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Abstract

A sequential estimator based on the Ensemble Kalman Filter for Data As-

similation of fluid flows is presented in this research work. The main feature

of this estimator is that the Kalman filter update, which relies on the determi-

nation of the Kalman gain, is performed exploiting the algorithmic features of

the numerical solver employed as a model. More precisely, the multilevel res-

olution associated with the multigrid iterative approach for time advancement

is used to generate several low-resolution numerical simulations. These results

are used as ensemble members to determine the correction via Kalman filter,

which is then projected on the high-resolution grid to correct a single simulation

which corresponds to the numerical model. The assessment of the method is

performed via the analysis of one-dimensional and two-dimensional test cases,

using different dynamic equations. The results show an efficient trade-off in

terms of accuracy and computational costs required. In addition, a physical

regularization of the flow, which is not granted by classical KF approaches, is

naturally obtained owing to the multigrid iterative calculations. The algorithm

is also well suited for the analysis of unsteady phenomena and, in particular,

for potential application to in-streaming Data Assimilation techniques.
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1. Introduction

In Computational Fluid Dynamics (CFD), newly developed numerical meth-

ods are generally assessed in terms of accuracy via comparison with experimental

data [1]. In practice, this validation step is far from being trivial since many

sources of error are inevitably introduced in the simulations. First, the partial

differential equations used to derive the numerical scheme may be restricted to

oversimplified physical models, such as the Boussinesq approximation applied in

thermal convection or the incompressibility condition. Second, the discretiza-

tion process and the use of iterative numerical methods introduce computational

errors in the representation of the flow features [2]. Third, boundary and initial

conditions are usually very sophisticated in complex applications but detailed a

priori knowledge is insufficiently available. Last, for very high Reynolds number

configurations, turbulence/subgrid-scale modelling must be included in order to

reduce the required computational costs [3]. All of these sources of error exhibit

complex interactions owing to the non-linear nature of the dynamical models

used in numerical application, such as the Navier-Stokes equations.

The experimental results are also affected by uncertainties and biases. In

many cases, the set-up of the problem can be controlled up to a finite precision

(alignment between the flow and the wind tunnel or immersed bodies, mass flow

rate, . . . ). This kind of uncertainty, which is clearly affecting every physical

system but cannot be exactly quantified, is usually referred to as epistemic

uncertainty. In addition, experimental results are also affected by the precision

(or bias) of the acquisition and measurement system. Thus, the main difficulty

in the comparison between numerical and experimental results is understanding

how much of the differences observed is due to an actual lack of precision of

the numerical model, and how much is instead associated to differences in the

set-up of investigation.

One possible strategy to obtain an optimal combination of the knowledge

coming from simulations and experiments is to derive a state estimation which

complies with both sources of information. The degree of precision of such es-
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timation is connected with the confidence in the sources of information. This

has the advantage of naturally incorporating uncertainty and bias present in the

sources of information in the analysis. Tools providing such state estimation are

usually included in different disciplines, control theory for state observers [4],

Data Assimilation (DA) [5, 6, 7] for weather prediction, ocean modelling and

more recently mechanical engineering problems. Essentially, DA methods com-

bine information issued from two sources: i) a model, which provides a dynamical

description of the phenomenon in the physical domain, ii) a set of observations,

which are usually sparse and/or local in time and space. These methods are

classified in different families according to the way the state estimation is per-

formed. One of the classical criterion of classification deals with the operative

strategy used to derive the state estimation. Variational approaches resolve a

constrained optimization problem over the parametric space characterizing the

model (usually coefficients defining boundary conditions or physical models).

The solution of the variational problem minimizes prescribed error norms so

that the assimilated model complies with the observation provided over a speci-

fied time window. Methods from this family, which include 3D-Var and 4D-Var,

usually exhibit very high accuracy [8, 9, 10, 11]. However, they are also affected

by several drawbacks. First, the formulation of the adjoint problem that is intro-

duced to perform the parametric optimization can be difficult, if not impossible,

when automatic differentiation is not employed. Second, the adjoint problem is

defined backward in time which may lead to numerical difficulties of resolution

related to the unaffordable data storage that is needed, and the amplification

of the adjoint solution that frequently happens when multi-scale interactions

are dominant [5, 8, 12]. Third, standard variational data assimilation methods

are intrusive from a computational point of view, requiring the development

of an adjoint calculation code, or the availability of the source code when the

use of automatic differentiation is planned. In most cases, modifications are

required in order to maintain the code or extend the applications (change of

the definitions of errors, for instance). For commercial software without open-

source licence, these modifications are expensive. Non-intrusive methods that
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require no modification of original calculation code are therefore preferable in

data assimilation.

Another family of DA methods is represented by the sequential approaches.

These methods, mostly based on Bayes’ theorem, provide a probabilistic descrip-

tion of the state estimation. A well known approach is the Kalman Filter (KF)

[13]. Extensions and generalizations of this method have also been developed,

such that the Extended Kalman Filter (EKF) [14] which is tailored for nonlin-

ear systems, and Ensemble Kalman Filter (EnKF) [6]. This class of methods

solves the state estimation problem by transporting error covariance matrices

of the model and observations. These methods are usually more flexible than

variational approaches (no required computation of first order sensitivities), but

the time advancement and update of the covariance matrices are prohibitively

expensive for large scale problems, encountered in practical applications [15].

One possible strategy consists in reducing the order of the Kalman filter [16] or

filtering the error covariance matrix. Inspired by a domain localization proce-

dure, Meldi & Poux [17, 18] proposed a strategy based on an explicit filter of the

error covariance matrix. The application of this estimator to different turbu-

lent flows exhibited encouraging results considering the relatively small increase

in computational resources. A more popular strategy for data assimilation of

engineering applications is the Ensemble Kalman Filter [5, 6, 19], which relies

on a Monte Carlo implementation of the Bayesian update problem. The EnKF

(and follow-up models) was introduced as an extension of the original Kalman

filter made for high-dimensional systems for which transporting the covariance

matrix is not computationally feasible. EnKF replaces the covariance matrix by

the sample covariance matrix computed from an ensemble of state vectors. The

main advantage of EnKF is that advancing a high-dimensional covariance matrix

is achieved by simply advancing each member of the ensemble. Several research

works have been reported in the literature in recent years for application in

fluid mechanics [20, 21, 22]. Despite the interest of this non-intrusive technique,

and the possibility to perform efficient parametric inference, the computational

costs can still be prohibitive for realistic applications. Statistical convergence
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is usually obtained for a typical ensemble size going from 60 to 100 ensemble

members [5].

In addition, the state estimation obtained via sequential tools does not nec-

essarily comply with a model solution i.e. the conservativity of the dynamic

equations of the model is violated. This aspect is a potentially critical issue in

fluid mechanics studies. Violation of conservativity may result in loss of con-

servation of some physical properties of the flow (such as mass conservation or

momentum conservation) as well as in the emergence of non-physical disconti-

nuities in the flow quantities. The aforementioned issues significantly affect the

precision of the prediction of the flow and may eventually produce irreversible

instabilities in the time advancement of the dynamical model. A number of

works in the literature have provided advancement in the form of additional

constraints to be included in the state estimation process. Meldi & Poux [17]

used a recursive procedure and a Lagrangian multiplier (the pressure field) to

impose the zero-divergence condition of the velocity field for incompressible

flows. Other proposals deal with imposing hard constraints in the framework

of an optimization problem [23], ad-hoc augmented observation [24] and gen-

eralized regularization [25]. These approaches are responsible for a significant

increase in the computational resources required, which is due to augmentation

in size of the state estimation problem or to the optimization process, which

usually needs the calculation of gradients of a cost function.

The investigation of physically constrained sequential state estimation is here

performed using an advanced estimator strategy, which combines an EnKF ap-

proach and a multigrid method. For this reason, we refer to our algorithm

as Multigrid Ensemble Kalman Filter (MEnKF). Multigrid methods [26, 2]

are a family of tools which employ multi-level techniques to obtain the time-

advancement of the flow. In particular, the geometric multigrid [27] uses differ-

ent levels of the resolution in the computational grid to obtain the final state.

The method here proposed exploits algorithmic features of iterative solvers used

in practical CFD applications. The EnKF error covariance matrix reconstruc-

tion is performed using information from a number of ensemble members which
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are generated over a coarse level mesh of a multigrid approach. This procedure

is reminiscent of reduced order / multilevel applications of EnKF strategy re-

ported in the literature [28, 29, 30, 31]. However, the state estimation obtained

at the coarse level is used to obtain a single solution calculated on a high res-

olution mesh grid, similarly to the work by Debreu et al. [32] for variational

DA. Because of the algorithmic structure of the problem, all of the simulations

on the fine and coarse level can be run simultaneously in parallel calculations,

providing a tool able to perform in-streaming DA for unsteady flow problems.

The strategy is tested on different configurations, using several physical mod-

els represented by the Burger’s equation and the compressible Euler and Navier-

Stokes equations for one-dimensional and two-dimensional test cases.

The article is structured as follows. In Sec. 2, the sequential DA procedure

is detailed including descriptions of the classical KF and EnKF methods. The

numerical discretization and the multigrid strategy are also presented. In Sec 3,

the algorithm called Multigrid Ensemble Kalman Filter (MEnKF) is discussed.

In Sec. 4, the MEnKF is used to investigate a one-dimensional case using the

Burgers’ equation. In Sec. 5, a second one-dimensional case is investigated, but

in this case the dynamical model is represented by a Euler equation. In Sec. 6,

we investigate the case of the two-dimensional compressible Navier-Stokes equa-

tions, namely the spatially evolving mixing layer. Finally, in Sec. 7 concluding

remarks are drawn.

2. Sequential data assimilation in fluid dynamics

In Sec. 2.1, we introduce sequential data assimilation methods starting with

the Kalman filter. The objective is to gradually arrive at the Dual ensemble

Kalman Filter methodology (Dual EnKF), which is an essential ingredient of

the estimator proposed in this work. In Sec. 2.2, the steps that are necessary

to transform a general transport equation into a discretized model usable in

sequential DA are described. A brief description of the multigrid approach

employed is also provided.
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2.1. Sequential data assimilation

2.1.1. Kalman filter

The role of the Kalman filter (KF) is to provide an estimate of the state

of a physical system at time k (xk), given the initial estimate x0, a set of

measurements or observations, and the information of a dynamical model (e.g.,

first principle equations):

xk =Mk:k−1 (xk−1, θk) + ηk (1)

where Mk:k−1 is a non linear function acting as state-transition model and θk

contains the parameters that affect the state-transition. The term ηk is asso-

ciated with uncertainties in the model prediction which, as discussed before,

could emerge for example from incomplete knowledge of initial / boundary con-

ditions. In the framework of KF applications, these uncertainties are usually

modelled as a zero-mean Gaussian distribution characterized by a variance Qk,

i.e. ηk ∼ N (0,Qk).

Indirect observations of xk are available in the components of the observation

vector yo
k. These two variables are related by:

yo
k = Hk(xk) + εok (2)

where Hk is the non linear observation operator which maps the model state

space to the observed space. The available measurements are also affected by

uncertainties which are assumed to follow a zero-mean Gaussian distribution

characterized by a variance Rk, i.e. εok ∼ N (0,Rk).

The model and observation errors being Gaussian, we can show that the

solution is characterized entirely by the first two moments of the state. Follow-

ing the notation generally used in DA literature, the forecast/analysis states

and error covariances are indicated as x
f/a
k and P

f/a
k , respectively. The error

covariance matrix is defined as P
f/a
k = E

[(
x

f/a
k − E(x

f/a
k )
)(

x
f/a
k − E(x

f/a
k )
)>]

.

In the case of a linear dynamical model (Mk:k−1 ≡ Mk:k−1) and a linear ob-
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servation model (Hk ≡ Hk), the estimated state is obtained via the following

recursive procedure:

1. A predictor (forecast) phase, where the analysed state of the system at

a previous time-step is used to obtain an a priori estimation of the state

at the current instant. This prediction, which is obtained relying on the

model only, is not conditioned by observation at time k:

xf
k = Mk:k−1x

a
k−1 (3)

Pf
k = Mk:k−1P

a
k−1M

>
k:k−1 + Qk (4)

2. An update (analysis) step, where the state estimation is updated account-

ing for observation at the time k:

Kk = Pf
kH
>
k

(
HkP

f
kH
>
k + Rk

)−1
(5)

xa
k = xf

k + Kk

(
yo
k −Hkx

f
k

)
(6)

Pa
k = (I −KkHk) Pf

k (7)

The optimal prediction of the state (xa
k) is obtained via the addition to the pre-

dictor estimation (xf
k) of a correction term determined via the so called Kalman

gain Kk. The classical KF algorithm is not suited for direct application to the

analysis of complex flows. First of all, KF classical formulation is developed

for linear systems. Applications to non-linear systems can be performed using

more advanced techniques such as the extended Kalman filter [14] or exploit-

ing features of the numerical algorithms used for numerical discretization [17].

The canonical Kalman filter is difficult to implement with realistic engineering

models because of i) nonlinearities in the models and observation operators, ii)

poorly known error statistics and iii) a prohibitive computational cost. Consid-

ering point ii), the matrices Qk and Rk are usually unknown and their behaviour

must be modelled. One simple, classical simplification is to consider that er-

rors for each component are completely uncorrelated in space and from other

components i.e. Qk and Rk are considered to be diagonal [33, 34]. Point iii) is
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easily explained by the fact that in engineering applications, the dimension of

the physical state xk is huge (N ∈ [106, 109]). By examining the equations of

the canonical Kalman filter, it is immediate to see that the procedure relies on

the transport of a very large error covariance matrix Pk. It is therefore neces-

sary to store it but also to invert very large matrices (see (5)). To bypass this

computational cost, one popular strategy is to rely on a statistical description

obtained via an ensemble of trajectories of the model dynamics.

2.1.2. Ensemble Kalman filter

The Ensemble Kalman Filter (EnKF) [6], introduced by Evensen in 1994

[35], relies on the estimation of Pk by means of an ensemble. More precisely,

the error covariance matrix is approximated using a finite ensemble of model

states of size Ne. If the ensemble members are generated using stochastic Monte-

Carlo sampling, the error in the approximation decreases with a rate of
1√
Ne

.

In the following, we are describing the stochastic EnKF flavour of EnKF for

which random sampling noise is introduced in the analysis [5].

Given an ensemble of forecast/analysed states at a certain instant k, the

ensemble matrix is defined as:

EEE
f/a
k =

[
x

f/a,(1)
k , · · · ,xf/a,(Ne)

k

]
∈ RNx×Ne (8)

To reduce the numerical cost of implementation, the normalized ensemble

anomaly matrix is then specified as:

X
f/a
k =

[
x

f/a,(1)
k − x

f/a
k , · · · ,xf/a,(Ne)

k − x
f/a
k

]

√
Ne − 1

∈ RNx×Ne , (9)

where the ensemble mean x
f/a
k is obtained as:

x
f/a
k =

1

Ne

Ne∑

i=1

x
f/a,(i)
k (10)

The error covariance matrix P
f/a
k can thus be estimated via the informa-
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tion derived from the ensemble. This estimation, hereafter denoted with the

superscript e, can be factorized into:

P
f/a,e
k = X

f/a
k

(
X

f/a
k

)>
∈ RNx×Nx (11)

The goal of the EnKF is to mimic the BLUE (Best Linear Unbiased Es-

timator) analysis of the Kalman filter. For this, Burgers et al. [36] showed

that the observation must be considered as a random variable with an average

corresponding to the observed value and a covariance Rk (the so-called data ran-

domization trick). Therefore, given the discrete observation vector yo
k ∈ RNy at

an instant k, the ensemble of perturbed observations is defined as:

y
o,(i)
k = yo

k + ε
o,(i)
k , with i = 1, · · · , Ne and ε

o,(i)
k ∼ N (0,Rk). (12)

In a similar way to what we did for the ensemble matrices of the fore-

cast/analysed states, we define the normalized anomaly matrix of the observa-

tions errors as

Eo
k =

1√
Ne − 1

[
ε
o,(1)
k − εok, ε

o,(2)
k − εok, · · · , ε

o,(Ne)
k − εok,

]
∈ RNy×Ne (13)

where εok =
1

Ne

Ne∑

i=1

ε
o,(i)
k .

The covariance matrix of the measurement error can then be estimated as

Re
k = Eo

k (Eo
k)
> ∈ RNy×Ny . (14)

By combining the previous results, we obtain (see [5]) the standard stochastic

EnKF algorithm. The corresponding analysis step consists of updates performed

on each of the ensemble members, as given by

x
a,(i)
k = x

f,(i)
k + Ke

k

(
y

o,(i)
k −Hk

(
x

f,(i)
k

))
(15)
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The expression of the Kalman gain is

Ke
k = Xf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

(16)

where Yf
k = HkX

f
k.

Interestingly, it can be shown that the computation of the tangent linear

operator Hk can be avoided. The details can be found in [5, Sec. 6.3.3]. A

version of the Ensemble Kalman filter algorithm using the previously defined

anomaly matrices is given in Appendix A.2. This is the version we use in our

applications.

State-of-the-art approaches based on the EnKF are arguably the most ad-

vanced forms of state estimation available in the field of DA methods. These

techniques have been extensively applied in the last decade in meteorology and

geoscience [5]. Applications in mechanics and engineering are much more recent,

despite a rapid increase in the number of applications in the literature. Among

those, studies dealing with wildfire propagation [22], combustion [37], turbulence

modeling [21] and hybrid variational-EnKF methods [10] have been reported.

These applications reinforce the idea that approaches based on EnKF have a

high investigative potential despite the highly non-linear, multiscale features of

the flows studied by the fluid mechanics community.

2.1.3. Dual Ensemble Kalman filter

In this section, we extend the classical EnKF framework presented in Sec. 2.1.2

by considering the case of a parameterized model such as (1). The objective

is to enable the model to generate accurate forecasts. For this, we need to

determine good estimates of both model state variables xk and parameters θk

given erroneous observations yo
k. One approach is provided by joint estimation

where state and parameter vectors are concatenated into a single joint state

vector (state augmentation). After [38], the drawback of such strategy is that,

by increasing the number of unknown model states and parameters, the degree

of freedom in the system increases and makes the estimation unstable and in-

11



tractable, especially in the non linear dynamical model. For this reason, we

follow the procedure developed by [38], called dual estimation. The principle

is to apply successively two interactive filters, one for the estimation of the pa-

rameters from a guessed state solution, the other for the updating of the state

variables from the estimated previous parameters.

In the first step of the algorithm, the ensemble of the analysed parameters

is updated following the classical KF equation:

θ
a,(i)
k = θ

f,(i)
k + Kθ,e

k

(
y

o,(i)
k − y

f,(i)
k

)
with i = 1, · · · , Ne (17)

where y
f,(i)
k = Hk

(
x

f,(i)
k

)
.

The Kalman gain responsible for correcting the parameter trajectories in the

ensemble is obtained as follows:

Kθ,e
k = Θf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

, (18)

where the variable Θf
k plays the same role for the parameters as the variable

Xf
k defined in (9) for the states. We then have:

Θ
f/a
k =

[
θ

f/a,(1)
k − θf/a

k , · · · , θf/a,(Ne)
k − θf/a

k

]

√
Ne − 1

∈ RNθ×Ne (19)

with

θ
f/a
k =

1

Ne

Ne∑

i=1

θ
f/a,(i)
k (20)

Knowing a better approximation of the model’s parameters, we can update

the state by EnKF (see Sec. 2.1.2). The Dual Ensemble Kalman filter allows

to perform a recursive parametric inference / state estimation using the in-

formation from the ensemble members. The algorithm that we use is given

in Appendix A.3.
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2.2. From transport equation to multigrid resolution

The general expression for a conservation equation in local formulation over

a continuous physical domain reads as:

Dx

Dt
=

1

ρ
∇ · σ + f (21)

where D/Dt is the total (or material) derivative of the physical quantity of

investigation x and ρ is the flow density. The divergence operator is indicated as

∇· while σ is the stress tensor. Finally, f represents the effects of volume forces.

The evolution of the flow is obtained via time advancement of the discretized

solution, which is performed in a physical domain where initial and boundary

conditions are provided. A general expression of the discretized form of (21) for

the time advancement from the step k − 1 to k is given by:

xk = Φkxk−1 + Bkbk (22)

where Φk is the state transition model which includes the discretized information

of (21). In case of non-linear dynamics described by (21), the state-of-the-art

algorithms used for the discretization process are able to preserve the non-linear

information in the product Φkxk−1, up to a discretization error which is usually

proportional to the size of the time step. The term bk represents the control

vector reflecting, for instance, the effect of the boundary conditions. Bk is the

control input model which is applied to the control vector bk. Equation (22) is

consistent with a time explicit discretization of (21). It is well known that this

class of methods, despite the very high accuracy, may exhibit some unfavorable

characteristics for the simulation of complex flows, such as limitations to the

time step according to the Courant-Friedrichs-Lewy (CFL) condition [2]. To

bypass this limitation, one possible alternative consists in using implicit schemes

for time discretization. In this case, the general structure of the discretized
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problem is usually cast in the form:

Ψkxk = Ψ̃kxk−1 + B̃kbk = ck (23)

where Ψk, Ψ̃k and B̃k are matrices obtained via the discretization process.

Obviously, considering Φk = Ψ−1
k Ψ̃k, we retrieve (22). However, this manip-

ulation is in practice not performed due to the prohibitive costs associated to

large scale matrices inversions at each time step. Instead, an iterative proce-

dure is used until the residual δn, determined at the n-th iteration, falls below

a pre-selected threshold value ε. In other words, the procedure is stopped when

‖δn‖ = ‖Ψkx
n
k − ck‖ < ε. Among the various iterative methods proposed in

the literature, multigrid approaches are extensively used in CFD applications

[39, 2]. The solution is found on the computational grid by updating an initial

guess via multiple estimations obtained on a hierarchy of discretizations. Two

well-known families of multigrid approaches exist, namely the algebraic multi-

grid method and the geometric multigrid method. With algebraic multigrid

methods, a hierarchy of operators is directly constructed from the state transi-

tion model Ψ. On the other hand, the geometric multigrid obtains the solution

via a set of operations performed in two (or more) meshes. In this paper, we

consider the simplified case of two grids. Thereafter, the variables defined on the

fine grid will be denoted with the superscript F (xF for instance), those defined

on the coarse grid will be denoted with the superscript C (xC for instance).

The coarse-level representation xC is usually obtained suppressing multiple

mesh elements from the initial fine-level one xF. This operation may be defined

by a coarsening ratio parameter rC, which indicates the total number of elements

on the fine grid over the number of elements conserved in the coarse grid. Among

the numerous algorithms proposed for geometric multigrid, we use the Full

Approximation Scheme (FAS), which is a well documented strategy [26, 27]. A

general formulation for a two-grid algorithm is now provided. The time subscript

k is excluded for clarity. The superscript n represents the iteration step of the

procedure.
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1. Starting from an initial solution on the fine grid
(
x0
)F

(which is usually

equal to x at the previous time step k − 1), an iterative procedure is

applied to obtain a first solution
(
x1
)F

. A residual
(
δ1
)F

= cF−ΨF
(
x1
)F

is calculated.

2.
(
x1
)F

and
(
δ1
)F

are projected from the fine grid to the coarse grid space via

a projection operator ΠC, so that
(
x1
)C

and
(
δ1
)C

are obtained. Similarly,

the state transition model ΨF is projected on the coarse grid (that is re-

estimated based on the projection of the solution of the fine grid onto the

coarse grid) to obtain ΨC. Finally, we evaluate cC = ΨC
(
x1
)C

+
(
δ1
)C

.

3. An iterative procedure is employed to obtain
(
x2
)C

on the coarse grid

using as initial solution
(
x1
)C

.

4. The updated variable on the fine grid is obtained as
(
x2
)F

=
(
x1
)F

+

ΠF

((
x2
)C −

(
x1
)C)

where ΠF is a projection operator from the coarse

grid to the fine grid.

5. At last, the final solution
(
x3
)F

is obtained via a second iterative procedure

on the fine grid starting from the intermediate solution
(
x2
)F

.

This procedure can be repeated multiple times imposing
(
x0
)F

=
(
x3
)F

at

the beginning of each cycle. When the convergence is reached, the fine grid solu-

tion at time instant k is equal to
(
x3
)F

. Performing part of the calculations on a

coarse grid level provides two main advantages [2]. First, a significant reduction

in the computational resources is obtained since the calculations performed over

the coarse grid are usually much less expensive than a full set of iterations over

the fine grid. Second, spurious high-frequency numerical oscillations, due to the

discretization error in xF, are naturally filtered via the operators ΠC and ΠF,

which globally improves the quality of the numerical solution. In this paper, the

two projections (ΠF and ΠC) are defined as 4-th order Lagrange interpolators.

3. Multigrid Ensemble KF method (MEnKF)

Despite the game-changing advantage that EnKF offers for the analysis of

large-scale dynamical systems, the use of a sufficiently large ensemble (usually
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60 to 100 members are required for convergence [5]) may still be too prohibitive

for advanced applications. In the following, we present a Kalman filter strat-

egy which relies on the use of a coarse mesh for the ensemble Kalman filter

step. These computations on the coarse mesh are jointly run with a single

high-refinement simulation, which is updated using the coarse mesh assimila-

tion results. For this reason, the clock time required for the time advancement

of the ensemble members and the memory storage of the physical variables are

dramatically reduced. The multigrid-ensemble algorithm works through the

steps described below. In the following description, the notation Ψ might hold

for both Ψ and Ψ̃ introduced in (23), depending on the choice of the time inte-

gration strategy. For its part, the state (xC

k)
∗

represents the projection on the

coarse-grid of (xF

k)
f
, the fine-grid solution. Finally, (xC

k)
′

denotes the coarse-grid

state obtained by an ensemble Kalman filtering process applied on the coarse

grid. In the FAS multigrid method described in Sec. 2.2, (xC

k)
∗

and (xC

k)
′

cor-

respond to
(
x1
)C

and
(
x2
)C

, respectively.

1. First iteration on the fine grid. Starting from an initial solution on

the fine grid
(
xF

k−1

)a
, a forecasted state (xF

k)
f

is obtained by using θa
k as

parameter for the model ΨF.

2. Projection on the coarse grid. (xF

k)
f

is projected on the coarse grid

space via a projection operator ΠC, so that (xC

k)
∗

is obtained. Similarly,

the state matrix ΨF is projected on the coarse grid to obtain ΨC. This

critical passage will be discussed in detail in the following.

3. Time advancement of the ensemble members used in the Dual

EnKF. For each member i of the ensemble, the state matrix (ΨC)
(i)

used

for the advancement in time on the coarse grid is determined1. The ensem-

ble forecast (xC

k)
f,(i)

is corrected with the standard Dual EnKF procedure

to obtain (xC

k)
a,(i)

as well as the parameters θ
a,(i)
k .

1While the advancement model is unique (the Navier-Stokes equations, for example), the
discretization process contained in Ψ is unique for each member of the ensemble. To distin-
guish them, it is therefore necessary to introduce an exponent i in the notations.
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4. Determination of the state variables on the coarse grid. If ob-

servations are not available, the state (xC

k)
′

is obtained using the classical

multigrid procedure. On the other hand, if observations are available, the

ensemble error covariance matrix (PC

k)
f,e

is used to determine the coarse

grid solution (xC

k)
′

through a Kalman filter estimation.

5. Final iteration on the fine grid. A first estimation (xF

k)
′

of the fine

grid state is determined using the results obtained on the coarse space:

(xF

k)
′

= (xF

k)
f

+ ΠF

(
(xC

k)
′
− (xC

k)
∗
)

. The state (xF

k)
a

is obtained from a

final iterative procedure starting from (xF

k)
′
.

FINE GRID

COARSE GRID

Figure 1: Schematic representation of the Multigrid Ensemble Kalman Filter (MEnKF). Two
different levels of representation (fine and coarse grids) are used to obtain a data-driven fine
grid estimation. The Dual Ensemble Kalman filter procedure is solved in the coarse grid. The
full algorithm is given in Appendix A.

An overview of the assimilation cycle described in the previous algorithm is

presented in Fig. 1. Two important aspects need to be discussed:

- As previously stated, ΨC and its role in the determination of the matrices

(ΨC)
(i)

is an essential step in the MEnKF strategy. In non-linear prob-

lems of interest in fluid mechanics, the state transition matrix Ψ includes

information of the multi-scale interactions that are specific for every case
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investigated. The simplest possible choice, which is the one adopted in

this work, is to calculate the coefficients of the matrices ΨC and (ΨC)
(i)

separately for each simulated state. Thus, the similarities between the

employed state matrices are limited to the use of the same discretization

schemes / structure of Ψ. However, one can envision to use the non-linear

information conserved in ΨC, which is supposedly accurate, to improve

the accuracy of the prediction of the ensemble members. This aspect is

discussed in the perspectives included in Sec. 7.

- The recursive structure of the algorithm allows for integration of itera-

tive corrections for non-linear systems [40] as well as hard constraints (see

the discussion in the introduction of [23, 24, 25]) to respect the conserva-

tivity of the model equations. However, these corrections may result in

an increase of the computational resources required. Here, the multigrid

algorithm itself is used for regularization (i.e. for smoothing the discon-

tinuities in the physical variables produced by the update via Kalman

Filter) of the flow. In fact, if an intentionally reduced tolerance is im-

posed in the iterative steps 4 and 5, the final solution will keep memory of

the features of the state estimation produced in step 3. However, the iter-

ative resolution will smooth the estimation via the state transition model

Ψ, which will perform a natural regularization of the flow. Clearly, if a

reduced tolerance is imposed, the final solution will not necessarily respect

the conservativity constraints of the model equations. However, one can

argue that complete conservativity is not an optimal objective in this case,

if the model state at the beginning of the time step is not accurate.

The advantages of our strategy with respect to classical approaches based

on EnKF may be summarized in the following points:

- The RAM requirement necessary to store theNe ensemble members during

the assimilation is usually moderate. The reduction in computational costs

is driven by Ne and by the size of the coarse variables. To illustrate, let

us consider the case of a simple two-level geometric multigrid approach
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for a 3D test case with a constant coarsening ratio rC = 4 and a size

of ensembles Ne = 100. Each ensemble member is then described by

43 = 64 times less mesh elements than the single simulation on the fine

grid. If one considers that one main simulation and 100 ensemble members

are run simultaneously, and if the RAM requirement is normalized over

the main simulation, this implies that RRAM, the non-dimensional RAM

requirement, is equal to 1 + 100/64 = 2.56. In other words, the total

cost in RAM is increased to just 2.56 times the cost of the simulation

without EnKF. For rC = 8, the normalized RAM requirement is RRAM =

1 + 100/83 = 1.195, thus just a 20% increase in RAM requirements. This

is clearly orders of magnitude more advantageous than a fine-grid classical

EnKF application with Ne = 100, since in this case RRAM = Ne = 100.

- Considering that the ensemble members in the coarse grid and the simu-

lation over the fine grid are running simultaneously, communication times

are optimized.

- Owing to the iterative procedures of steps 4 and 5, regularization of the

final solution is naturally obtained.

- The algorithm is here described and tested in the framework of geometric

multigrid, but it can actually be integrated within other algorithmic struc-

tures. For iterative methods, the only essential operation to be performed

is the determination of the state transition model ΨC and of the projec-

tions ΠC and ΠF. This implies that the method can be easily extended to

other popular procedures, such as the algebraic multigrid. If the multigrid

operations are removed, the methods becomes a classical multilevel EnKF

method, which relies on just one level of resolution for the ensemble mem-

bers. However, in this case, no regularization is obtained unless specific

corrections are included.

This general algorithm may be easily tailored accounting for the complexity

of the test case investigated, in particular for the requirements of iterative loops
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on both the coarse grid level and the fine grid level. The algorithm that we used

to validate our approach is described in Appendix A.4.

4. Application: one-dimensional Burgers’ equation

The MEnKF method introduced in Sec. 3 is now applied to the analysis of

different test cases. Several dynamical systems of increasing complexity were

chosen in order to highlight different properties of the algorithm. Also, a set of

different tests is performed in order to obtain a comprehensive validation of the

method. At first, let us consider a 1D Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
(24)

where x is the spatial coordinate, u the velocity and Re is the Reynolds number.

Equation (24) is non-dimensionalized with a reference velocity u0 and a reference

length λ. This equation is solved with a second-order centered finite difference

scheme for the space derivatives and a first-order scheme for the time integration

to obtain the general form of discretized representation as given by (23). A

Dirichlet time-varying condition is imposed at the inlet:

u(x = 0, t) = u0 (1 + θ1 sin(ωt+ θ2)) (25)

where u0 = 1 and ω = 2πfc. The characteristic frequency fc is set to 1 and the

characteristic length λ is defined as λ = u0

fc
. The characteristic time is defined

as tc = λ/u0. This implies that, over a complete period of oscillation 1/fc, the

solution is advected of a length λ by the velocity u0. θ1 and θ2 represent the

amplitude and phase of the sinusoidal signal, respectively. Note that from now

on, the units are the characteristic magnitudes. The outlet boundary condition

is extrapolated from the nearest points to the outlet. The initial condition

imposed for t = 0 is u(x, t = 0) = u0 everywhere in the physical domain (θ2 = 0

for the reference simulation). The value of the Reynolds number is Re = 200.

The time advancement step is chosen as ∆t = 0.0002. It is kept constant
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throughout the simulation. The analysis is performed over a physical domain of

size [0, 10]. The distance between the computational nodes in the fine mesh is

constant and set to ∆x = 0.0125. This choice has been performed to discretize

the characteristic length λ using 80 mesh elements. This also implies that the

total number of nodes employed to perform the calculation is Nx = 800. A

simulation of reference is run on the fine grid with values θ1 = 0.2 for the

amplitude and θ2 = 0 for the phase. Thereafter, the solution obtained by this

reference simulation is called the true state or truth. A flow visualization at

t = 10 is shown in Fig. 2. For the investigated value of Reynolds number, the

non-linear effects and viscous mechanisms can be clearly identified.

Figure 2: Solution of the 1D Burgers’ equation at t = 10 for θ1 = 0.2 and θ2 = 0 (true state).

Data assimilation is performed in the following conditions:

- The observations are sampled each 30 time steps of the reference simu-

lation on the space domain [0, 1] (80 sensors) and on the time window

[10, 29]. The observations are sampled as soon as the flow is fully devel-

oped. These observations are artificially perturbed using a Gaussian noise

of variance R = 0.0025.

- The model is chosen to be the discretized version of (24). The numerical

test consists of one main simulation, which is run on the fine grid previ-

ously introduced, and an ensemble of Ne = 100 coarse simulations used

for assimilation purposes. The coefficients θ1 and θ2 are initially assumed
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to be described by Gaussian distributions, so that θ1 ∼ N (0, Qθ1) and

θ2 ∼ N (0.3, Qθ2). The initial value of the covariance of the parameters is

chosen equal to Qθ1(t = 0) = Qθ2(t = 0) = 0.0025. The values prescribed

on the fine grid simulation are the mean values of the Gaussian distribu-

tion i.e. θ1 = 0 and θ2 = 0.3. Random values for the parameters are

imposed at the inlet for each ensemble member on the coarse grid level.

The initial mean values for the parameters are significantly different when

compared with the values prescribed in the reference simulation, which are

θ1 = 0.2 and θ2 = 0. This choice allows to analyze the rate of convergence

of the optimization procedure. Also, the initial condition u(x, 0) = u0 is

imposed for every simulation.

The data estimation is run for a time window of TDA = 19 characteristic times,

which encompass roughly 3000 DA analysis phases. The sensitivity of the para-

metric inference procedure to the resolution of the coarse simulations is investi-

gated considering several coarsening ratios rC = 1, 2, 4, 8, 16. The fine grid is

unchanged, so that the MEnKF is performed using information of progressively

coarser grids as rC increases. The interest of this test is to analyse the loss of

accuracy of the estimator as rC increases and to ascertain the potential for effi-

cient trade-off between accuracy and computational resources required for the

estimation process.

The time-evolution of the estimation of θ1 is shown in Fig. 3. Very rapid

convergence (less than 2tc) is observed for rC ≤ 4. In addition, the parameter

estimation is extremely precise (discrepancy lower than 0.01% for rC = 1, lower

than 2% for rC = 4). For higher values of the parameter rC, the estimation of

θ1 becomes progressively more degraded. For the case rC = 8, θ1 is initially

overestimated and it finally converges to a value of θ1 = 0.194, 3% smaller that

the true value. Larger errors in the optimization of θ1 are observed for rC = 16.

In this case, the optimized amplitude parameter is θ1 = 0.27, which is 35%

larger than the true value.

Similar considerations can be drawn by the analysis of the optimization of
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Figure 3: Values of the parameter θ1 for different coarsening ratios rC = 1, 2, 4, 8, 16. In the
zoomed region, the shaded area represents the 95% credible interval for the shown cases.

the parameter θ2, which is shown in Fig. 4. For rC = 1, 2, 4, we obtain an

accurate prediction of the parameter, while a loss in accuracy is observed for

the cases rC = 8, 16. This observation can be justified considering the number

of mesh elements representing one characteristic length λ for these cases, which

are 10 and 5 for rC = 8 and 16, respectively. If one considers that the frequency

ω is set so that one complete oscillatory cycle is performed on average over a

characteristic length λ, this means that the average phase angle between mesh

elements is equal to 0.63 radians for rC = 8 and 1.26 radians for rC = 16.

Thus, the values observed for the optimization of θ2 for these two cases, which

are around θ2 ≈ 0.15, are significantly lower than the uncertainty due to the

coarse-level resolution.
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Figure 4: Values of the parameter θ2 for different coarsening ratios rC = 1, 2, 4, 8, 16. In the
zoomed region, the shaded area represents the 95% credible interval for the shown cases.
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State estimation results for the case rC = 1 are shown in Fig. 5. This case,

which is performed using the same grid for the coarse and fine mesh level, is

equivalent to a standard Dual EnKF. However, owing to the final multigrid

iterative loop, the final solution is naturally regularized. The results, which are

shown for t = 1, 3.88, 10.60, show that the estimator successfully represents

the behaviour of the dynamical system. A full domain advective time (i.e. 10

characteristic time units) must be simulated in order to observe the effect of the

MEnKF in the whole domain. In fact, the parametric information imposed at

the inlet for the ensemble members must affect the whole physical domain before

a reliable correlation between the state variables can be established. However,

once this initial transient is faded, the state estimation almost perfectly captures

the behaviour of the true state.

Results are now investigated for increasing values of rC. Results for rC = 8

are shown in Fig. 6. Minor differences between the state estimation and the

true state can be observed in this case. This discrepancy is due to the lack of

resolution of the ensemble members. In fact, the resolution in this case is of 10

mesh elements per characteristic length. This number of points is arguably not

enough to provide an accurate representation of the sinusoidal waves which are

imposed at the inlet. However, one can see that no spurious numerical effects

are observed as the estimator provides a smooth, continuous prediction of the

velocity. The discrepancy between the true state and the state estimation is

mainly associated with an erroneous calculation of the Kalman gain due to the

under-resolution of the ensemble, which also affects the parameter estimation.

A combined analysis of Fig. 3 and 6 shows that, due to the lack of accuracy

in the estimation of θ1, the variable u is over-predicted for t < 2tc while it is

slightly under-predicted for t > 4tc.

At last, the case for rC = 16 is shown in Fig. 7. In this case, the mesh

elements are only 5 times smaller than the characteristic length λ. Despite the

important under-resolution of the ensemble members, which severely affects the

estimation of θ1 and θ2, the state estimation still adequately represents the main

features of the dynamical system.
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(a) t = 1

(b) t = 3.88

(c) t = 10.60

Figure 5: Estimations obtained by MEnKF for rC = 1 at t = 1 (a), t = 3.88 (b) and t = 10.60
(c). Times are given in tc units. The grey shaded area corresponds to the observation window.
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(a) t = 1

(b) t = 3.88

(c) t = 10.60

Figure 6: Estimations obtained by MEnKF for rC = 8 at t = 1 (a), t = 3.88 (b) and t = 10.60
(c). Times are given in tc units. The grey shaded area corresponds to the observation window.
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(a) t = 1

(b) t = 3.88

(c) t = 10.60

Figure 7: Estimations obtained by MEnKF for rC = 16 at t = 1 (a), t = 3.88 (b) and t = 10.60
(c). Times are given in tc units. The grey shaded area corresponds to the observation window.
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The discrepancy between the truth and the state estimation is measured via

the time-dependent relative Root Mean Square Error (RMSE), i.e.

RMSE(k) =

√√√√√√√

∫

x

[
(uF

k)
a

(x)− (uF

k)
True

(x)
]2

dx
∫

x

[
(uF

k)
True

(x)
]2

dx

(26)

The results are shown in Fig. 8 for different values of the coarsening ratio rC.

One can see that the error decreases slowly for t < 10tc. This threshold time

corresponds to a complete advective cycle in the physical domain. After this

transient, the error may rapidly decrease before reaching a quasi-asymptotic

behaviour.

Figure 8: Time evolution of the RMS error of u for rC = 1, 2, 4, 8, 16.

One can also see that, once convergence is reached, the asymptotic RMSE

value decreases with lower rC values, as expected. However, lower rC values

are as well associated with larger computational costs, so that a trade-off be-

tween accuracy and required resources must be found. This aspect is further

investigated considering the computational resources required to perform a full

assimilation window for each rC value. In Fig. 9, results are shown and normal-

ized over the case rC = 1. One can see that the computational resources required

rapidly decrease with increasing rC, even for this simple one-dimensional test
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case. For large values of rC = 8, 16, one can see that the computational resources

reach a plateau. Here the computational time to perform the DA procedures,

which is the same for every rC, is of similar order of magnitude of the calculation

for the time advancement of the ensemble members.

Figure 9: Computational time required to perform a full assimilation cycle for rC =
1, 2, 4, 8, 16. Results are normalized over the computational time required for rC = 1.

In summary, the present analysis assesses the performance of the MEnKF

tool for varying mesh resolution of the ensemble members. As expected, the

accuracy of the state and parameter estimations diminishes for increasing rC,

but so does the computational cost. In addition, it was observed that the

accuracy significantly drops when the mesh resolution is not able to provide a

suitable description of the main scales characterizing the flow. Such a significant

discrepancy for a relatively simple test case stresses how a minimal resolution

threshold must be achieved in order to capture the essential physical features

and to obtain a successful state estimation. In conclusion, the results of the

parametric optimization may become unreliable with extreme under-resolution

of the ensemble members. The dispersive and diffusive effects of the coarse grid

on the state prediction deserve an in-depth analysis, which is out of the scope

of this work. Here, the discretization schemes used are the same for the fine

and coarse grids. However, one could argue that choosing adapted schemes for

progressively coarser grids could improve the performance of the estimator.
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5. Acoustic propagation of sinusoidal wave

The MEnKF strategy is now applied to a more complex physical system,

namely the inviscid one-dimensional Euler equations:

∂ρ

∂t
+
∂(ρu)

∂x
= 0 (27)

∂(ρu)

∂t
+
∂((ρu)u)

∂x
+
∂p

∂x
= 0 (28)

∂ (ρE)

∂t
+
∂((ρE)u)

∂x
+
∂(pu)

∂x
= 0 (29)

where ρ is the density, u is the velocity, p is the pressure and E is the total energy

per unit mass. In this case, viscous effects are absent, but acoustic propagation

affects the evolution of the flow. The equations are discretized using the finite

difference method. Second-order centered schemes are used for the derivatives in

space and a first-order scheme for the time integration to obtain the general form

of discretized representation as given by (23). A centered sixth-order numerical

filter is included to damp numerical spurious oscillations [41]. The numerical

algorithm is used to analyse the acoustic propagation of a sinusoidal wave with a

time-varying amplitude. To do so, a Dirichlet time-varying condition is imposed

at the inlet for the velocity:

u(x = 0, t) = u0 (1 + θ(t) sin(ωt)) (30)

u0 is set in order to impose an inlet Mach number M = u0

a = 0.4, where a is

the speed of the sound. The amplitude of variation in θ is set at sufficiently

low value to allow a flow evolution mainly driven by acoustic phenomena. The

inlet velocity perturbation creates an acoustic wave that is transported along

the domain with a speed of u0 +a. The characteristic velocity and length of the

test case are uc = u0 + a and λ. Similarly to the analysis in Sec. 4, λ represents

the wavelength of the signal imposed at the inlet. The characteristic time of the

system is defined as tc = λ/uc.

The sinusoidal behaviour of the velocity at the inlet is characterized by
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a constant frequency fc = 1/tc with ω = 2πfc. However, the time-varying

amplitude of the sinusoidal wave is driven by the parameter θ(t) = θ0(1 +

sin(ωθt)), where θ0, ωθ = 2πfc/b and b are constants. The density at the inlet

is fixed ρ(x = 0, t) = ρ0 as well as the total energy per unit mass E(x = 0, t) =

E0, which is calculated as E0 = e + 0.5u2
0. The outlet boundary condition is

extrapolated from the nearest points to the outlet. The initial condition imposed

at t = 0 is u(x, t = 0) = u0, ρ(x, t = 0) = ρ0 and E(x, t = 0) = E0 everywhere

in the physical domain. The fluid is an ideal gas with γ = 1.4, ρ0 = 1.17 and

T0 = 300 in S.I. units. Note that from now on, the units of measure are the

characteristic magnitudes.

The computational domain has been set to a size of Lx = 10. A uniform

mesh distribution is used for every calculation. Similarly to the analysis in

Sec. 4, 80 mesh elements are used to discretize a characteristic length λ for a

total of Nx = 800 elements in the domain. Finally, the normalized value of ∆t

is set to ∆t = 0.0006.

A preliminary simulation is performed using an explicit Euler scheme for

time derivative. The parameters which describe the amplitude of the velocity

oscillation imposed at the inlet are set to θ0 = 0.015 (true value) and b = 10.

A flow visualization of the wave patterns is shown in Fig. 10 at t = 17.3. The

fully developed state obtained for t = 10 is used to initialize a new simulation

from t = 0. This simulation is run for a total time of Tref = 110. As in Sec. 4,

this simulation is used as true state and it is sampled every 30 time steps to

obtain observations in the space region x ∈ [0, 1]. The sampled data, which is

used as observation, is artificially perturbed using a Gaussian noise of variance

R = 0.09.

The DA procedure is identical to the analysis presented in Sec. 4. The

assimilation is composed by the base simulation, which is run on the fine grid,

and Ne = 100 simulations on a coarse-grid level. In this section, only one

coarsening ratio is considered (rC = 4). The estimator is used to dynamically

track the value of the parameter θ, which evolves in time. No a priori knowledge

about the behaviour of the parameter is used. This time optimization is much
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Figure 10: Field ρu of the one-dimensional inviscid Euler equations at t = 17.3 for θ0 = 0.015
and ωθ = ω/10 (true state).

more challenging when compared with the inference of a constant parameter

as done in Sec. 4. A similar analysis using a classical Kalman smoother was

recently proposed by Mons et al. [20].

For each coarse grid simulation of the estimator, θ is initially assumed to be a

random Gaussian phenomenon θ ∼ N (0, Qθ). The initial value of the covariance

is Qθ(t = 0) = 6.4 × 10−5. As shown in the previous case, the value initially

imposed at the inlet of the fine-grid simulation is θ = 0, while random values are

selected for each ensemble member on the coarse grid level following the normal

distribution introduced above. The variance of the parameter θ for the ensemble

members is artificially increased, as in the classical Dual EnKF algorithm. As

described in Appendix A.4, we add to the estimated parameter of each member

of the ensemble a Gaussian noise of diagonal covariance Σθ
k = 10−10. Extensive

numerical tests have been performed and the results show the importance of

Σθ
k. The value chosen for Σθ

k is arbitrary and works only for this test-case. In

general, the estimation of Σθ
k is challenging, since a priori information about

the dynamic behaviour of θ is required. Nonetheless, θ can be determined

heuristically: the artificial variance added to the parameters, Σθ
k, should be

of the same order of magnitude as the true rate of change of θ in a single

assimilation cycle. When this parameter is underpredicted, the variance in θ is

too small for the Dual EnKF to perform, while showing a oscillatory behaviour

in the parameter estimation if Σθ
k = 10−10 is overpredicted.
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This study is performed for three different values of fa, the normalized period

between successive assimilations defined as fa = tc/ta. This normalized analysis

frequency corresponds to the number of analysis phases per characteristic time

of simulation tc. Three different values of fa are investigated: fa = 2, 10, 55.

The estimator is run for a total simulation time Tref = 110, which encom-

passes 220 to 6000 DA analysis phases, depending on the value of fa. At the

end of each analysis, the mean value and the variance of the amplitude θ are

updated following the Dual EnKF technique [38], similarly to what was done in

Sec. 4.

The results for the estimation of the time-varying parameter θ are reported

in Fig. 11. The time evolution of θ are correctly estimated for the three values

of fa. This is an important result, considering that no a priori information was

provided for the evolution of this parameter. A more detailed analysis reveals

a lag in the parameter estimation. The application of a simple Kalman filter

seems to be responsible for this result, while a Kalman Smoother (KS) should

have been used to obtain a better synchronization. However, considering that

the implementation of a KS is straightforward in this case and that observation

is always provided close to the inlet, we considered that the increase in com-

putational resources required by the KS were not deserved. We find that the

lag increases when a relatively small number of DA analyses is done. One can

see that the prediction is significantly degraded for fa = 2, while similar results

are obtained for fa = 10, 55. In addition, θ tends to be underestimated (around

10%) when it reaches its maximum value. This result is arguably associated

with the under-resolution of the coarse level of the grid, where the gradients of

physical variables are calculated with lower accuracy.

Now, results dealing with the state estimation are discussed. The predicted

physical variable ρu, normalized over the initial value ρ0u0, is shown in Fig. 12,

13 and 14 for fa = 2, 10 and 55, respectively. For fa = 2, the state estimation

is significantly distant from the truth. It appears that the field correction ap-

plied via the Kalman gain is not able to compensate the poor estimation of θ.

However, accurate results are observed for fa = 10 and 55. Even though the
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Figure 11: Time estimation of the parameter θ driving the amplitude of the sinusoidal acoustic
wave. Results are shown for fa = 2, 10, 55 and compared to the true value of θ. In the top
image, θ is shown in the whole assimilation window t ∈ [0, 110]. In the bottom image, a zoom
for t ∈ [0, 15] is shown. The shaded area represents the 95% credible interval for the case
fa = 10.
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value of the parameter θ is not exact, the total state estimation including the

correction via Kalman gain is very precise. For the case fa = 55, almost no

discernible difference is observed between the state estimation and the truth.

At last, the relative Root Mean Square Error (RMSE) defined as

RMSE(k) =

√√√√√√√

∫

x

[(
(ρu)

F

k

)a
(x)−

(
(ρu)

F

k

)True
(x)
]2

dx
∫

x

[(
(ρu)

F

k

)True
(x)
]2

dx

(31)

is shown in Fig. 15. The error achieves a quasi-constant asymptotic behaviour

after a complete propagation of the signal in the physical domain (t ≈ 10tc).

As expected, a low global error is obtained for the cases fa = 10 and fa = 55.

On the other hand, the error for fa = 2 case is around 2− 3 times larger. The

very small difference in performance between the cases fa = 10 and fa = 55

indicates that, once a minimal threshold in the assimilation period ta is reached,

the prediction of the estimator exhibits a robust convergence. Similar results

were previously observed in three-dimensional simulations [18].

6. Spatially evolving compressible mixing layer

In this section, we consider the compressible Navier-Stokes equations in a

two-dimensional physical domain:

∂ρ

∂t
+ div(ρu) = 0 (32)

∂ (ρu)

∂t
+ div(ρu⊗ u) = −grad p+ div τ (33)

∂ (ρE)

∂t
+ div(ρEu) = −div(pu) + div(τu) + div (λ(T )gradT ) (34)

where ρ is the density, u is the velocity (components u in the streamwise direc-

tion and v in the normal direction), p is the pressure, E is the total energy per

unit of mass, τ is the tensor of the viscous constraints and T is the tempera-

ture. To obtain the representation given by (23), the equations are discretized

using the finite difference method. Second-order centered schemes are used for

35



(a) t = 1.23

(b) t = 8.32

(c) t = 16.30

Figure 12: Estimations by MEnKF of the momentum ρu normalized by ρ0u0 for fa = 2 at
t = 1.23 (a), t = 8.32 (b) and t = 16.30 (c). Times are given in tc units. The grey shaded
area corresponds to the observation window.
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(a) t = 1.23

(b) t = 8.32

(c) t = 16.30

Figure 13: Estimations by MEnKF of the momentum ρu normalized by ρ0u0 for fa = 10 at
t = 1.23 (a), t = 8.32 (b) and t = 16.30 (c). Times are given in tc units. The grey shaded
area corresponds to the observation window.
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(a) t = 1.23

(b) t = 8.32

(c) t = 16.30

Figure 14: Estimations by MEnKF of the momentum ρu normalized by ρ0u0 for fa = 55 at
t = 1.23 (a), t = 8.32 (b) and t = 16.30 (c). Times are given in tc units. The grey shaded
area corresponds to the observation window.
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Figure 15: Time evolution of the RMS error of ρu for fa = 2, 10, 55.

the derivatives in space and a first-order scheme for the time integration. A

centered sixth-order numerical filter is included to damp numerical spurious

oscillations [41].

As flow configuration, we consider the two-dimensional spatially evolving

mixing layer at Re = 100. For this value of Reynolds number, the flow exhibits

unsteady features. It can be shown [42, 43] that the characteristics of the

mixing layer are strongly affected by the inlet and, in particular, by imposed

ad-hoc time perturbations. The computational domain has been set to a size

of 14Λ× 6Λ in the streamwise direction x and normal direction y, respectively.

The characteristic length Λ, which is taken as reference length from now on,

is given by Λ = Aδ0, where δ0 is the initial vorticity thickness imposed at the

inlet. The value of the parameter A is determined from the most unstable

wavelength determined by Linear Stability Theory (LST). At Re = 100, we

have A = 14.132. The mesh resolution in the horizontal direction is constant

for x ≤ 10. The size of the elements is ∆x = δ0
8 . For x ≥ 10, a sponge zone is

established with a coarsening ratio between successive elements which increases

from 1.025 to 1.04. The resolution in the normal direction is constant and equal

to ∆y = δ0
20 for −0.18 ≤ y ≤ 0.18. Outside this zone, the mesh elements increase

in size moving away from the centerline with a constant coarsening ratio of 1.01.
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The Reynolds number of the flow is calculated as Re = (U1 − U2)δ0/ν =

100 with asymptotic velocities set to U1 = 173.61 and U2 = 104.17. These

values correspond to a Mach number Ma = 0.5 and Ma = 0.3, for each stream,

respectively. The kinematic viscosity and thermal diffusivity of the flow are

considered to be constant and their value is fixed to ν = 1.568 × 10−5 and

α = 22.07× 10−7, respectively. All these quantities are expressed in S.I. units.

The inlet boundary condition is taken from [42]. For the velocity field, one has:

Uin =
U1 + U2

2
+
U1 − U2

2
tanh

(
2y

δ0

)
+ Upert − 3 < y < 3 (35)

Vin = 0 (36)

where Uin is the streamwise velocity at the inlet and Vin is the normal velocity.

Uin is estimated as a classical hyperbolic tangent profile plus a time-varying

perturbation component:

Upert =

Nin∑

i=1

εi
U1 + U2

2
[fi(y) sin(ωit)], (37)

where Nin is the total number of perturbation modes and εi quantifies the

magnitude of each mode. The function fi(y) = cos(4ni
y
δ0

)h(y) controls the

shape of the perturbation of the inlet velocity profile in the normal direction.

The role of h(y) = 1−tanh2( 2y
δ0

) is to damp the perturbation component moving

away from the centerline. The wavelength parameters ni are tuned according to

the LST results. In the following, we consider Nin = 1 i.e. the inlet perturbation

consists of a single mode. The inlet density is set to be constant so that ρin =

1.177, as well as the temperature T = 300 in S.I. units.

In this section, the parameters θ of the model correspond to εi, the vari-

able governing the amplitude of the perturbation. Two different scenarios are

studied. In the first one, the parameter εi is constant. In the second one, it is

a time-dependent coefficient. In the first case, the reference simulation is done
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using a constant single mode for the inlet perturbation ε1 = ε = cte. In the sec-

ond case, ε1 varies in time following a sinusoidal form: ε1 = ε(1+sin(ωεt)). The

values of the numerical parameters characterizing the perturbation are ε = 0.15,

n1 = 0.4π, ω1 = 1/tc and ωε = 0.62ω1, where tc = 2Λ/(U1 + U2) is the average

advection time. A flow visualization of ρv at t = 10 is shown in Fig. 16 for

the two cases. In both cases, one can clearly observe the emergence of coherent

structures. When a constant value of ε1 is used, the coherent structures are

virtually aligned. When ε1 is time-varying, one can observe the emergence of

more complex pairing patterns.

(a) ε1: constant

(b) ε1: time-varying

Figure 16: Visualization of the normal momentum ρv (S.I. units) for the 2D compressible
Navier-Stokes equation. Reference simulation at t = 10 for a constant value of ε1 (a), and a
time-varying value (b).

The DA procedure is performed using the following elements:

- The model is the discretized version of the system given by (32) - (34).

The features of the fine mesh level were previously introduced. For the

coarse grid level, a homogeneous coarsening ratio rC = 4 is employed. The
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simulation is initialized in the physical domain using a simple hyperbolic

tangent profile with no perturbation (see (35)). We consider that no prior

information is available on the time evolution of ε1. At t = 0, this coeffi-

cient is fixed to be a random Gaussian phenomenon ε1 ∼ N (0, Qa) where

the initial value of Qa(t = 0) = 0.0625. Similarly to the cases analyzed

in Sec. 4, the value imposed on the main fine-grid simulation at t = 0 is

ε1 = 0, while random values are imposed for each ensemble member on

the coarse grid level. The size of the ensemble is Ne = 100.

- The observation is sampled from the reference simulations shown in Fig. 16,

which are run for a total simulation time of Tref = 40 in tc units. A fully

developed state obtained from a prior simulation at t = 10 is used to ini-

tialize the simulations at t = 0. Data are sampled every 30 time steps in

the region x ∈ [0, 0.55] and y ∈ [−0.16, 0.16]. Considering the results ob-

tained in Sec. 5, the update frequency is chosen sufficiently high to assure

a good estimation. The observations are made from the instantaneous

fields ρu and ρv. The data used as observation are artificially perturbed

using a Gaussian noise of variance R = 1.

The estimation algorithm is run over a time window equal to TDA = 40

which encompass roughly 3200 DA analysis phases. This value corresponds to

four complete advections in the whole physical domain. At the end of each

analysis, the mean value and the variance of the coefficient ε1 are updated

following the Dual EnKF technique [38], similarly to what was done in Sec. 4.

First, results dealing with the constant value of ε1 are discussed. The pa-

rameter estimation for this case is almost exact, as observed in Fig. 17. The

convergence towards the exact value of ε1 is obtained in roughly 0.5 units of

time, after a first transient where a slight over-prediction is observed. When

combined with the correction obtained via the Kalman gain, the accuracy of

the state estimation is excellent, as shown in Fig. 18.

The value of ρv that is predicted at the centerline of the mixing layer is

shown in Fig. 18. At t = 1, the flow is strongly affected by the KF corrections.
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Figure 17: Time evolution of the inferred values of ε1. The truth corresponds to ε1 = cte =
0.15. In the zoomed region, the shaded area represents the 95% credible interval for the
estimated parameter.

After five characteristic times, the flow is perfectly matching the true state

upstream. Finally, after the initial transient is dissipated, we observe that the

state estimation almost perfectly matches the true state in the whole physical

domain.

The results dealing with the time-varying parameter ε1 are now discussed.

The time evolution of the estimated value of ε1 is reported in Fig. 19. The overall

sinusoidal trend is generally respected, although a relatively small phase lag is

visible. This lag does not appear to be larger than the one previously observed

for the one-dimensional case based on the Euler equation. The presence of this

delay has probably the same reasons as in Sec. 5. However, in this case, some

over prediction of the parameter is locally observed in time, which was not

obtained for the wave propagation test case.

The results obtained for the prediction of the normal momentum ρv are

shown in Fig. 20. One can see that the combination of parameter and state

estimations produces an accurate prediction of the flow. Minor differences are

observed with the true state. In particular, the momentum ρv does not exhibit

spurious oscillations which could stem from the field correction determined via

the Kalman gain. In order to evaluate the respective influence of the parameter

estimation step and state estimation phase, a test case is run in which only
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(a) t = 1

(b) t = 5

(c) t = 30

Figure 18: Estimations obtained by MEnKF of the momentum ρv (S.I. units) at the centerline
y = 0 of the mixing layer. Results at t = 1 (a), t = 5 (b) and t = 30 (c) for the case
ε1 = cte = 0.15.
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Figure 19: Time evolution of the inferred values of ε1 for the time-varying reference case. (a)
Large time window. (b) Zoomed region. The shaded area represents the 95% credible interval
for the estimated parameter.
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the parameter estimation is performed. That is, the state estimation obtained

on the coarse-grid level is not included in the steps 4 and 5 of the algorithm

presented in Sec. 3. While the results of the parameter estimation are the

same for the two cases, one can see in Fig. 21 that the prediction is sensibly

deteriorated.

This observation is quantified by the evaluation of the relative Root Mean

Square Error (RMSE), defined as:

RMSE(k) =

√√√√√√√

∫

x

[(
(ρv)

F

k

)a
(x)−

(
(ρv)

F

k

)True
(x)
]2

dx
∫

x

[(
(ρv)

F

k

)True
(x)
]2

dx

(38)

The results, which are shown in Fig. 22, indicate that the accuracy of the

complete algorithm is higher when compared to the case in which only the

parameter estimation is performed. Therefore, the two operations concurrently

provide an improvement in the prediction of the flow.

At last, an analysis of the conservativity of the algorithm is performed. As

previously discussed, the state estimation obtained via EnKF does not necessar-

ily comply with the dynamical equations of the model. This drawback can be

responsible for discontinuities in the physical field, which can significantly affect

the accuracy and stability of the global algorithm. The analysis is performed

considering an indicator ΓF

k which measures the conservation of the transversal

momentum equation (33) in discretized form:

(
(ρv)

F

k

)a −
(
(ρv)

F

k−1

)a

∆t
−Fρv

(
ρk,uk, pk, τk

)
= ΓF

k, (39)

where Fρv represents the spatial discretization terms in the transversal momen-

tum equation. In the forecast step performed via the model, ΓF

k = 0 down

to a convergence rate δ which is prescribed. However, the value of ΓF

k, at the

end of a time step where a forecast-analysis is performed, is strictly connected

with the computational strategy employed. Here, three cases are considered for

ε1 = cte = 0.15:
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(a) t = 1

(b) t = 5

(c) t = 30

Figure 20: Estimations obtained by MEnKF of the momentum ρv (S.I. units) at the centerline
y = 0 of the mixing layer. Results at t = 1 (a), t = 5 (b) and t = 30 (c) for the time-varying
ε1.
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(a) t = 1

(b) t = 5

(c) t = 30

Figure 21: Estimations obtained by MEnKF of the momentum ρv (S.I. units) at the centerline
y = 0 of the mixing layer. Here, MEnKF is only used to provide the estimation of ε1. Results
at t = 1 (a), t = 5 (b) and t = 30 (c) for the time-varying ε1.
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Figure 22: Time evolution of the RMS error of ρv for the case of a time-varying inlet parameter
ε1. The symbol P.E. corresponds to the case where MEnKF is only used for the estimation
of ε1. The notation MEnKF corresponds to the standard version of the algorithm, including
parameter estimation and physical state correction via Kalman gain.

- A classical Dual EnKF is performed on the coarse grid and a fine-grid

correction is obtained through the ensemble statistics. In this scenario, the

state estimation obtained in the step 4 of the MEnKF algorithm presented

in Sec. 3 is directly projected in the fine mesh space and used as final

solution. The step 5 of the algorithm is not performed.

- A standard MEnKF algorithm, as described in Sec. 3.

- A MEnKF algorithm where the ensemble prediction is just used to esti-

mate the unknown parameter of the system. No update of the physical

solution is performed using the correction via Kalman gain.

The results are shown in Fig. 23 after the first forecast / analysis step. For

clarity, we introduce a normalized criterion (ΓF

k)
∗

=
ΓF
k

C where C is defined

as maxk

∣∣∣∣
((ρv)Fk)

a−((ρv)Fk−1)
a

∆t

∣∣∣∣. As expected, ΓF

k = 0 everywhere when MEnKF

is only used for the parameter estimation. Here, the time advancement of the

solution is performed using the model only, which exactly complies with the dis-

cretized equation and respects conservativity (up to a convergence error which

is negligible). On the other hand, results in Fig. 23 (a) show some lack of con-

servativity in the physical domain for the first scenario. This is also expected,

since no constraint is imposed to force the Kalman gain correction to comply
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(a) Standard Dual EnKF on the coarse mesh.

(b) Standard MEnKF.

(c) MEnKF used only for parameter estimation.

Figure 23: Analysis of the conservativity of the dynamical model via the normalized quantity(
ΓF
k

)∗
. Results are shown for three scenarios: (a) the classical Dual EnKF, (b) the classical

MEnKF algorithm and (c) the MEnKF only used for parameter estimation.
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with the dynamical equations. Finally, results for the MEnKF are shown in

Fig. 23 (b). The evolution of (ΓF

k)
∗

is very similar to the results observed for

the first scenario. However, one can clearly see that this field appears to be sen-

sibly smoothed out by the multigrid iterative procedures in step 4 and 5 of the

MEnKF algorithm. As previously discussed, complete conservativity starting

from an erroneous state at k− 1 is possibly not an optimal objective, while one

wants a regularized solution to avoid affecting the precision of the global calcu-

lation. On this last objective, the MEnKF appears to provide a better result

when compared with the classical Dual EnKF, described in the first scenario.

Considering also that the MEnKF showed better accuracy than the algorithm

relying on parameter estimation only, one can conclude that the MEnKF pro-

vides an efficient compromise between global accuracy and regularization of the

solution. In order to draw more information about this important aspect, the

MEnKF algorithm needs to be tested for the simulation of three-dimensional

compressible flows, where the Kalman gain correction may be responsible for im-

portant acoustic phenomena which are not observable in 2D and 1D dynamical

systems.

7. Conclusions

A sequential estimator based on a Kalman filter approach for Data Assimi-

lation of fluid flows is presented in this research work. This estimator exploits

iterative features which are employed in several CFD codes for the resolution

of complex applications in fluid mechanics. More precisely, the multilevel reso-

lution associated with the multigrid iterative approach for time advancement is

used to generate several low-resolution numerical simulations. These results are

then employed as ensemble members to determine i) the correction via Kalman

filter, which is then projected on the high-resolution grid to correct a single

simulation which corresponds to the numerical model and ii) an optimization of

the free parameters driving the simulation. One of the main advantages of the

model is that, owing to the iterative procedure for the calculation of the flow
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variables, the final solution is regularized.

The method, which is referred to as Multigrid Ensemble Kalman Filter

(MEnKF), is assessed via the analysis of one-dimensional and two-dimensional

test cases and using different dynamic equations. First, the one-dimensional

Burgers equation for Re = 200 is analyzed. Here, the performance of MEnKF

is assessed considering several coarsening ratios rC, which determines the differ-

ence in resolution between the main simulation and the ensemble members. The

results for rC = 1 (i.e. method equivalent to a EnKF) indicate that the State

Estimation and the parametric optimization of the inlet provide very high accu-

racy in the results. With increasing coarsening ratios the quality of the results

is progressively degraded, but the main features of the flow are obtained even

for very under-resolved ensemble members. In addition, higher rC values are as-

sociated with significantly decreased computational costs, so that this method

exhibit a potential to be explored for efficient trade off between accuracy and

resources required.

Then, MEnKF is used to track the time evolution of a free parameter for the

case of a wave propagation, using a one-dimensional Euler model. Three cases

are here investigated, varying the time window between successive assimilations.

The estimator can efficiently represent the evolution in time of the parameter, as

well as to provide an accurate state estimation. However, the global prediction

is significantly degraded if the assimilation window is larger than a threshold

value, which is arguably connected to the physical features of the flow.

At last, the analysis of the two-dimensional spatially evolving mixing layer

for Re = 100 is performed. The algorithm appears to be well suited for the

analysis of unsteady phenomena, in particular for the analysis of time varying

free parameters of the simulation. These features are promising for potential

application to in-streaming Data Assimilation techniques.

Future research over this method will target improvement of the projector

operators between coarse and fine grid level, in particular for the state matrix

Ψ. Preliminary tests have shown that, in the case of non-linear models, infor-

mation from the main, refined simulation can be projected on the coarse mesh
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level to improve the predictive capabilities of the ensemble members. This im-

plies a more accurate prediction of the state estimation and of the parameter

optimization on the coarse level, from which the main refined simulation will

benefit. This loop has the potential to improve even more the performance of

the MEnKF model, and strategies for efficient application are currently under

investigation. Moreover, we plan to test the MEnKF algorithm to more complex

configurations involving complex geometries and more challenging parametric

optimization problems. The compressible effects are relatively low for the tests

performed so far. Further research is planned on test-cases where the compress-

ible effects are more accentuated.
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Appendix A. Data Assimilation algorithms

Appendix A.1. Kalman filter algorithm

The Kalman filter algorithm given in Sec. 2.1.1 corresponds to Fig. A.24.

Appendix A.2. Ensemble Kalman filter algorithm

An efficient implementation of the EnKF relying on anomaly matrices is

given in Algo. 1. We have used the secant method described in [5] to change

the definition of the variable Yf
k.
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Figure A.24: Kalman Filter algorithm. The initialization is made with the analysed state.

Appendix A.3. Dual Ensemble Kalman filter algorithm

An efficient implementation of the Dual EnKF relying on anomaly matrices

is given in Algo. 2. We have slightly adapted this algorithm from [38].

Appendix A.4. Multigrid Ensemble Kalman filter algorithm

The algorithm 4 represents a simplified, ready-to-use application of the con-

ceptual methodology presented in Sec. 3. This algorithm was tailored for the

relatively simple physical models used in this work. While it may not be suited

for complex three-dimensional applications, it proved an optimum trade-off in

accuracy and computational resources for the present analysis.

First of all, when observation is not available, the two main forecast op-

erations (fine grid forecast and ensemble coarse forecast) are performed using

explicit time advancement schemes. This choice allows to reduce the compu-

tational costs. However, when observation is available, the following strategies

are employed:

1. The two forecast operations (main simulation and ensemble members) are

performed using an implicit matrix-splitting iterative procedure, using

a single iteration. As stated in Sec. 3, the state transition model for
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Algorithm 1: Stochastic Ensemble Kalman Filter (slightly adapted
from [5]). Use of anomaly matrices with Yf

k = HkX
f
k.

Input: For k = 0, . . . ,K: the forward models Mk:k−1, the observation
models Hk, the observation error covariance matrices Rk

Output: {xa,(i)
k } ; k = 0, · · · ,K ; i = 1, · · · , Ne

begin

1: Initialize the ensemble of forecasts {xf,(i)
0 } ; i = 1, · · · , Ne

for k = 0, . . . ,K do
2: Draw a statistically consistent observation set ; i = 1, · · · , Ne

y
o,(i)
k = yo

k + ε
o,(i)
k with ε

o,(i)
k ∼ N (0,Rk)

3: Compute the model counterparts of the observation set ;
i = 1, · · · , Ne

y
f,(i)
k = Hk

(
x

f,(i)
k

)

4: Compute the ensemble means

xf
k =

1

Ne

Ne∑

i=1

x
f,(i)
k ; yf

k =
1

Ne

Ne∑

i=1

y
f,(i)
k ; εok =

1

Ne

Ne∑

i=1

ε
o,(i)
k

5: Compute the normalized anomalies ; i = 1, · · · , Ne

[
Xf
k

]
:,i

=
x

f,(i)
k − xf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
y

f,(i)
k − yf

k√
Ne − 1

; [Eo
k]:,i =

ε
o,(i)
k − εok√
Ne − 1

6: Compute the Kalman gain

Ke
k = Xf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

7: Update the ensemble ; i = 1, · · · , Ne

x
a,(i)
k = x

f,(i)
k + Ke

k

(
y

o,(i)
k − y

f,(i)
k

)

8: Compute the ensemble forecast ; i = 1, · · · , Ne

x
f,(i)
k+1 =Mk+1:k(x

a,(i)
k )
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Algorithm 2: Dual Ensemble Kalman Filter (slightly adapted from
[38]). Use of anomaly matrices with Yf

k = HkX
f
k. We have i =

1, · · · , Ne.

Input: For k = 1, . . . ,K: the forward models Mk:k−1, the observation
models Hk, the observation error covariance matrices Rk

Output: {θa,(i)
k } and {xa,(i)

k } ; k = 0, · · · ,K
begin

1: Initialize {θa,(i)
0 } and {xa,(i)

0 }
for k = 1, . . . ,K do

2: Observation ensemble:

y
o,(i)
k = yo

k + ε
o,(i)
k with ε

o,(i)
k ∼ N (0,Rk)

Re
k =

1

Ne − 1

Ne∑

i=1

ε
o,(i)
k

(
ε
o,(i)
k

)>

3: Parameter forecast:

θ
f,(i)
k = θ

a,(i)
k−1 + τ

(i)
k with τ

(i)
k ∼ N (0,Σθ

k)

x
f,(i)
k =Mk:k−1(x

a,(i)
k−1 , θ

f,(i)
k )

y
f,(i)
k = Hk

(
x

f,(i)
k

)

4: Compute the normalized anomalies
[
Θf
k

]
:,i

=
θ

f,(i)
k − θf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
y

f,(i)
k − yf

k√
Ne − 1

; [Eo
k]:,i =

ε
o,(i)
k − εok√
Ne − 1

5: Parameter update:

Kθ,e
k = Θf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

θ
a,(i)
k = θ

f,(i)
k + Kθ,e

k

(
y

o,(i)
k − y

f,(i)
k

)

6: State forecast:

x
f,(i)
k =Mk:k−1(x

a,(i)
k−1 , θ

a,(i)
k )

y
f,(i)
k = Hk

(
x

f,(i)
k

)

7: Compute the normalized anomalies
[
Xf
k

]
:,i

=
x

f,(i)
k − xf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
y

f,(i)
k − yf

k√
Ne − 1

; [Eo
k]:,i =

ε
o,(i)
k − εok√
Ne − 1

8: State update:

Kx,e
k = Xf

k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

x
a,(i)
k = x

f,(i)
k + Kx,e

k

(
y

o,(i)
k − y

f,(i)
k

)
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Algorithm 3: Dual Ensemble Kalman filter of Algo. 2 applied on the
coarse mesh. We have i = 1, · · · , Ne.

Input: For k = 1, . . . ,K: the forward models MC

k:k−1, the observation
models HC

k , the observation error covariance matrices RC

k

Output: {θa,(i)
k } and {(xC

k)
a,(i)} ; k = 0, · · · ,K

begin

1: Initialize {θa,(i)
0 } and {(xC

0 )
a,(i)};

for k = 1, . . . ,K do
2: Parameter forecast:

θ
f,(i)
k = θ

a,(i)
k−1 + τ

(i)
k with τ

(i)
k ∼ N (0,Σθ

k)

(xC

k)
f,(i)

=MC

k:k−1

((
xC

k−1

)a,(i)
, θ

f,(i)
k

)

if Observation available then

(yC

k )
f,(i)

= HC

k

(
(xC

k)
f,(i)
)

3: Observation ensemble:
(yC

k )
o,(i)

= (yC

k )
o

+ (εCk)
o,(i)

with (εCk)
o,(i) ∼ N (0,RC

k)

(RC

k)
e

=
1

Ne − 1

Ne∑

i=1

(εCk)
o,(i)

(
(εCk)

o,(i)
)>

4: Compute the normalized anomalies

[
Θf
k

]
:,i

=
θ

f,(i)
k − θf

k√
Ne − 1

;
[
Yf
k

]
:,i

=
(yC

k )
f,(i) − (yC

k )
f

√
Ne − 1

; [Eo
k]:,i =

(εCk)
o,(i) − (εCk)

o

√
Ne − 1

5: Parameter update:

(KC

k)
θ,e

= Θf
k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

θ
a,(i)
k = θ

f,(i)
k + (KC

k)
θ,e
(

(yC

k )
o,(i) − (yC

k )
f,(i)
)

6: State forecast:
(xC

k)
f,(i)

=MC

k:k−1

((
xC

k−1

)a,(i)
, θ

a,(i)
k

)

(yC

k )
f,(i)

= HC

k

(
(xC

k)
f,(i)
)

7: Compute the normalized anomalies

[
Xf
k

]
:,i

=
(xC

k)
f,(i) − (xC

k)
f

√
Ne − 1

;
[
Yf
k

]
:,i

=
(yC

k )
f,(i) − (yC

k )
f

√
Ne − 1

; [Eo
k]:,i =

(εCk)
o,(i) − (εCk)

o

√
Ne − 1

8: State update:

(KC

k)
x,e

= Xf
k

(
Yf
k

)> (
Yf
k

(
Yf
k

)>
+ Eo

k (Eo
k)
>
)−1

(xC

k)
a,(i)

= (xC

k)
f,(i)

+ (KC

k)
x,e
(

(yC

k )
o,(i) − (yC

k )
f,(i)
)
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Algorithm 4: Multigrid EnKF algorithm. We have i = 1, · · · , Ne.

begin

1: Initialize
{

(xF
0)

a
, θa

0, θ
a,(i)
0 , (xC

0 )
a,(i)

}

for k = 1, . . . ,K do
2: Fine grid forecast:

(xF

k)
f

=MF

k:k−1

((
xF

k−1

)a
, θa
k

)

3: Dual EnKF on coarse mesh: Apply Algo. 3
if Observation available then

4: Projection on the coarse grid

(xC

k)
∗

= ΠC

(
(xF

k)
f
)

5: Fine grid state correction using the ensemble statistics:

(xC

k)
′

= (xC

k)
∗

+ (KC

k)
x,e [

(yC

k )
o −HC

k

(
(xC

k)
∗)]

(xF

k)
a

= (xF

k)
f
+ ΠF

(
(xC

k)
′
− (xC

k)
∗
)

6: Matrix-Splitting iterative procedure on the final solution
starting from (xF

k)
a
.
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each ensemble member is determined independently, but using the same

structure and discretization schemes of the main simulation.

2. The number of iterative solutions for the main simulation on the coarse-

grid level is equal to zero. That is, the solution from the first forecast

is projected on the coarse grid, and the difference between the KF state

estimation and this forecast is re-projected over the fine grid.

3. In the final iteration on the fine grid, an implicit matrix-splitting iterative

procedure is employed, using a single iteration and a relaxation coefficient

α = 0.5. This choice, which provides the best compromise between accu-

racy and regularization, has been identified after extensive tests for the

configurations investigated.
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