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Abstract

The Reynolds transport theorem gives a generic conservation
law for a conserved quantity carried by fluid flow through a con-
tinuous control volume, providing the foundation for all con-
servation laws of fluid mechanics. We present new spatial and
parametric multivariate generalisations of this theorem, each of
which provides a continuous mapping of the contents of a do-
main within a coordinate space. The most general form involves
mappings on a manifold, presented in a multivariate extension
of exterior calculus. These theorems are used to generate tables
of new conservation laws in integral form in different spaces,
including Eulerian velocity space and velocity-volume phase
space, based on fluid densities defined in these spaces.

Keywords
Reynolds transport theorem, exterior calculus, conservation
laws, velocity space, phase space, density

Introduction

The Reynolds transport theorem, given by Reynolds in 1903 [1],
provides a generalised conservation equation for a conserved
quantity within a body of fluid (the domain or fluid volume) as
it moves through a designated region of space (the control vol-
ume). Its universal formulation enables the generalised analysis
of all conserved quantities, which can be used to extract particu-
lar phenomena as needed, e.g., the transport of seven important
conserved quantities in fluid flow systems (fluid mass, species
mass, linear momentum, angular momentum, energy, charge
and thermodynamic entropy) [2, 3]. By the analysis of sources,
sinks and fluxes of the conserved quantity in a differential fluid
element, the theorem can also be connected to corresponding
differential equations for each phenomenon [2, 3, 4, 5, 6, 7].
During the past half-century, the Reynolds transport theorem
has been extended to domains with discontinuities [8, 9], mov-
ing and smoothly-deforming control volumes [2, 3, 9], irregu-
lar and rough domains [10, 11, 12], two-dimensional domains
[13, 14, 15, 16, 17], and differentiable manifolds or chains de-
scribed by patchworks of local coordinate systems [18, 19, 20],
the latter expressed in the formalism of exterior calculus. These
formulations are restricted to one-parameter (temporal) map-
pings of the conserved quantity in volumetric space, induced
by a velocity vector field. A separate body of research has
also been conducted on an analogous spatial averaging theo-
rem, based on spatial rather than time derivatives of the fluid
volume [21, 22, 23, 24].

Recently, the authors presented a generalised formulation of the
Reynolds transport theorem, involving a multivariate mapping
of a conserved quantity in a generic coordinate space, induced
by a vector or tensor field [25]. Its most general form provides
a mapping within a differentiable manifold, using a multivari-
ate extension of exterior calculus. In contrast to the traditional

Reynolds transport theorem, which considers the integral curves
(pathlines) described in time by a velocity vector field, the new
theorems provide parameterised univariate or multivariate inte-
gral curves connecting different locations within the coordinate
space. They can therefore be referred to as transformation the-
orems, connecting – for example – every spatial position within
a velocity gradient field, or every parameterised location within
an arbitrary tensor field. The new formulations have been used
to define new spatial and parametric variants of the Liouville
equation for the conservation of probability, and of the Perron-
Frobenius and Koopman operators, providing an assortment of
new tools for the analysis of turbulent flow systems [25].

The aim of this work is to present several forms of the new
Reynolds transport theorems, both in generic form and ap-
plied to several coordinate spaces, including volumetric space,
Eulerian velocimetric space and Eulerian phase space. From
these formulations, we present tables of integral equations
for the seven important conserved quantities identified previ-
ously, analogous to those commonly derived from the tradi-
tional Reynolds transport theorem [2, 3]. The analyses sub-
stantially expand the scope of known conservation laws for the
analysis of different types of fluid flow systems.

Generalised Reynolds Transport Theorems

Exterior Calculus Formulation

We first present the general multivariate exterior calculus
form of the Reynolds transport theorem. Consider an n-
dimensional orientable differentiable manifold Mn represented
using a patchwork of local coordinate systems XXX . The mani-
fold contains an r-dimensional oriented compact submanifold
Ωr with boundary ∂Ω, parameterised by an m-dimensional pa-
rameter vector CCC ∈ Rm. Let VVV be a smooth vector or tensor
field in Mn, a function of local XXX and also of CCC. Let ωr repre-
sent a field of r-forms in Mn associated with a conserved quan-
tity, which is locally continuous and continuously differentiable
with respect to XXX and CCC within the manifold. By analysis of the
augmented manifold Πn+m = Mn×Rm defined from Mn and CCC,
it can be shown that the integral of ωr over Ωr satisfies [25]:
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where d̂ is the exterior derivative in Πn+m, d is the exterior
derivative in Mn, L(CCC)

VVVxCCC is a multivariate Lie derivative with re-
spect to the augmented tensor field VVVxCCC over parameters CCC [25],
i(CCC)
VVV is a multivariate interior product with respect to VVV over pa-
rameters CCC [25], ∇CCC is the gradient with respect to CCC, and “·”
is the vector scalar product. Eq. (1) provides a quite general
theorem applicable to a submanifold of any dimension within a
manifold, i.e., to moving surfaces within volumes. For CCC = t, it
reduces to the Reynolds transport theorem for differential forms
in a time-dependent velocity field [18, 19].

Vector-Tensor Calculus Formulation

To reduce (1), now consider an n-dimensional space M de-
scribed by global Cartesian coordinates XXX , containing an n-
dimensional domain Ω. Let VVV = (∇CCCXXX)> be a smooth vector or
tensor field in M (for tensors written in the ∂(→)/∂(↓) conven-
tion), a function of XXX and the m-dimensional parameter vector
CCC. Let ψ be the density of a conserved quantity in the coordi-
nate space, which is continuous and continuously differentiable
with respect to XXX and CCC within M. It can be shown that [25]:
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where d is now the differential, dnXXX is an n-dimensional ele-
ment in Ω, dn−1XXX is a directed (n−1)-dimensional element in
∂Ω, and ∇XXX is the gradient with respect to XXX .

Eq. (2) provides a general theorem applicable to a domain of
identical dimension to its coordinate space (volumes within vol-
umes). Owing to its general theoretical framework, it is applica-
ble to all types of spaces, not just the volumetric space usually
considered in theoretical fluid mechanics.

Example Flow Systems

We now apply (2) to three types of flow system, defined respec-
tively in volumetric space, Eulerian velocity space and Eulerian
position-velocity (phase) space. In the analyses, we adopt the
following specific quantities: specific mass of the cth chemi-
cal species χc, specific linear momentum uuu (equivalent to the
fluid velocity), specific angular momentum rrr× uuu, specific en-
ergy e, specific charge z and specific entropy s. To keep track
of different types of specific quantities, we denote position de-
pendence by an underbar and velocity dependence by a breve
accent, thereby allowing for three possibilities, e.g., e, ĕ and ĕ
(note that for uuu these labels are implicit).

Volumetric-Temporal Formulation

We first consider a volumetric space with coordinates XXX = xxx
and time parameter CCC = t, in which the conserved quantity is
represented by the generalised density α(xxx, t) = ρ(xxx, t)α(xxx, t)
in volumetric space [units: quantity m−3], where ρ(xxx, t) is the
fluid density [kg m−3] and α(xxx, t) is a specific quantity [quan-
tity kg−1]. We denote the domain (fluid volume) by Ω and its
surface by ∂Ω, both a function of parameter t. The field is given
by VVV = ∂xxx/∂t = uuu, the velocity vector field. Eq. (2) gives:
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where D/Dt is the substantial derivative (here equivalent to the
total derivative d/dt), Q is the total (integrated) conserved quan-
tity, dV = d3xxx is a differential three-dimensional volume ele-
ment in Ω, dA = |d2xxx| is a differential area element in ∂Ω, and
nnn is the outwards unit normal. We see that (3) corresponds to
the standard Reynolds transport theorem [1, 2, 3, 8, 9].

Using the common scheme, the integral conservation laws ob-
tained from (3) for the seven identified conserved quantities are
listed in Table 1 [2, 4, 3, 5, 6, 7]. On the left-hand sides, the
source-sink terms DQ/Dt contain the rate of change of mass of
the cth chemical species ṁc, the sum of forces ∑FFF , the sum of
torques ∑TTT , the total energy E, the inward heat flow rate Q̇in,
the inward work flow rate Ẇin, the total charge Z, the inward
electrical current I, the charge on the cth species zc, the thermo-
dynamic entropy S, the entropy production σ̇, and the non-fluid
entropy flux Ṡn f . In all cases, subscript FV represents calcula-
tion over the fluid volume Ω.

Velocimetric-Temporal Formulation

Now consider a velocimetric space with coordinates XXX = uuu and
time parameter CCC = t, in which the conserved quantity is rep-
resented by the generalised density β(uuu, t) = д(uuu, t) β̆(uuu, t) in
velocimetric space [quantity (m s−1)−3], where д(uuu, t) is the
fluid velocimetric density [kg (m s−1)−3] and β̆(xxx, t) is a spe-
cific quantity [quantity kg−1]. The density д can be interpreted
as the mass of fluid carried by fluid elements of velocity uuu, re-
gardless of position, while β gives the corresponding conserved
quantity carried by these fluid elements. We denote the velocity
domain (the velocity volume) by D and its surface by ∂D , both
a function of parameter t. The field is given by VVV = ∂uuu/∂t = u̇uu,
the local acceleration vector field. Eq. (2) gives:
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where dU = d3uuu is a differential three-dimensional velocity el-
ement in D , dB = |d2uuu| is a differential boundary area element
in ∂D , nnnB is the outwards unit normal, and ∇uuu is the gradient
with respect to uuu. We see that (4) provides a new velocimetric-
temporal formulation of the Reynolds transport theorem [25].

The integral conservation laws obtained from (3) for the seven
identified conserved quantities are listed in Table 2. Since these
integrals are equal to the total rate of change of the conserved
quantity dQ/dt, they equate to the same source-sink terms as for
the volumetric-temporal formulation (Table 1). However, due
to their different formulation, they are labelled VV to indicate
integration over the velocity volume D .

Velocimetric-Spatial (Time-Independent) Formulation

Finally, consider a time-independent volumetric and velocimet-
ric space, which is integrated only with respect to the velocity
coordinates XXX = uuu, and is parameterised by CCC = xxx. The con-
served quantity is represented by the generalised phase space
density ϕ(uuu,xxx) = ζ(uuu,xxx) ϕ̆(uuu,xxx) [quantity m−3 (m s−1)−3],
where ζ(uuu,xxx) is the fluid phase space density [kg m−3 (m
s−1)−3] and ϕ̆(uuu,xxx) is a specific quantity [quantity kg−1]. The
density ζ can be interpreted as the mass of fluid carried by
a fluid element of velocity uuu at the location xxx, while ϕ gives



the corresponding conserved quantity carried by this fluid el-
ement. We again consider a velocity domain D with surface
∂D , now functions of the position xxx. The field is given by
VVV = (∇xxxuuu)> = GGG>, the velocity gradient tensor field. Eq. (2)
gives:
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The integral conservation laws obtained from (5) for the seven
identified conserved quantities are listed in Table 3. As evi-
dent, the derived relations are of different character to those
given previously (Tables 1-2), giving new expressions for the
spatial gradient of each generalised volumetric density α = ρα,
expressed in terms of the corresponding generalised phase space
density ϕ = ζϕ̆.

Conclusions

Building on previous research [25], we present new generalised
forms of the Reynolds transport theorem, involving continuous
mapping of the contents of a domain within a coordinate space.
The most general form involves mappings on a manifold, em-
ploying a multivariate extension of exterior calculus. The new
theorems are here used to derive the existing Reynolds trans-
port theorem in volumetric space, as well as new forms in Eule-
rian velocity space and Eulerian position-velocity phase space.
Each formulation is then used to extract the integral conserva-
tion laws for the transport of seven conserved quantities (fluid
mass, species mass, linear momentum, angular momentum, en-
ergy, charge and thermodynamic entropy), based on generalised
and fluid densities defined within its formulation. The analyses
substantially expand the scope of known conservation laws for
the analysis of different types of fluid flow systems.
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Conserved quantity
Density

= ρα
Integral Equation
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Table 1. Conservation Laws for the Volumetric-Temporal Formulation (after [2, 4, 3, 5, 6, 7]).
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Density
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Integral Equation
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Table 2. Conservation Laws for the Velocimetric-Temporal Formulation.

Conserved quantity
Density

= ζϕ̆
Integral Equation
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Table 3. Conservation Laws for the Velocimetric-Spatial (Time-Independent) Formulation.


