 3 [START_REF] Gammie | Scanning tunneling microscopy of the charge-density wave in orthorhombic tas 3[END_REF], NbSe 3 [START_REF] Brun | Surface charge density wave phase transition in nbs e 3[END_REF][START_REF] Brun | Scanning tunneling microscopy at the nbse 3 surface: Evidence for interaction between q 1 and q 2 charge density waves in the pinned regime[END_REF][START_REF] Brazovskii | Scanning-tunneling microscope imaging of single-electron solitons in a material with incommensurate charge-density waves[END_REF] and in the quasi-2D TbTe 3 [START_REF] Fang | Stm studies of tbte 3: evidence for a fully incommensurate charge density wave[END_REF][START_REF] Fu | Multiple charge density wave states at the surface of tbt e 3[END_REF] and 1T-TaS 2 [START_REF] Burk | Chargedensity-wave domains in 1t-tas 2 observed by satellite structure in scanning-tunneling-microscopy images[END_REF]. Moreover, several groups observed a surface CDW using grazing incident X-ray diffraction in NbSe 2 [START_REF] Bm Murphy | Surface behaviour at the charge density wave transition in nbse2[END_REF] and K 0.3 MoO 3 [START_REF] Zhu | Grazing-incidence x-ray study of the charge-density-wave phase transition in k0.3moo3[END_REF].

The surface and volume properties of CDW materials may be different but are, however, systems dependent. Although similar CDW properties were reported at the surface and in the bulk of K 0.3 MoO 3 by grazing-incidence x-ray diffraction [START_REF] Zhu | Grazing-incidence x-ray study of the charge-density-wave phase transition in k0.3moo3[END_REF] (the T cdw c and the order parameter remain identical), this is not the case in other compounds in which the CDW phase in the bulk is different from the surface [START_REF] Ru | Charge density wave formation in rare-earth tritellurides[END_REF] like in TbTe 3 , on which a second CDW phase along the a axis is measured by STM [START_REF] Fu | Multiple charge density wave states at the surface of tbt e 3[END_REF]. In NbSe 2 , the surface transition was measured at a temperature larger by 1.4±0.6K from the one measured in the bulk. In NbSe 3 , Brun et al. [START_REF] Brun | Surface charge density wave phase transition in nbs e 3[END_REF] measured a surface CDW transition temperature (T S c = 70 -75K) 15K above the bulk transition (T bulk c = 59K), indicating a different CDW amplitude between surface and bulk.

Several explanations were given in the literature for the origin of surface pinning in CDW system. Feinberg and Friedel proposed a CDW frontal pinning in the case of rough sample surfaces or, as a second mechanism, a condensation of electrons near the surface if the CDW wavefronts are not perpendicular to the sample transverse surfaces [START_REF] Feinberg | Elastic and plastic deformations of charge density waves[END_REF][START_REF] Schlenker | Low-dimensional electronic properties of molybdenum bronzes and oxides. Physics and chemistry of materials with low-dimensional structures[END_REF].

The diffraction measurements showing a systematic and identical pinning over so large distances [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF], however, tend to show that surface pinning is not due to extrinsic surface defects but rather to the intrinsic nature of CDW. As proposed by Yetman and Gill [START_REF] Yetman | Size-dependent threshold fields for frhlich conduction in niobium triselenide: Possible evidence for pinning by the crystal surface[END_REF] and in [START_REF] Bellec | Study of charge density wave materials under current by X-ray diffraction[END_REF], this effect could be associated to a commensurate CDW pinned to the crystal lattice at the surface in contrast to an incommensurate CDW in the bulk. Gammie et al. measured the surface CDW modulation in TaS 3 to be approximately at the commensurate value 4c 0 × 10b 0 [START_REF] Gammie | Scanning tunneling microscopy of the charge-density wave in orthorhombic tas3[END_REF] where c 0 and b 0 are the crystal lattice parameters. Brun et al. measured by STM the CDW wavevector in Rb 0.3 MoO 3 at the commensurate value q cdw = ±0.25b * + (a + 2c) * [START_REF] Brun | Charge-density waves in rubidium blue bronze rb0.3Moo3 observed by scanning tunneling microscopy[END_REF]. Finally several STM measurements from the literature indicate a surface CDW wavevector in NbSe 3 at q cdw = 0.24b * [START_REF] Brun | Surface charge density wave phase transition in nbs e 3[END_REF][START_REF] Brazovskii | Scanning-tunneling microscope imaging of single-electron solitons in a material with incommensurate charge-density waves[END_REF][START_REF] Brun | Scanning tunneling microscopy at the nbse 3 surface: Evidence for interaction between q 1 and q 2 charge density waves in the pinned regime[END_REF] close to the commensurate value 0.25b * . Unfortunately, the error bars of q cdw are not indicated, hence, to our knowledge, no experimental evidence can either support or deny this assumption yet mainly because the surface local probes lack the desired q-resolution.

Conclusion

In conclusion, we provide here an analytical expression for the CDW phase and threshold field, when the system is submitted to an applied current and constrained by boundary conditions including transverse surface pinning as observed in a recent experiment [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF]. The threshold field E th is obtained from the 3D phase as a function of the sample dimensions and the phase slip process. We show that the CDW deformations appear at larger fields when surface pinning is taken into account, which leads to an increase of threshold fields for small samples. The solution correctly describes the threshold field E th measured in several CDW systems as a function of both, lengths and sample cross sections.

In addition, this study shows that bulk impurity pinning, usually introduced in theoretical models as a phenomenological parameter to better fit the data, is not necessary to predict the threshold dependence on the sample dimensions. This threshold field behavior can be explained by the only means of pinning from lateral surfaces without consideration of bulk properties. On the other hand, in the case of thick samples, it seems that bulk impurity pinning still has to be taken into account to predict the temperature dependence of E th [START_REF] Maki | Impurity pinning of charge-density waves and spin-density waves[END_REF].

The CDW dynamics for thin samples is surprisingly mainly controlled by surface effects and less by the volume, despite the comparatively large volumes scales. This strong boundary effect between surfaces tens of micrometers apart can not occur without an extraordinary long range order of the CDW. This effect is consistent with the experiment reported in [START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF] that observes a continuous deformation of the CDW wave fronts spanning a distance of 4 orders of magnitude larger than the CDW wavelength.

This study also raises the question on the origin of the strong surface pinning effect. As discussed in the text, surface pinning is most probably a intrinsic property of CDW systems and could be related to the loss of incomensurability at the surface. In this framework, the impressive CDW deformation under field would then be a consequence of a coexisting incommensurate CDW in the volume with commensurate CDW at the surfaces.

The model proposed in this paper highlights the importance of surface effects on sliding properties. The surface state is undoubtedly an important parameter to explain the threshold evolution under mechanical strain [START_REF] Zybtsev | Strain-induced formation of ultra-coherent cdw in quasi one-dimensional conductors[END_REF]. Finally, we show here that surface pinning must be taken into account to correctly describe the threshold field and thus the soliton nucleation at the electrical contact. If transverse pinning plays a significant role for the threshold, it could also be an important parameter to determine the soliton propagation in the sample. Pinning of the soliton could explain the CDW hysteresis effect with current [START_REF] Mihaly | Dielectric hysteresis and relaxation in the charge-density-wave compound k 0.3 moo 3[END_REF][START_REF] Mihaly | The onset of current carrying charge density wave state in tas3: Switching, hysteresis, and oscillation phenomena[END_REF][START_REF] Zettl | Onset of charge-density-wave conduction: Switching and hysteresis in nb se 3[END_REF] as well as the observed decrease of the transverse CDW satellite peak width measured in diffraction [START_REF] Danneau | Motional ordering of a charge-density wave in the sliding state[END_REF][START_REF] Bellec | Study of charge density wave materials under current by X-ray diffraction[END_REF] and a complete theoretical study of this propagation including surface pinning is necessary.
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A Description of the phase-slip process

In this section, we describe the phase-slip process defining the electric field threshold Eq.11. As discussed in the introduction, solitons, transporting charges from one contact to the other, are created at the electrical contact when the field exceeds E th . However, due to the topology of these 2π Sine-Gordon phase solitons [START_REF] Peyrard | Physique des solitons[END_REF], they can not nucleate without destroying the CDW order and the CDW amplitude needs to locally drop to zero. The least energetic way to create a soliton is through a phase vortex ring, also referred to as a CDW dislocation loop [START_REF] Feinberg | Elastic and plastic deformations of charge density waves[END_REF], which appears spontaneously under strain and increases in size until it vanishes on the sample surface, leaving behind it a soliton. This is the so-called phase-slip process that we describe here, starting from the phase vortex configuration.

A CDW phase vortex is shown in Fig. 6a in which the phase φ(r) increases by 2π when following the green path around the vortex center. In order to avoid an infinite φ derivative in the center, meaning an infinite elastic energy, the CDW amplitude A drops exponentially to zero at the center as shown in the vertical axis of Fig. 6a. Due to its topological property, a vortex configuration can only be created in the CDW volume as a vortex-antivortex pair, where an antivortex is a vortex of opposite chirality. The vortex and antivortex nucleate at the same position and then split in two to create a CDW phase configuration as illustrated in Fig. 6b where the vortex centers are schematized as black dots and the φ value in color. The φ profile through the vortex-antivortex configuration contains a 2π phase shift (see Fig. 6b-c). Hence, every atomic chains located in between the vortex and the antivortex have a CDW soliton. This vortex-antivortex nucleation is the least energetic way to create topological 2π solitons in the CDW bulk.

The generalization in 3D is a vortex ring as presented in Fig. 7 where the CDW phase φ is shown by a color gradient. This ring corresponds to a continuous vortexantivortex pairs configuration where the 2D case Fig. 6b corresponds to a section of the 3D case in the plane (x, y, z = 0). Each atomic chain inside this ring contains a CDW soliton as in the 2D case (Fig. 6b andc).

The vortex ring induces a phase gradient leading to the elastic energy [START_REF] Bellec | Study of charge density wave materials under current by X-ray diffraction[END_REF]: where d is the vortex diameter and ξ the CDW coherence length. As the vortex center radius is ξ, the ring energy isn't defined for a diameter d ≤ 2ξ. The elastic energy E ring without strain (φ x =0) is shown as function of the diameter d in blue in Fig. 8a. We observe that E ring is always positive and increases for large d, thus the vortex ring can not nucleate spontaneously in a CDW at equilibrium. However, this is no more the case under an external electric field inducing a CDW longitudinal strain φ x = 0 (seed Fig. 2b). The ring energy decreases in the presence of a non-zero φ x as shown in Fig. 8a and for large ring size (d ξ) E ring is negative and the ring nucleation becomes favorable.

E ring (d) ∝ 4π 2 d ln d -ξ ξ -π 2 d 2 φ x (A.1)
However if ξφ x < 2 (blue, orange and green curves in Fig. 8a) the energy derivative at smallest ring diameter ∂Ering ∂d (d = 2ξ) is positive, hence an energy barrier forbids the ring to increase to larger diameters and to nucleate. Yet, as φ x increases, ∂Ering ∂d (d = 2ξ) decreases linearly as shown in Fig. 8b until it becomes negative for ξφ x > 2, hence the energy barrier disappear and the ring nucleates spontaneously. As shown in the violet curve of Fig. 8b, for φ x > 2/ξ, E ring is always decreasing, therefore the diameter d increases until the ring reaches the sample borders and vanishes, leaving behind it a charged soliton on each atomic chain at the electrical contact. This is the phaseslip process.

We see from this argument that the ring nucleates where the longitudinal derivative φ x is maximum, i.e. at the electrical contact and as far as possible from the lateral surface in (x = L x /2, y = 0, z = 0)with our model (see Fig. 2b) and Fig. 11b. The soliton nucleation with the appearance of the non-linear CDW current occurs when the applied electric field is such that the phase longitudinal derivative is larger than a critical value φ x ( Lx 2 , 0, 0) > φ c ≡ 2/ξ, hence defining the threshold field Eq.11. is negative ∀d, hence the barrier disappear and d grows spontaneously until the ring perimeters reaches the sample surfaces and vanishes, leaving behind a topological 2π soliton on each atomic chain at the electrical contact. This phenomenon is the "phase-slip process".

Finally, we considered here the strain to be constant locally, that is φ x is constant in the calculation of E ring (d) shown in Fig. 8. This approximation is correct since the typical length of the derivative variation is of the order of the sample dimensions L x , L y , L z as observed in Fig. 2b). Since E ring reaches a large negative value for d >> ξ and φ x ( Lx 2 , y, z) ≥ 0 (∀ y, z), the spatial variation of the CDW strain won't prevent the ring size to spontaneously increase.

B Uniqueness theorem

The image charges method is often used to solve electrostatic problems with boundary conditions by adding charges strategically placed to enable the Laplace equation to be more easily solved. This method is valid in electrostatic since the Poisson equation satisfies the uniqueness theorem regarding the solutions gradient (electric field). The use of the image charge method in our case with contacts and surface pinning is justified if the inhomogeneous screened Poisson equation Eq.4 also satisfies this theorem.

Let's consider two different solutions φ 1 (r) and φ 2 (r) of the Eq.4 both satisfying the boundary conditions Eq.5 and the difference ψ = φ 1 -φ 2 that must be zero if the solution is unique. This phase difference ψ fulfill the homogeneous screened Poisson equation along side with the Dirichlet conditions Eq5:

(∆ -ω 2 )ψ = 0 (B.1)
The only solution to this equation is the trivial solution ψ = 0 since in this case the Laplacian is negative definite while ω 2 > 0 [START_REF] Pockels | ber die partielle differentialgleichung und deren auftreten in die mathematischen physik[END_REF]. In the following, we show a step by step demonstration of this trivial solution. Let's consider the relations:

∇ (ψ∇ψ) = (∇ψ) 2 + ψ∆ψ = (∇ψ) 2 + ω 2 ψ 2 (B.2)
where Eq.B.1 is used in the second line. By integrating Eq.B.2 over the CDW sample volume V and using the divergence theorem one finds:

V ∇ (ψ∇ψ) = V (∇ψ) 2 + ω 2 ψ 2 d 3 r ∂V ψ∇ψ = V (∇ψ) 2 + ω 2 ψ 2 d 3 r (B.3)
where the surface ∂V corresponds to the CDW boundaries. Since ψ satisfies Eq.5, ψ = 0 on the boundaries and the left hand side of Eq.B.3 is zero. Therefore, each squares terms on the right hand side must be zero to vanish the integral. Hence ψ(r) = 0 (∀ r), proving the unicity of the solution.

C Step-by-step construction of the image charge and CDW phase solution in 1D and 2D

A step-by-step construction of the image charge density, for the 1D case, satisfying φ(±

L x
2 ) = 0 is shown in Fig. 9. The first step is to consider a uniform source term +E in the bulk of the sample (the red line in Fig. 9a where the source density is ρ a

(x ) = E × Π x L x
where Π is the gate function defined Π(x) = Θ( 12 -|x|) with Θ being the Heavyside function.

The second step is to consider an "anti-mirror" located at x = -L 2 to create an artificial negative image charge density -E located in the region -

3L x 2 < x < -L
2 that fulfills the boundary condition φ(-

L x
2 ) = 0 as shown in Fig. 9b. At the end of this step, the total charge density is

ρ b (x ) = ρ a (x ) -E Π x +L x L x
In order to satisfy the second boundary condition φ( L 2 ) = 0, the procedure has to be repeated by adding two additional image charge densities, -E at

L x 2 < x < 3L x 2 and +E at 3L x 2 < x < 5L x 2
as shown in Fig. 9c. However, while this new charge density impose φ(

L x
2 ) = 0, the first boundary condition is lost since φ(-

L x
2 ) = 0 (see Fig. 9c). Therefore, we must repeat the process back and forth between the left and right side of the sample until reaching an infinite periodic total charge density ρ(x ) shown in Fig. 9d which can expressed by the infinite sum:

ρ(x ) = +∞ p=-∞ ρ unit (x -p2L x ) (C.1)
where the density of the unit cell ρ unit (see the grey rectangle in Fig. 9d) reads:

ρ unit (x ) = E   -Π   2 x + 3L x 4 L x   + Π x L x -Π   2 x - 3L x 4 L x     (C.2)
The phase is the space convolution φ(x ) = [G ρ](x ) which is easier to express in Fourier space as a product φ(q) = G(q) × ρ(q). The Fourier transform of the unit cell density is:

ρ unit (q) = E 8 q sin 2 qL x 4 sin qL x 2 (C.3)
and since the total charge density ρ(x ) is an infinite periodic array, its Fourier transform is an infinite sum:

ρ(q) = ρ unit (q) π L x +∞ h=-∞ δ q -h π L x (C.4)
Finally, the phase solution is the inverse Fourier transform of G(q)ρ(q). One finds an infinite sum that can be simplified using first ρ unit (-

h π L x ) = ρ unit (+h π L x
) and then ρ(2n π L x ) = 0 and ρ((2n + 1) π L x ) = 4EL (-1) n π(2n+1) . We finally obtain the following expression for the CDW phase in 1D: 2 ) = 0 (see Fig. 10). The Fourier transform of the unit cell of the two-dimensional periodic density is: ρ unit (q x , q y ) = E 64 q x q y sin q x L x 2 sin 2 q x L x 4 × sin q y L y 2 sin 2 q y L y 4

(C.6)

The Fourier transform of the infinite electronic crystal becomes a double sum of Dirac products and after simplification and using the same symmetry arguments as in 1D between positive and negative terms and the fact that ρ is zero for even terms of the sum, the 2D CDW phase solution can be written as:

φ(x , y ) = - 16E π 2 +∞ nx,y=0
(-1) nx+ny (2n x + 1)(2n y + 1) ×

cos (2n x + 1)π x L x cos (2n y + 1)π y L y (2n x + 1) π L x 2 + (2n y + 1) π L y 2 + ω 2 (C.7)

D The CDW phase deformation in 3D

Following the same procedure as in 1D (Eq.8) and in 2D (Eq.9), the solution of the CDW phase submitted to an electric field with Dirichlet conditions in 3D reads: b) The longitudinal derivative φ x is displayed in color scale with slices through the sample volume. The strain reaches a maximum at the electrical contact r = (Lx/2, 0, 0) where the phase slip occurs and a minimum at the opposite side r = (-Lx/2, 0, 0). The extrema are reversed if the current direction is changed.

φ(r ) = - 64E π 3 +∞ nx,y,z=0 (-1) nx+ny+nz (2n x + 1)(2n y + 1)(2n z + 1) × cos (2n x + 1)π x L x cos (2n y + 1)π y L y cos (2n z + 1)π z L z (2n x + 1) π L x 2 + (2n y + 1) π L y 2 + (2n z + 1) π L z 2 + ω 2 (D.1)
The corresponding phase profile φ(r ) is shown in Fig. 11 a) in the 3D volume of the sample. The phase is zero at the sample boundaries as expected while φ varies mostly in the middle of the sample. The longitudinal derivative φ x is close to zero in the middle of the sample and reaches its maximum at the electrical contact where the phase slip occurs (see Fig. 11b). One can also observe that φ x drops to zero at the transverse surfaces along y and z. Therefore, as considered in the main text, the phase slip occurs where φ x is maximum, at (x , y , z ) = (L x /2, 0, 0). E Fitting procedure for the 3D threshold field E th versus the length L x

In this section, we describe the procedure used to fit the expression of the threshold field given in Eq.13 from the experimental resistivity measurements [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF][START_REF] Zettl | Phase coherence in the currentcarrying charge-density-wave state: ac-dc coupling experiments in nbse3[END_REF][START_REF] Mihly | Local distortion of pinned charge density waves in orthorombic tas3[END_REF]. As discussed in the main text, 4 free parameters are used

{p 1 , p 2 , p 3 , p 4 } = φ c π 3 c 2 x 8η , c y L y c x , c z L z c x , ω 0 √ 2πc x
with:

E f it Lx th (L x , {p 1 , p 2 , p 3 , p 4 }) = p 1 L x × 1 +∞ ny,z=0 (-1) ny +nz (2ny+1)(2nz+1)a f it ny ,nz tanh πa f it ny ,nz 2 (E.1) with a f it Lx ny,nz 2 = [(2n y + 1)p 2 L x ] 2 +[(2n z + 1)p 3 L x ] 2 +(p 4 L x ) 2 (E.2)
We fit E th as a function of L x from Prester et al [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF] for different choices of parameters. As a first step, we fit the data by using the 4 parameters {p 1 , p 2 , p 3 , p 4 } (see the red curve in Fig. 12). The data are correctly fitted but the covariance matrix has large diagonal as well as non-diagonal elements showing correlation between parameters, especially between p 2 and p 3 (see Eq.E.2).

As discussed in the main text, the characteristics of E th can be reproduced without the need of ω 0 . Without bulk pinning (ω 0 = p 4 = 0), the global E th profile with L x is also well reproduced (see the yellow curve in Fig. 12).

In addition, the two transverse elastic constant c y and c z are assumed to be the same, as in K 0.3 MoO 3 [START_REF] Pouget | Neutron-scattering investigations of the kohn anomaly and of the phase and amplitude charge-densitywave excitations of the blue bronze k0.3moo3[END_REF]. Furthermore, the standard NbSe 3 dimensions allow us to set L y L z leading to p 2 p 3 . By using only two free parameters {p 1 , p 2 = 0, p 3 , p 4 = 0}, our model can still correctly reproduce the overall behavior of the experimental E th (see the blue line in Fig. 12).

F Convergence of the E th expression

The double sum used in the expression of E th reads (where we set ω 0 = 0 as in the fits of Fig. 4 and5) Fig. 12. Resistivity data from [START_REF] Prester | Size effect in nbse3: Length dependence of the threshold field[END_REF] fitted by using three different sets of parameters in Eq.E.2: {p1, p2, p3, p4} (red curve), without bulk pinning {p1, p2, p3, 0} (yellow curve) and with equal transverse elastic constants (cy = cz) and thinner than large samples (Ly Lz) with {p1, 0, p3, 0}. The last fit gives p1 = 0.080 ± 0.002 and p3 = 5.5 ± 0.1.

S(k 1 , k 2 ) = ∞ ny,z=0
For large k 1 and k 2 values, the hyperbolic tangent term tends towards one and the double series converges as an alternating sign inverse square ∼ (-1) n (2n+1) 2 . However, in the other limit (k 1 , k 2 1), the first order expansion of tanh gives:

lim k1,k2 1 S(k 1 , k 2 ) = π 2 ∞ ny,z=0
(-1) ny+nz (2n y + 1)(2n z + 1) , (F.3) that converges much slower as an alternating sign inverse linear convergence. In the following, we will study the sum convergence in this specific case knowing that S(k 1 , k 2 ) converges much faster for the other cases. The relative error considering the first N y and N z terms in the double sum S limit,Ny,Nz = 0≤ny≤Ny 0≤nz≤Nz

(-1) ny+nz (2n y + 1)(2n z + 1) (F.4) can be written as:

E limit,Ny,Nz ≡ S limit,∞,∞ -S limit,Ny,Nz S limit,∞,∞

= 1 -1 + 2 π (-1) Ny Φ -1, 1, 3 2 + N y × 1 + 2 π (-1) Nz Φ -1, 1, 3 2 + N z (F.5)
where Φ(z, s, a) is the Lerch transcendent function [START_REF] Lerch | Note sur la fonction K(w, x, s) = ∞ k=0 e 2kπix (w+k) s[END_REF][START_REF] Erdélyi | Higher Transcendental Functions[END_REF]]. This relative error E limit,N,N for N y = N z = N is shown in Fig. 13. The sum up to the 63 th term both in n y and n z is necessary to obtain an error less than 1%. This constraint has been applied in all fits of the main text (Fig. 4 and5). The relative error E limit,Nx,Nz for N y = N z is shown in Fig. 14 where the blue region corresponds to relative errors less than 1%. As in Fig. 13, E limit,Ny,Nz < 1% when N y and N z are both larger than 63 (region in the lower right part of Fig. 14).

After studying the worst convergence case (k 1 , k 2 1), the convergence of the sum in the general case for any k 1 , k 2 values has been computed. S Ny,Nz (k 1 , k 2 ) = 0≤ny≤Ny 0≤nz≤Nz (-1) ny+nz tanh π 2 a ny,nz (2n y + 1)(2n z + 1)a ny,nz (F.6) Since no analytical form exists for the relative error in the general case (similar to Eq.F.5), the relative error is 1 (see Fig. 15 d). In conclusion, a sum up to N y , N z = 63 is necessary to get a less than 1% relative error. We went further and took into account N y , N z = 100 for all the fits displayed in the main text (Fig. 4 and5).

Fig. 1 .

 1 Fig.1. Comparison between the exact solution of the CDW phase φana in 1D and the solution obtained with the Green function and image charges Eq.8 with the first term only (n = 0) and the first 100 terms in the infinite sum (with E = 1, L x = 1 and ω = 0). The convergence is fast for ω < 1, since the first term n = 0 already gives a solution close to φana.

Fig. 2 .

 2 Fig. 2. a) The 2D CDW phase obtained from the Green function and image charge method with ω = 0, E = 1, L x = 3, L y = 1 by summing the 100 first terms in nx and ny. By construction, φ = 0 at all sample edges. b) The 2D longitudinal strain, proportional to the phase derivative φ x , shows two extrema at the two electrical contacts (x , y ) = ± L x 2 , 0 . c) 2D transverse derivative showing a large shear effect in the middle of the sample.

Fig. 3 .

 3 Fig.3. a) Transverse derivative φ y as a function of the longitudinal one φ x obtained from Eq.9. b) The CDW corresponding to φ(x , y ) of Fig.2a) displays a shear effect with a curvature of the wave fronts in the middle part of the sample and a compression-dilation of the CDW period at the two electrical contacts. The CDW wavelength λ has been significantly increased for clarity (in reality λ = 14 Å in NbSe3, that is λ ≈ 10 -6 Lx). c) Comparison of the theoretical ρ(x , y ) with the CDW measured by x-ray diffraction under current from[START_REF] Bellec | Evidence of charge density wave transverse pinning by x-ray microdiffraction[END_REF]. Note that we used a different CDW wavelength between b) and c),d) for a better visualization.

Fig. 6 .

 6 Fig. 6. a) 2D topological phase vortex where the CDW amplitude A corresponds to the vertical axis while the CDW phase φ is displayed in color gradient. Following the green arrow path, φ increases by 2π. b) Vortex-antivortex pair configuration. c) φ profile along the black dashed line in c) showing that a topological 2π soliton is present on each atomic chain inside the vortex-antivortex pair.

Fig. 7 .

 7 Fig.7. 3D vortex ring configuration consisting in a ring of vortex-antivortex pairs. The CDW phase φ is shown in color gradient on a surface at a fixed distance from the ring perimeter. Every atomic chains inside the ring contains a topological 2π soliton. The 2D case (Fig.6) corresponds to the section of this 3D ring case in the plane (x, y, z = 0).

Fig. 8 .

 8 Fig. 8. a)Energy of a vortex ring in the presence of a strain ∝ φx induced by the applied electric field. inset: zoom on the region of small d. b) derivative of the ring energy at the smallest ring size d = 2ξ. For ξφx < 2, ∂E ring ∂d (d = 2ξ) is positive, thus an energy barrier prevents the ring size d to increase. However, for ξφx > 2, ∂E ring ∂d

Fig. 9 .

 9 Fig.9. The uniform charge density +E in the CDW system used in the image charge method (see Eq.4) is displayed as a red line for x ∈ [-L x 2 , L2 ] while the negative image charges are displayed in blue. b), c) and d) present the step-by-step construction of the image charge density array described in this appendix.

Fig. 10 .

 10 Fig. 10. 2D periodic array of image charge density with the unit cell represented by the black dashed-line rectangle. Red (blue) rectangles correspond to a uniform positive (negative) charge density +E (-E).

2 + ω 2 (C. 5 )

 225 φ(x ) = -4E π +∞ n=0 (-1) n cos (2n + 1)π x L x (2n + 1) (2n + 1) π L x The construction of the image charge density in 2D is similar to the procedure used in 1D. The CDW sample of size L x × L y has a uniform charge density +E and an infinite array of periodic image charges is built to fulfill the boundary conditions φ(± L x 2 , y ) = φ(x , ± L y

Fig. 11 .

 11 Fig. 11. a) The 3D phase φ(r) solution of the Eq.4 with Dirichlet conditions with ω = 0, E = 1, L x = 3, L y = L z = 1 and by summing the first hundred terms of the sum (nx, ny, nz ≤ 100).b) The longitudinal derivative φ x is displayed in color scale with slices through the sample volume. The strain reaches a maximum at the electrical contact r = (Lx/2, 0, 0) where the phase slip occurs and a minimum at the opposite side r = (-Lx/2, 0, 0). The extrema are reversed if the current direction is changed.
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 1314 Fig. 13. Relative error E limit,N,N (Eq.F.5) made in the numerical approximation of Eq.F.1 in the limit case k1 = k2 = 0 and taking into account the first terms for which ny, nz ≤ N , both equal to Ny = Nz = N . The contribution of the first N = 63 terms is necessary to have less than 1% relative error.

Fig. 15 .

 15 Fig. 15. Relative error Eq.F.7 made in the numerical evaluation of Eq.F.1 for several sets of parameters {k1, k2}. The worst case scenario happens for k1, k2 1 shown in d).

  We evaluate here the error made on S when a finite number of terms is used in the sum. p 2 , p 3 , p 4 } {p 1 , p 2 , p 3 , p 4 = 0} {p 1 , p 2 = 0, p 3 , p 4 = 0}

		1.4	fit parameters {p 1 ,
		1.0 1.2 E th (V/cm)		
	with	(-1) ny+nz tanh π 2 a ny,nz (2n y + 1)(2n z + 1)a ny,nz ny,nz = [(2n 0.2 , (F.1) a 2	0.4 L x (mm)	0.6

y + 1)k 1 ] 2 + [(2n z + 1)k 2 ] 2 (F.
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