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Translation Surfaces and Moduli Spaces

DIMITRI ZVONKINE

Translation surfaces are surfaces glued from polygons by identifying only parallel sides of equal lengths. Many questions about them can be asked in elementary terms. Sometimes these questions can be answered using elementary methods such as polygonal billiards, monodromies and permutations, cutting and pasting. Other times they require advanced methods of dynamics or intersection theory on moduli spaces.

Translation surfaces

Figure 1 represents two polygons whose sides are divided into pairs of same length and direction. By gluing the polygons along these pairs of sides we obtain a translation surface. This is a closed surface with a at metric (a Riemannian metric with zero curvature, locally isometric to the Euclidean plane) and a nite number of conic singularities whose angles are multiples of 2π. In this example, the surface is of genus 3, and it has 2 conical singularities with angles 4π (white dots) and 8π (black dots). In general, given a translation surface of genus g with n conical singularities that have angles 2π(k i + 1), 1 ≤ i ≤ n, the Gauss-Bonnet formula implies k i = 2g -2.

Figure 2. This is the same translation surface as in Figure 1 Any translation surface can be cut into polygons in many ways. We will consider all such cuttings as equivalent; in other words, we are interested in the surface itself and in its metric, not in a particular cutting. For instance, the polygon in Figure 2 is obtained from those in Figure 1 by cutting the rightmost polygon in two and gluing the pieces along distinguished pairs of sides (the gluings are shown as dotted lines). Both gures represent the same translation surface.

Let C be a translation surface and S 1 the circle of directions on the plane. Then C ×S 1 carries a natural time ow: just imagine a ball rolling on the surface C along the geodesic in the given direction. If the ball meets a side of a polygon it reappears from the other side of the distinguished pair. If it hits a vertex, then the ow is not well-de ned. Thus to each translation surface corresponds a dynamical system, and we can ask whether the time ow is ergodic, whether there are periodic trajectories, and so on. See, for instance, the study of periodic orbits in the regular pentagonal billiard [START_REF] Davis | Periodic trajectories in the regular pentagon[END_REF] and the corresponding jewelry at tinyurl.com/yboob8dw. Here, however, we will be more interested in the space H g (k 1 , . . . , k n ) of all translation surfaces of genus g with conical angles 2π(k i + 1), 1 ≤ i ≤ n.

The complex numbers represented by the sides of the polygons form local coordinates on this space. Moreover, they endow it with an integer a ne structure. This means that choosing a di erent cutting of the surface induces an a ne change of local coordinates with integer coe cients. In particular, this allows us to de ne a canonical volume form on the space H g (k 1 , . . . , k n ). While the total volume of this space is in nite, the volume of H ≤1 g (k 1 , . . . , k n ), the space of translation surfaces with area at most 1, was shown to be nite by Masur [START_REF] Masur | Interval exchange transformations and measured foliations[END_REF] and Veech [START_REF] Veech | Gauss measures for transformations on the space of interval exchange maps[END_REF].

Question 1. What is the volume of H ≤1 g (k 1 , . . . , k n )?
One of the ways to answer this question is to count the translation surfaces whose coordinates are Gaussian integers a +bi , a, b ∈ Z. Eskin and Okounkov [START_REF] Eskin | Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic di erentials[END_REF] showed that the number of such surfaces with area "NLMS_480" -2018/10/29 -14:34 -page 2 -#2 up to N grows as V • N 2g -1+n , where V is the volume of the space H ≤1 g (k 1 , . . . , k n ) and 2g -1 + n its complex dimension. Using representation theory and the theory of quasi-modular forms they were able to produce a method to compute the volumes of all spaces H ≤1 g (k 1 , . . . , k n ). This was later re ned to deal with the volumes of connected components of these spaces, classi ed by Kontsevich and Zorich [START_REF] Kontsevich | Connected components of the moduli spaces of Abelian di erentials with prescribed singularities[END_REF].

Let us illustrate the method with the simplest example of genus 1 translation surfaces. Because such a surface has an in nite automorphism group acting by global translations, it is convenient to mark one point on the surface and consider the space of translation surfaces with one marked point. The marked point could be viewed as a conical point with angle 2π.

Every genus 1 translation surface of area N with one marked point can be cut into a parallelogram, as in Figure 3, in a unique way, d being an integral divisor of N , and 0 ≤ a ≤ d an integer. The marked point is the image of the vertices of the parallelogram under the gluing. Thus the number of such translation surfaces is the sum of divisors of N , and the corresponding generating function is the quasi-modular form

G 2 (q ) = - 1 24 + N d |N dq N .
The well-known transformation law for this quasimodular form reads

G 2 e -2πi /τ = τ 2 G 2 e 2πi τ + i π 4 ,
where the rst term is the standard transformation law for modular forms and the second term is the quasi-modular correction. Plugging h = 2πi /τ and recalling that G 2 (0) = -1/24, we obtain the asymptotic expansion

G 2 (e -h ) ∼ π 2 6h 2 -
1 2h as h → 0 + . Note that this is the whole asymptotic expansion: the di erence between the left-hand side and the right-hand side decreases exponentially.

Returning to our original question, we now have

G 2 (e -h ) ∼ π 2 6
1 (1q ) 2 , as h → 0 + , so the coe cients of G 2 (q ) grow as π 2 N /6, the partial sums up to degree N as π 2 N 2 /12, hence π 2 /12 is the volume of the space H ≤1 1;0 .

The group GL(2, R) acts on plane polygons and thus on the space of translation surfaces in the natural way. This leads to new important questions.

Question 2. Describe the orbit closures of the GL(2, R) action in the space of translation surfaces.

We will come back to this later. If the stabilizer of a translation surface is a lattice, it is called a Veech surface. Veech surfaces have not been classi ed so far, but many unexpected examples have been constructed.

Example. Consider the translation surface obtained by gluing together the opposite sides of a regular 2n-gon. One can show that the matrix

1 cotan π 2n 0 1
lies in its stabilizer and deduce that the stabilizer is a lattice. we obtain a ow on the space H g (k 1 , . . . , k n ), called the Teichmüller ow. Masur and Veech [START_REF] Masur | Interval exchange transformations and measured foliations[END_REF][START_REF] Veech | Gauss measures for transformations on the space of interval exchange maps[END_REF] showed that this ow is ergodic on every connected component of this space. 

0 < β g ≤ . . . , ≤ β 1 ≤ α 1 ≤ • • • ≤ α g ∈ R
the eigenvalues of A(t )A + (t ). Because A(t ) preserves the intersection pairing on H 1 (C, R) we actually have

α i (t )β i (t ) = 1.
The Lyapunov exponents of the Teichmüller ow are de ned as

λ i = lim t →∞ 1 2t ln |α i (t )|.
By the Oseledets ergodic theorem, these limits exist and are the same for almost all starting points.

Question 4. What are the Lyapunov exponents λ 1 , . . . , λ g for a given connected component of

H g (k 1 , . . . , k n )?
Main results on this topic include the proof by Avila and Viana [START_REF] Avila | Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture[END_REF] that the Lyapunov spectrum is simple, that is, 0 < λ 1 < • • • < λ g , and the computation of the sum λ 1 + • • • + λ g by Eskin, Kontsevich and Zorich [START_REF] Eskin | Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic ow[END_REF]. The complete answer, however, is still unknown.

Moduli spaces and Abelian di erentials

The space H g (k 1 , . . . , k n ) can be viewed in a completely di erent way if we realize that a translation surface is the same thing as a Riemann surface with an Abelian di erential (i.e., a holomorphic di erential 1-form).

Indeed, since every polygon lies in the complex plane, it inherits the complex coordinate z , that can be taken as a local coordinate on the translation surface. It also induces the holomorphic 1-form dz on the polygon. These local coordinates and holomorphic 1-forms glue nicely along the edges of the polygons: the change of local coordinate from one chart to the other is just a translation. A special treatment is needed at the conical points. If z i is a conical point with angle 2π(k i + 1), we can use w = (zz i ) Denote by M g,n the moduli space of genus g Riemann surfaces with n marked points. This space is well-de ned as soon as the Euler characteristic 2 -2gn of the surface punctured at the marked points is negative. Its points parametrize all possible complex structures on an oriented genus g surface with n distinct marked numbered points, up to a point-preserving isomorphism. For instance, M 0,3 is a point, because all genus 0 Riemann surfaces are isomorphic to CP 1 and any three points can be brought to 0, 1, ∞ in a unique way by an isomorphism z → (az + b)/(c z + d ) of CP 1 . Similarly, the space M 0,4 is isomorphic to CP 1 \ {0, 1, ∞}. Indeed, by an isomorphism of CP 1 we can bring four points x 1 , x 2 , x 3 , x 4 to 0, 1, ∞, t , where

t = x 4 -x 1 x 2 -x 1 : x 4 -x 3 x 2 -x 3 ∈ CP 1 \ {0, 1, ∞} = M 0,4
is the cross-ratio of the four points. Further, the space M 1,1 is the modular gure H/SL(2, Z), where H is the upper-half plane. Indeed, any elliptic curve can be represented as C/(Z + τZ) for τ ∈ H. The SL(2, Z) action corresponds to replacing the basis (1, τ) of the lattice Z+ τZ with the basis (c τ +d, aτ + b), and then re-scaling the lattice so as to bring the rst vector of the basis to 1, the second vector becoming τ = (aτ + b)/(c τ + d ). The three simplest moduli spaces described above are shown in Figure 5.

M 0,3 M 0,4 M 1,1

Figure 5. Three simplest moduli spaces

The moduli space M g,n admits a natural compactication M g,n called the Deligne-Mumford compacti ca-"NLMS_480" -2018/10/29 -14:34 -page 4 -#4 tion. It is the moduli space of stable curves, that is, nodal curves with n distinct smooth marked points that have a nite number of automorphisms. For instance, M 0,4 is CP 1 , where the three extra points 0, 1, ∞ correspond to the three stable curves in the Figure 6. The moduli space M 1,1 is obtained from M 1,1 by adding one extra point. The corresponding curve is CP 1 with points x = 0 and x = ∞ identi ed into a node and marked point at x = 1, see Figure 7. The moduli space M g,n is a smooth Deligne-Mumford stack, or orbifold, of complex dimension 3g -3 + n.

The points of M g,n \ M g,n , that we add to compactify the space, parametrize nonsmooth stable curves. They form a normal crossings divisor in M g,n called the boundary.

The Hodge bundle E g,n → M g,n is the rank g vector bundle over the moduli space whose ber over a point p ∈ M g,n is the space of Abelian di erentials on the corresponding curve C p . The Hodge bundle extends naturally to M g,n . Without going into details of this, let us mention that an Abelian di erential on a stable curve is a meromorphic 1-form on each irreducible component of the curve with at most simple poles at the nodes of the curve, the residues at the two branches of the node being opposite to each other. With this de nition it is easy to check that the Abelian di erentials form a g -dimensional vector space on any stable curve of genus g . For instance, on the genus 1 nodal curve obtained by identifying x = 0 and x = ∞ on CP 1 , all Abelian di erentials are proportional to dx/x.

Once we have introduced the moduli space and the Hodge bundle, we can remark that every space H g (k 

{(C, x) ∈ M 2,1 | x is a Weierstraß point}.
The cohomology class Poincaré dual to this divisor was rst determined by Eisenbud and Harris [START_REF] Eisenbud | The Kodaira dimension of the moduli space of curves of genus ≥ 23[END_REF]. It is equal to

3ψ 1 -6 5 - 1 10 
.

So what do all these terms mean? The second and the third terms are pictures representing boundary divisors of M 2,1 . The second term is the boundary divisor parametrizing curves with a separating node; the third term is, similarly, the boundary divisor parametrizing curves with a nonseparating node.

In both cases we take the Poincaré dual cohomology "NLMS_480" -2018/10/29 -14:34 -page 5 -#5

classes of these divisors. The class ψ 1 is the rst Chern class 1 of a line bundle L 1 over M 2,1 . The ber of this bundle over a point (C, x) ∈ M 2,1 is the cotangent line to C at x. In general, there are n line bundles L 1 , . . . , L n like that over M g,n , corresponding to the n marked points.

A general method to compute the cohomology classes Poincaré dual to PH g (k 1 , . . . , k n ) in PE g,n was developed by Sauvaget [START_REF] Sauvaget | Cohomology classes of strata of di erentials[END_REF], though it does not lead to a closed formula.

A conjectural closed formula for the cohomology class of the image of H g (k 1 , . . . , k n ) in M g,n was proposed in the appendix of [START_REF] Pandharipande | Tautological relations via r -spin structures[END_REF]. It involves the ψ-classes introduced above, the classes of boundary strata, while their coe cients are some special values of Bernoulli polynomials.

In conclusion, let us mention two developments that connect the two views on the spaces of translation surfaces.

The rst one is a conjecture by Sauvaget relating the cohomology class Poincaré dual to PH g (k 1 , . . . , k n ) to the volume of H ≤1 g (k 1 , . . . , k n ). For n = 1 the conjecture is proved in [START_REF] Sauvaget | Volumes and Siegel-Veech constants of H(2g -2) and Hodge integrals[END_REF].

The second is a result by Eskin, Mirzakhani and Mohamadi [START_REF] Eskin | Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space[END_REF] that Anton Zorich, in his review paper [START_REF] Zorich | The Magic Wand Theorem of A. Eskin and M. Mirzakhani[END_REF] called "the magical wand theorem". It states that any GL(2, Z)-invariant closed subset of H g (k 1 , . . . , k n ) is an algebraic subvariety of E g,n de ned over Q; locally, in period coordinates it is an a ne subspace. This is the single most important step towards the classi cation of all GL(2, Z)invariant closed sets.
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 1 Figure 1. These two polygons can be glued into a translation surface

Figure 3 .

 3 Figure 3. All translation surfaces of g = 1 with 1 marked point look like this

Question 3 .

 3 Restrict the action to SL(2, R). What are the possible stabilizers of translation surfaces? For what surfaces is the stabilizer a lattice in SL(2, R)?

Figure 4 .

 4 Figure 4. An element of SL(2, R) that stabilizes the regular 2n-gon translation surface

Figure 6 .

 6 Figure 6. The three nonsmooth stable curves of g = 0 with 4 marked points

Figure 7 .

 7 Figure 7. The unique nonsmooth stable curve of g = 1 with one marked point

  More precisely, if we consider a small open set U in H g (k 1 , . . . , k n ), we can naturally identify the groups H 1 (C, R) for all translation surfaces C parametrized by U , since these surfaces are obtained from each other by small deformations. Now, pick a point in U and suppose that at some moment of time t the ow brings us back to U . The translation surface has undergone some transformation that acts by a linear map A(t ) on the homology group H 1 (C, R). Denote by

An important question is: what does this ow do to the homology classes of the translation surface as t → ∞?

  1/(k i +1) as the local coordinate at this point. The Abelian di erential dz = d (w k i +1 ) has a zero of order k i at the conical point. Thus we obtain a Riemann surface C with n marked points x 1 , . . . , x n and an Abelian di erential α that has zeros of orders k 1 , . . . , k n at x 1 , . . . , x n .The sides of the polygons are now the periods of α, either absolute or relative between two zeros. The complete set of periods on a basis of the group H 1 (C, {x 1 , . . . , x n }, Z) forms a set of local coordinates on H g (k 1 , . . . , k n ) that are called period coordinates.

  1 , . . . , k n ) of translation surfaces is naturally embedded into the Hodge bundle E g,0 . Speci cally, it is the locus of Abelian di erentials with n zeros of orders k 1 , . . . , k n . Actually, these spaces form a strati cation of the total space of the Hodge bundle over M g,n . We can also view H g (k 1 , . . . , k n ) as a subspace of E g,n if we decide to mark the zeros of the di erential. Note that the projectivization PE g,n is a compact orbifold, and the projectivizations PH g (k 1 , . . . , k n ) are its closed sub-orbifolds. This new setting leads to a new series of questions. Do the spaces H g (k 1 , . . . , k n ) ⊂ E g,n have smooth closures?The answer to this precise question is negative: the closures are not even normal. It is conjectured, however, that their normalizations are smooth. This would provide a natural smooth compacti cation for every space H g (k 1 , . . . , k n ). What is the cohomology class Poincaré dual to PH g (k 1 , . . . , k n ) in PE g,n ? What is the pushforward of this cohomology class to M g,n ?As the simplest example, consider the space H
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(2) of Abelian di erentials with a double zero on a genus 2 curve. Every genus 2 curve C carries two linearly independent Abelian di erentials α and β , each of which has two simple zeros or a double zero. Their ratio α/β is a degree 2 map from C to CP 1 or, in more intrinsic terms, to the projectivization of the dual to the space of Abelian di erentials on C . This shows that every genus 2 curve is hyperelliptic. The degree 2 map described above has six rami cation points, called the Weierstraß points. Every Abelian di erential on C has either two zeros whose images under the map α/β coincide, or a double zero at a Weierstraß point. Thus the image of H 2 (2) in M 2,1 is the divisor
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