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Translation Surfaces and Moduli Spaces

DIMITRI ZVONKINE

Translation surfaces are surfaces glued from polygons by identifying only parallel sides of equal lengths. Many
questions about them can be asked in elementary terms. Sometimes these questions can be answered using
elementary methods such as polygonal billiards, monodromies and permutations, cutting and pasting. Other
times they require advanced methods of dynamics or intersection theory on moduli spaces.

Translation surfaces

Figure 1 represents two polygons whose sides are
divided into pairs of same length and direction. By
gluing the polygons along these pairs of sides we
obtain a translation surface. This is a closed surface
with a �at metric (a Riemannian metric with zero cur-
vature, locally isometric to the Euclidean plane) and
a �nite number of conic singularities whose angles
are multiples of 2π. In this example, the surface is of
genus 3, and it has 2 conical singularities with angles
4π (white dots) and 8π (black dots).

Figure 1. These two polygons can be glued into a
translation surface

In general, given a translation surface of genus g with
n conical singularities that have angles 2π(ki + 1),
1 ≤ i ≤ n, the Gauss–Bonnet formula implies

∑
ki =

2g − 2.

Figure 2. This is the same translation surface as in Figure 1

Any translation surface can be cut into polygons in
many ways. We will consider all such cuttings as

equivalent; in other words, we are interested in the
surface itself and in its metric, not in a particular cut-
ting. For instance, the polygon in Figure 2 is obtained
from those in Figure 1 by cutting the rightmost poly-
gon in two and gluing the pieces along distinguished
pairs of sides (the gluings are shown as dotted lines).
Both �gures represent the same translation surface.

Let C be a translation surface and S 1 the circle of
directions on the plane. Then C ×S 1 carries a natural
time �ow: just imagine a ball rolling on the surface C
along the geodesic in the given direction. If the ball
meets a side of a polygon it reappears from the other
side of the distinguished pair. If it hits a vertex, then
the �ow is not well-de�ned. Thus to each translation
surface corresponds a dynamical system, and we
can ask whether the time �ow is ergodic, whether
there are periodic trajectories, and so on. See, for
instance, the study of periodic orbits in the regular
pentagonal billiard [2] and the corresponding jewelry
at tinyurl.com/yboob8dw. Here, however, we will be
more interested in the space Hg (k1, . . . , kn) of all
translation surfaces of genus g with conical angles
2π(ki + 1), 1 ≤ i ≤ n.

The complex numbers represented by the sides of
the polygons form local coordinates on this space.
Moreover, they endow it with an integer a�ne struc-
ture. This means that choosing a di�erent cutting of
the surface induces an a�ne change of local coor-
dinates with integer coe�cients. In particular, this
allows us to de�ne a canonical volume form on the
space Hg (k1, . . . , kn). While the total volume of this
space is in�nite, the volume of H≤1g (k1, . . . , kn), the
space of translation surfaces with area at most 1,
was shown to be �nite by Masur [7] and Veech [12].

Question 1. What is the volume of H≤1g (k1, . . . , kn)?

One of the ways to answer this question is to count
the translation surfaces whose coordinates are Gaus-
sian integers a+bi , a, b ∈ Z. Eskin and Okounkov [6]
showed that the number of such surfaces with area
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up to N grows as V · N 2g−1+n , where V is the vol-
ume of the space H≤1g (k1, . . . , kn) and 2g − 1+ n its
complex dimension. Using representation theory and
the theory of quasi-modular forms they were able
to produce a method to compute the volumes of
all spaces H≤1g (k1, . . . , kn). This was later re�ned to
deal with the volumes of connected components of
these spaces, classi�ed by Kontsevich and Zorich [9].

Let us illustrate the method with the simplest exam-
ple of genus 1 translation surfaces. Because such a
surface has an in�nite automorphism group acting by
global translations, it is convenient to mark one point
on the surface and consider the space of translation
surfaces with one marked point. The marked point
could be viewed as a conical point with angle 2π.

Every genus 1 translation surface of area N with one
marked point can be cut into a parallelogram, as in
Figure 3, in a unique way, d being an integral divisor
of N , and 0 ≤ a ≤ d an integer. The marked point is
the image of the vertices of the parallelogram under
the gluing.

d

a

Figure 3. All translation surfaces of g = 1 with 1 marked
point look like this

Thus the number of such translation surfaces is the
sum of divisors of N , and the corresponding gener-
ating function is the quasi-modular form

G2(q ) = −
1
24
+

∑
N

∑
d |N

dqN .

The well-known transformation law for this quasi-
modular form reads

G2

(
e−2πi/τ

)
= τ2G2

(
e 2πiτ

)
+
iπ
4
,

where the �rst term is the standard transformation
law for modular forms and the second term is the
quasi-modular correction. Plugging h = 2πi/τ and
recalling that G2(0) = −1/24, we obtain the asymp-
totic expansion

G2(e−h) ∼
π2

6h2
−

1
2h

as h → 0+. Note that this is the whole asymptotic
expansion: the di�erence between the left-hand side
and the right-hand side decreases exponentially.

Returning to our original question, we now have

G2(e−h) ∼
π2

6
1

(1 − q )2
, as h → 0+,

so the coe�cients of G2(q ) grow as π2N /6, the par-
tial sums up to degree N as π2N 2/12, hence π2/12
is the volume of the space H≤11;0 .

The group GL(2,R) acts on plane polygons and thus
on the space of translation surfaces in the natural
way. This leads to new important questions.

Question 2. Describe the orbit closures of the
GL(2,R) action in the space of translation surfaces.

We will come back to this later.

Question 3. Restrict the action to SL(2,R). What are
the possible stabilizers of translation surfaces? For
what surfaces is the stabilizer a lattice in SL(2,R)?

If the stabilizer of a translation surface is a lattice,
it is called a Veech surface. Veech surfaces have not
been classi�ed so far, but many unexpected exam-
ples have been constructed.

Example. Consider the translation surface obtained
by gluing together the opposite sides of a regular
2n-gon. One can show that the matrix(

1 cotan π
2n

0 1

)
lies in its stabilizer and deduce that the stabilizer is
a lattice.

Figure 4. An element of SL(2,R) that stabilizes the
regular 2n-gon translation surface

Further restricting the SL(2,R) action to diagonal
matrices (

e t 0
0 e−t

)
,

we obtain a �ow on the space Hg (k1, . . . , kn), called
the Teichmüller �ow. Masur and Veech [7, 12] showed
that this �ow is ergodic on every connected compo-
nent of this space. An important question is: what
does this �ow do to the homology classes of the
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translation surface as t → ∞? More precisely, if
we consider a small open set U in Hg (k1, . . . , kn),
we can naturally identify the groups H1(C,R) for
all translation surfaces C parametrized by U , since
these surfaces are obtained from each other by small
deformations. Now, pick a point in U and suppose
that at some moment of time t the �ow brings us
back to U . The translation surface has undergone
some transformation that acts by a linear map A(t )
on the homology group H1(C,R). Denote by

0 < β g ≤ . . . , ≤ β1 ≤ α1 ≤ · · · ≤ αg ∈ R

the eigenvalues ofA(t )A+(t ). BecauseA(t ) preserves
the intersection pairing on H1(C,R) we actually have
αi (t )βi (t ) = 1. The Lyapunov exponents of the Teich-
müller �ow are de�ned as

λ i = lim
t→∞

1
2t

ln |αi (t )|.

By the Oseledets ergodic theorem, these limits exist
and are the same for almost all starting points.

Question 4. What are the Lyapunov exponents
λ1, . . . , λ g for a given connected component of
Hg (k1, . . . , kn)?

Main results on this topic include the proof by Avila
and Viana [1] that the Lyapunov spectrum is simple,
that is, 0 < λ1 < · · · < λ g , and the computation
of the sum λ1 + · · · + λ g by Eskin, Kontsevich and
Zorich [4]. The complete answer, however, is still
unknown.

Moduli spaces and Abelian di�erentials

The space Hg (k1, . . . , kn) can be viewed in a com-
pletely di�erent way if we realize that a translation
surface is the same thing as a Riemann surface with
an Abelian di�erential (i.e., a holomorphic di�erential
1-form).

Indeed, since every polygon lies in the complex plane,
it inherits the complex coordinate z , that can be
taken as a local coordinate on the translation surface.
It also induces the holomorphic 1-form dz on the
polygon. These local coordinates and holomorphic
1-forms glue nicely along the edges of the polygons:
the change of local coordinate from one chart to
the other is just a translation. A special treatment is
needed at the conical points. If zi is a conical point
with angle 2π(ki + 1), we can use w = (z − zi )1/(ki+1)

as the local coordinate at this point. The Abelian

di�erential dz = d (wki+1) has a zero of order ki at
the conical point. Thus we obtain a Riemann surface
C with n marked points x1, . . . , xn and an Abelian
di�erential α that has zeros of orders k1, . . . , kn at
x1, . . . , xn .

The sides of the polygons are now the periods of α,
either absolute or relative between two zeros. The
complete set of periods on a basis of the group
H1(C, {x1, . . . , xn},Z) forms a set of local coordi-
nates on Hg (k1, . . . , kn) that are called period coordi-
nates.

Denote by Mg ,n the moduli space of genus g Rie-
mann surfaces with n marked points. This space
is well-de�ned as soon as the Euler characteristic
2 − 2g − n of the surface punctured at the marked
points is negative. Its points parametrize all possible
complex structures on an oriented genus g surface
with n distinct marked numbered points, up to a
point-preserving isomorphism. For instance, M0,3
is a point, because all genus 0 Riemann surfaces
are isomorphic to CP1 and any three points can be
brought to 0, 1,∞ in a unique way by an isomor-
phism z 7→ (az + b)/(cz + d ) of CP1. Similarly, the
space M0,4 is isomorphic to CP1 \ {0, 1,∞}. Indeed,
by an isomorphism of CP1 we can bring four points
x1, x2, x3, x4 to 0, 1,∞, t , where

t =
x4 − x1
x2 − x1

:
x4 − x3
x2 − x3

∈ CP1 \ {0, 1,∞} =M0,4

is the cross-ratio of the four points. Further, the
space M1,1 is the modular �gure H/SL(2,Z), where
H is the upper-half plane. Indeed, any elliptic curve
can be represented as C/(Z + τZ) for τ ∈ H. The
SL(2,Z) action corresponds to replacing the basis
(1, τ) of the lattice Z+τZ with the basis (cτ+d, aτ+
b), and then re-scaling the lattice so as to bring
the �rst vector of the basis to 1, the second vector
becoming τ′ = (aτ + b)/(cτ + d ). The three simplest
moduli spaces described above are shown in Figure 5.

M0,3 M0,4 M1,1

Figure 5. Three simplest moduli spaces

The moduli space Mg ,n admits a natural compacti�-
cation Mg ,n called the Deligne-Mumford compacti�ca-
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tion. It is the moduli space of stable curves, that is,
nodal curves with n distinct smooth marked points
that have a �nite number of automorphisms. For
instance, M0,4 is CP1, where the three extra points
0, 1, ∞ correspond to the three stable curves in the
Figure 6.

1

4

2

3

1

3

2

4

1

2

3

4

Figure 6. The three nonsmooth stable curves of g = 0
with 4 marked points

The moduli space M1,1 is obtained from M1,1 by
adding one extra point. The corresponding curve is
CP1 with points x = 0 and x = ∞ identi�ed into a
node and marked point at x = 1, see Figure 7.

Figure 7. The unique nonsmooth stable curve of g = 1
with one marked point

The moduli spaceMg ,n is a smooth Deligne–Mumford
stack, or orbifold, of complex dimension 3g − 3 + n.
The points of Mg ,n \Mg ,n , that we add to compact-
ify the space, parametrize nonsmooth stable curves.
They form a normal crossings divisor in Mg ,n called
the boundary.

The Hodge bundle Eg ,n →Mg ,n is the rank g vector
bundle over the moduli space whose �ber over a
point p ∈Mg ,n is the space of Abelian di�erentials
on the corresponding curve Cp . The Hodge bundle
extends naturally to Mg ,n . Without going into details
of this, let us mention that an Abelian di�erential on
a stable curve is a meromorphic 1-form on each irre-
ducible component of the curve with at most simple
poles at the nodes of the curve, the residues at the
two branches of the node being opposite to each
other. With this de�nition it is easy to check that
the Abelian di�erentials form a g -dimensional vector
space on any stable curve of genus g . For instance,
on the genus 1 nodal curve obtained by identifying
x = 0 and x = ∞ on CP1, all Abelian di�erentials are
proportional to dx/x .

Once we have introduced the moduli space and
the Hodge bundle, we can remark that every space
Hg (k1, . . . , kn) of translation surfaces is naturally
embedded into the Hodge bundle Eg ,0. Speci�cally,

it is the locus of Abelian di�erentials with n zeros of
orders k1, . . . , kn . Actually, these spaces form a strat-
i�cation of the total space of the Hodge bundle over
Mg ,n . We can also view Hg (k1, . . . , kn) as a subspace
of Eg ,n if we decide to mark the zeros of the di�eren-
tial. Note that the projectivization PEg ,n is a compact
orbifold, and the projectivizations PHg (k1, . . . , kn)
are its closed sub-orbifolds. This new setting leads
to a new series of questions.

Question 5. Do the spaces Hg (k1, . . . , kn) ⊂ Eg ,n
have smooth closures?

The answer to this precise question is negative:
the closures are not even normal. It is conjectured,
however, that their normalizations are smooth. This
would provide a natural smooth compacti�cation for
every space Hg (k1, . . . , kn).

Question 6. What is the cohomology class Poincaré
dual to PHg (k1, . . . , kn) in PEg ,n? What is the push-
forward of this cohomology class to Mg ,n?

As the simplest example, consider the space H2(2) of
Abelian di�erentials with a double zero on a genus 2
curve. Every genus 2 curve C carries two linearly
independent Abelian di�erentials α and β , each of
which has two simple zeros or a double zero. Their
ratio α/β is a degree 2 map from C to CP1 or, in
more intrinsic terms, to the projectivization of the
dual to the space of Abelian di�erentials on C . This
shows that every genus 2 curve is hyperelliptic. The
degree 2 map described above has six rami�cation
points, called the Weierstraß points. Every Abelian
di�erential on C has either two zeros whose images
under the map α/β coincide, or a double zero at a
Weierstraß point. Thus the image of H2(2) in M2,1
is the divisor

{(C, x) ∈M2,1 | x is a Weierstraß point}.

The cohomology class Poincaré dual to this divisor
was �rst determined by Eisenbud and Harris [3]. It is
equal to

3ψ1−
6
5 − 1

10 .

So what do all these terms mean? The second and
the third terms are pictures representing boundary
divisors of M2,1. The second term is the bound-
ary divisor parametrizing curves with a separating
node; the third term is, similarly, the boundary divi-
sor parametrizing curves with a nonseparating node.
In both cases we take the Poincaré dual cohomology

4



i
i

“NLMS_480” — 2018/10/29 — 14:34 — page 5 — #5 i
i

i
i

i
i

classes of these divisors. The class ψ1 is the �rst
Chern class1 of a line bundle L1 over M2,1. The �ber
of this bundle over a point (C, x) ∈M2,1 is the cotan-
gent line toC at x . In general, there are n line bundles
L1, . . . ,Ln like that over Mg ,n , corresponding to the
n marked points.

A general method to compute the cohomology
classes Poincaré dual to PHg (k1, . . . , kn) in PEg ,n was
developed by Sauvaget [10], though it does not lead
to a closed formula.

A conjectural closed formula for the cohomology
class of the image of Hg (k1, . . . , kn) in Mg ,n was pro-
posed in the appendix of [8]. It involves the ψ-classes
introduced above, the classes of boundary strata,
while their coe�cients are some special values of
Bernoulli polynomials.

In conclusion, let us mention two developments that
connect the two views on the spaces of translation
surfaces.

The �rst one is a conjecture by Sauvaget relating the
cohomology class Poincaré dual to PHg (k1, . . . , kn)
to the volume of H≤1g (k1, . . . , kn). For n = 1 the
conjecture is proved in [11].

The second is a result by Eskin, Mirzakhani and
Mohamadi [5] that Anton Zorich, in his review
paper [13] called “the magical wand theorem”. It
states that any GL(2,Z)-invariant closed subset
of Hg (k1, . . . , kn) is an algebraic subvariety of Eg ,n
de�ned over Q; locally, in period coordinates it is
an a�ne subspace. This is the single most impor-
tant step towards the classi�cation of all GL(2,Z)-
invariant closed sets.
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1One of the ways to de�ne the �rst Chern class of a line bundle L is to construct a meromorphic section of L and take the divisor of its
zeros minus the divisor of its poles. The Poincaré dual cohomology class of the di�erence between these two divisors does not depend
on the section and represents the �rst Chern class of L.
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