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HEAT KERNEL OF SUPERCRITICAL NONLOCAL OPERATORS

WITH UNBOUNDED DRIFTS

STEPHANE MENOZZI AND XICHENG ZHANG

Abstract. Let α ∈ (0, 2) and d ∈ N. Consider the following SDE in Rd:

dXt = b(t,Xt)dt+ a(t,Xt−)dL
(α)
t , X0 = x,

where L(α) is a d-dimensional rotationally invariant α-stable process, b : R+×
Rd → Rd and a : R+×Rd → Rd⊗Rd are Hölder continuous functions in space,

with respective order β, γ ∈ (0, 1) such that (β ∧ γ) + α > 1, uniformly in t.

Here b may be unbounded. When a is bounded and uniformly elliptic, we show

that the unique solution Xt(x) of the above SDE admits a continuous density,

which enjoys sharp two-sided estimates. We also establish sharp upper-bound

for the logarithmic derivative. In particular, we cover the whole supercritical

range α ∈ (0, 1). Our proof is based on ad hoc parametrix expansions and

probabilistic techniques.

1. Introduction

Throughout this paper we fix α ∈ (0, 2). Let L(α) be a d-dimensional rotation-
ally invariant α-stable process. We consider the following stochastic differential
equation:

dXt = b(t,Xt)dt+ a(t,Xt−)dL
(α)
t , (1.1)

where b : R+×Rd → Rd and a : R+×Rd → Rd⊗Rd are Borel measurable functions
and satisfy that for some β ∈ ((1− α)+, 1] and κ0 > 1,

|b(t, 0)| 6 κ0, |b(t, x)− b(t, y)| 6 κ0(|x− y|β ∨ |x− y|), (Hβ
b )

and for some γ ∈ ((1− α)+, 1] and κ1 > 1,

κ−1
1 I 6 (aa∗)(t, x) 6 κ1I, |a(t, x)− a(t, y)| 6 κ1|x− y|γ , (Hγ

a)

where a∗ stands for the transpose of a and I is the identity matrix. Under (Hβ
b )

and (Hγ
a), it is well known that for each (s, x) ∈ R+ × Rd, there is a unique weak

solution Xs,t(x) to SDE (1.1) starting from x at time s (see e.g. [12, Theorem 1.1]),
and the generator of SDE (1.1) writes as

Lsf(x) := 1
2Lsf(x) + b(s, x) · ∇f(x), (1.2)

where Ls is given by

Lsf(x) =

∫
Rd
δ

(2)
f (x; a(s, x)z)

dz

|z|d+α
=

∫
Rd
δ

(2)
f (x; z)

κ(s, x, z)

|z|d+α
dz (1.3)
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with

δ
(2)
f (x; z) := f(x+ z) + f(x− z)− 2f(x) (1.4)

and

κ(s, x, z) := det(a−1(s, x))(|z|/|a−1(s, x)z|)d+α. (1.5)

Clearly, by (Hγ
a) we have for some κ̄1 > 1,

κ̄−1
1 6 κ(s, x, z) 6 κ̄1, |κ(s, x, z)− κ(s, y, z)| 6 κ̄1|x− y|γ . (1.6)

The operator Ls is called supercritical for α ∈ (0, 1) since in this case, the drift
term plays a dominant role. Namely, from the self-similarity properties of the

driving process L(α) in (1.1), it holds that for any s > 0, L
(α)
s

(law)
= s1/αL

(α)
1 and

for s ∈ (0, 1), α ∈ (0, 1), s1/α < s. This precisely means that the fluctuations
induced by the noise are smaller than the typical order of the drift term in (1.1).
For α ∈ (1, 2), the converse phenomenon happens. Since for s ∈ (0, 1), s1/α > s,
the fluctuations of the noise prevail in the SDE. From the operator viewpoint, Ls
plays a dominant role and we say that Ls is subcritical. For the remaining case
α = 1, the noise and drift both have the same typical order and the operator Ls is
called critical. Note that for α ∈ (0, 1), since z 7→ κ(s, x, z) is symmetric, we have

Lsf(x) = 2

∫
Rd
δ

(1)
f (x; z)

κ(s, x, z)dz

|z|d+α
,

where

δ
(1)
f (x; z) := f(x+ z)− f(x).

Let us now indicate that there is a quite large literature concerning stable driven
SDEs. We can first mention the seminal work of Kolokoltsov [20] who obtained, for
an SDE driven by a symmetric stable process with smooth non-degenerate spectral
measure, Lipschitz non-degenerate diffusion coefficient and non trivial Lipschitz
bounded drifts when α > 1, two sided estimates for the density of the type:

p(s, x, t, y) �C (t− s)−d/α
(

1 +
|x− y|

(t− s)1/α

)−(d+α)

, (1.7)

where C > 1 depends on the non-degeneracy and Lipschitz constants of the coeffi-
cients and the final considered time horizon T . Here and below, Q1 �C Q2 means
that C−1Q2 6 Q1 6 CQ2.

Going to weaker regularity of the coefficients in (1.1) then first leads to investigate
the well-posedness of the martingale problem associated with the formal generator
associated with the dynamics (1.1). In [1], Bass and Chen showed the weak well-
posedness for SDE (1.1) when a is only continuous and uniformly elliptic, b is

Lipschitz and L
(α)
t is cylindrical α-stable process. In the subcritical case we can

mention the work by Mikulevicius and Pragarauskas [26] who derived that weak
uniqueness holds for equation (1.1) for bounded Hölder coefficients when α > 1
and a non degenerate a. The martingale problem was in their framework studied
from some related Schauder estimates established on the associated Integro Partial
Differential Equation (IPDE).

In the super-critical case, the well-posedness of the martingale problem was
recently investigated by Kulik et al. [18], [21] (see also [10, 12]). In [21], the
authors consider SDEs of type (1.1) with bounded Hölder drift and non-degenerate
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scalar diffusion coefficients under the natural condition α+ β > 11 and obtain the
existence of the heat kernel, a corresponding two-sided estimate of the form (1.7)
as well as some estimates corresponding to the time derivative through parametrix
type expansions. Let us emphasize that in the super-critical regime, the time
derivative of the heat kernel roughly typically behaves as t−1 at time t whereas the
spatial gradient is then more singular, as it is expected to have typical behavior of
order t−1/α > t−1 for t ∈ (0, 1].

Concerning other results related to (possibly non symmetric) stable heat kernel
estimates we can refer e.g. to [6], [8], [9], [13] and for even more general stable like
processes to the recent works [19], [11]. Let us also mention that sharp gradient
estimates for driftless stable like operators have recently been obtained in [15].
We eventually refer to the work [22] and [7] for gradient estimates associated with
additive and multiplicative cylindrical noises in (1.1), respectively.

In the current work we face two difficulties, we want to establish gradient es-
timates for all α ∈ (0, 2) and for unbounded drifts. It is known, and somehow
intuitive, that for unbounded drifts the heat kernel bounds must reflect somehow
the transport induced by the drift. This was for instance observed for a Lipschitz
drift in [14] for degenerate Kolmogorov SDEs which can be viewed as ODEs per-
turbed on some components by a Brownian noise propagating through the whole
chain thanks to a weak type Hörmander condition on the drift. Before going further
let us also mention the work by Huang [17] which establishes two-sided estimates
for stable driven SDE with unbounded Lipschitz drift and α ∈ (1, 2), which then
reads as: for s < t and x, y ∈ Rd,

p(s, x, t, y) �C (t− s)−d/α
(

1 +
|θs,t(x)− y|
(t− s)1/α

)−(d+α)

, (1.8)

where θs,t(x) denotes the flow associated to the drift in (1.1). Namely,

θ̇s,t(x) = b(t, θs,t(x)), θs,s(x) = x.

In the non-degenerate Brownian case, the type of heat kernel estimate in [14]
has recently been extended to drifts satisfying a linear-growth without a priori
smoothness assumptions on the drift, see [25]. In the quoted work, under additional
Hölder continuity of the drift for the second derivatives, the estimates also extend
to the derivatives up to order two with the corresponding additional parabolic
singularity.

We here somehow follow the main line of that work but are faced with many
additional difficulties. In particular, a common feature to both the Gaussian SDEs
considered in [25] and the stable driven here is that we first need to establish
the gradient estimates for smooth coefficients, with constants depending on the
derivatives of the coefficients. In the current strictly stable framework we cannot
rely on the Malliavin calculus arguments of [25] because of integrability issues.
We thus establish here some direct bounds on the associated semi-group and its
derivatives when the coefficients are smooth which serve as a starting point to derive
the estimates concerning the logarithmic gradient of the density. This part is crucial
and quite intricate (see Theorem 4.1 below). Then, in a second time, exploiting
thoroughly the two-sided estimate, which holds independently of the smoothness

1it is indeed well known that from the seminal work of Tanaka et al. [28] that weak uniqueness

may fail if this condition is not met.
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of the coefficients, we establish that the gradient estimates hold also independently
of such a smoothness. We eventually conclude through a compactness argument.

To state our main result, we introduce the regularized flow associated with drift
b. For ε > 0, let bε(t, x) := b(t, ·) ∗ ρε(x), where ρε(x) = ε−dρ(x/ε) and ρ is a

smooth density function with support in the unit ball. Note that under (Hβ
b ),

|bε(t, x)− b(t, x)| 6 κ0ε
β , ε ∈ (0, 1), (1.9)

and

|∇bε(t, x)| =
∣∣∣∣∫

Rd
(b(t, y)− b(t, x))∇ρε(x− y)dy

∣∣∣∣ 6 κ0(εβ−1 + 1)‖∇ρ‖L1 . (1.10)

In particular, since α + β > 1, for any T > 0, there is a C > 0 such that for any
0 6 s < t 6 T ,∫ t

s

‖∇b|r−s|1/α(r, ·)‖∞dr 6 C
∫ t

s

(
|r − s|

β−1
α + 1

)
dr 6 C(t− s)

α+β−1
α . (1.11)

Thus, for fixed s > 0, the following ODE admits a unique solution θs,t(x):

θ̇s,t = b|t−s|1/α(t, θs,t), θs,s = x, t > 0. (1.12)

Note that for t > s, θs,t(x) denotes the forward solution of the above ODE, while
for t < s, it denotes the backward solution. We carefully mention that our main
results will be stated w.r.t. to the flow θ in (1.12) which is precisely associated with
a mollified drift with parameter corresponding to the typical scale of the driving
process of the SDE (1.1) at the current considered time.

For notational simplicity, we introduce the following parameter set

Θ := (κ0, κ1, d, α, β, γ). (1.13)

We also denote for T ∈ (0,∞],

DT := {(s, x, t, y) : 0 6 s < t < T, x, y ∈ Rd}.

We will frequently use from now on the notation .. For two quantities Q1 and Q2,
we mean by Q1 . Q2 that there exists C := C(T,Θ) such that Q1 6 CQ2. Other
possible dependencies for the constants will be explicitly specified. Moreover, we
also use the following notation

|D(α)f |(x) :=

∫
Rd

|δ(2)
f (x; z)|
|z|d+α

dz. (1.14)

The aim of this paper is to show the following result.

Theorem 1.1. Under (Hβ
b ) and (Hγ

a), for each 0 6 s < t < ∞ and x ∈ Rd,
Xs,t(x) admits a density p(s, x, t, y) (called heat kernel of Ls) that is continuous as
a function of x, y, and such that for each t > 0 and x, y ∈ Rd and Lebesgue almost
all s ∈ [0, t),

∂sp(s, x, t, y) = Lsp(s, ·, t, y)(x), p(s, x, t, ·)→ δ{x}(·) weakly as s ↑ t,

where δ{x}(dy) denotes the Dirac measure concentrated at x. Moreover, we have

(i) (Two-sides estimate) For any T > 0, there is a constant C1 = C1(T,Θ) > 1
such that for all (s, x, t, y) ∈ DT ,

p(s, x, t, y) �C1 (t− s)((t− s)1/α + |θs,t(x)− y|)−d−α, (1.15)

where θs,t(x) is defined by ODE (1.12).
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(ii) (Fractional derivative estimate) For any T > 0, there is a constant C2 =
C2(T,Θ) > 0 such that for all (s, x, t, y) ∈ DT ,

|D(α)p(s, ·, t, y)|(x) 6 C2((t− s)1/α + |θs,t(x)− y|)−d−α. (1.16)

(iii) (Gradient estimate in x) For any T > 0, there is a constant C3 =
C3(T,Θ) > 0 such that for all (s, x, t, y) ∈ DT ,

|∇x log p(s, x, t, y)| 6 C3(t− s)−1/α. (1.17)

Remark 1.2. If |b(t, x) − b(t, y)| 6 κ0|x − y|β for any x, y ∈ Rd with |x − y| 6 1

and |b(0, t)| 6 κ0 for all t > 0, then (Hβ
b ) holds. In particular, for c(x) being a

bounded β-Hölder continuous function, b(x) := x+ c(x) satisfies (Hβ
b ).

Remark 1.3. For α ∈ [1, 2), we can replace θs,t(x) in (1.15) by any regularized

flow θ
(ε)
s,t (x) defined in (2.1) below. When α ∈ (0, 1), we choose the regularizing

parameter ε = (t−s)1/α since we need to use ε to compensate the time singularity in
the supercritical case. For α ∈ (0, 1], since b is continuous in x, we can replace θs,t(x)

in (1.15) by any measurable Peano flow ϑs,t(x) of the ODE ϑ̇s,t(x) = b(t, ϑs,t(x)).

Remark 1.4. When b ≡ 0 and L(α) is a general α-stable-like process, it was proven
in [24] that the gradient estimate (1.17) holds for α ∈ ( 1

2 , 2). See also [11] for general
cases. It seems that our gradient estimate (1.17) is the first result for SDE (1.1)
driven by rotationally invariant α-stable process with α ∈ (0, 1

2 ].

The paper is organized as follows. We give in Section 2 some preliminary es-
timates needed for the main analysis. This concerns the mollified flow, some exit
probabilities, convolution inequalities and the density of the proxy process involved
in the parametrix (which has a dynamic similar to (1.1) with coefficient frozen along
a suitable deterministic flow). Section 3 is then devoted to the derivation of the

two-sided bound and the fractional derivative estimate under (Hβ
b ) and (Hγ

a) when
the coefficients are additionally supposed to be smooth. We specifically address
the gradient estimate under those same assumptions in Section 4. We eventually
present in Section 5 some compactness arguments to derive the results of Theorem

1.1 under the sole conditions (Hβ
b ), (Hγ

a).

2. Preliminaries

2.1. ODE flow. We first present some basic properties about the solution θs,t(x)
of the ODE (1.12). Since the drift coefficient therein depends on the initial time s,
the following flow property does no longer hold:

θr,t ◦ θs,r(x) = θs,t(x), s < r < t.

However, the above flow property holds for the following regularized ODE:

θ̇
(ε)
s,t (x) = bε(t, θ

(ε)
s,t (x)), θ(ε)

s,s(x) = x, (2.1)

for any fixed regularizing parameter ε > 0. Below we fix α ∈ (0, 2) and always

assume (Hβ
b ). The following lemma is easy.

Lemma 2.1. (i) For each ε > 0 and s, t > 0, x 7→ θ
(ε)
s,t (x) is a C1-diffeomorphism

and

(θ
(ε)
s,t )
−1(y) = θ

(ε)
t,s (y). (2.2)

Moreover, for all s, r, t > 0, it holds that

θ
(ε)
s,t (x) = θ

(ε)
r,t ◦ θ(ε)

s,r(x). (2.3)
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(ii) For all ε, ε′ > 0 and s, t > 0, x ∈ Rd, it holds that

|θ(ε′)
s,t (x)− θ(ε)

s,t (x)| 6 2κ0(ε ∨ ε′)β |t− s|eκ0‖∇ρ‖L1 ((ε∨ε′)β−1+1)|t−s|, (2.4)

(iii) For any T > 0, there is a constant C = C(T, d, κ0) > 0 such that for all
s, t ∈ [0, T ], x, y ∈ Rd and ε = |t− s|1/α,

|θ(ε)
s,t (x)− y| �C |x− θ(ε)

t,s (y)|, |θ(ε)
s,t (x)− θ(ε)

s,t (y)| �C |x− y|. (2.5)

Proof. (i) Note that by (2.1), for 0 6 s < t:

θ
(ε)
s,t (x) = x+

∫ t

s

b(r, θ(ε)
s,r(x))dr, θ

(ε)
t,s (y) = y −

∫ t

s

b(r, θ
(ε)
t,r (y))dr.

Let y = θ
(ε)
s,t (x). By the flow property, we have

y =
(
θ

(ε)
s,t

)−1
(y) +

∫ t

s

b(r, θ(ε)
s,r ◦

(
θ

(ε)
s,t

)−1
(y))dr = (θ

(ε)
s,t )
−1(y) +

∫ t

s

b(r,
(
θ

(ε)
r,t

)−1
(y))dr.

Since the ODE has a unique solution, we immediately have
(
θ

(ε)
s,t

)−1
(y) = θ

(ε)
t,s (y).

As for (2.3), it follows from (2.2) and the flow property.

(ii) Without loss of generality, we assume ε′ < ε. Since by (1.9) and (1.10),

|bε(t, x)− bε′(t, x)| 6 2κ0ε
β , ‖∇bε‖∞ 6 κ0‖∇ρ‖L1(εβ−1 + 1), (2.6)

by definition we have

|θ(ε′)
s,t (x)− θ(ε)

s,t (x)| 6
∫ t

s

|bε′(r, θ(ε′)
s,r (x))− bε(r, θ(ε′)

s,r (x))|dr

+

∫ t

s

|bε(r, θ(ε′)
s,r (x)− bε(r, θ(ε)

s,r(x)|dr

6 2κ0ε
β(t− s) + κ0‖∇ρ‖L1(εβ−1 + 1)

∫ t

s

|θ(ε′)
s,r (x)− θ(ε)

s,r(x)|dr.

Using Gronwall’s inequality, we obtain (2.4).

(iii) Without loss of generality, we assume 0 6 s < t 6 T . Note that for u ∈ [s, t],

|θ(ε)
s,u(x)− θ(ε)

s,u(y)| 6 |x− y|+
∫ u

s

‖∇bε(r, ·)‖∞|θ(ε)
s,r(x)− θ(ε)

s,r(y)|dr.

For ε = |t− s|1/α, it follows from the Gronwall inequality and (1.10) that

|θ(ε)
s,t (x)− θ(ε)

s,t (y)| 6 eκ0‖∇ρ‖L1 (|t−s|(β−1)/α+1)|t−s||x− y|.
We thus get (2.5) by (i) and symmetry. �

The following result is a consequence of the above lemma, which plays a crucial
role below.

Lemma 2.2. (i) For each s, t > 0, the map x 7→ θs,t(x), where (θs,u(x))u∈[s,t]

solves (1.12), is a C1-diffeomorphism and there is a constant C0 = C0(T,Θ) > 0
such that

|det(∇θ−1
s,t (x))− 1| 6 C0|t− s|(α+β−1)/α.

(ii) For any T > 0, there is a constant C1 = C1(T,Θ) > 1 such that for all
s, t ∈ [0, T ] and x, y ∈ Rd,

|t− s|1/α + |θs,t(x)− y| �C1
|t− s|1/α + |x− θt,s(y)|. (2.7)
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(iii) For any T > 0, there is a constant C2 = C2(T,Θ) > 0 such that for all
s, r, t ∈ [0, T ] and x ∈ Rd,

|θs,t(x)− θr,t ◦ θs,r(x)| 6 C2|(r ∨ s ∨ t)− (r ∧ s ∧ t)|1/α. (2.8)

Proof. (i) It is well known that

det(∇θs,t(x)) = 1 +

∫ t

s

divb|r−s|1/α(r, θs,r(x)) det(∇θs,r(x))dr.

Thus

det(∇θs,t(x)) = exp

{∫ t

s

divb|r−s|1/α(r, θs,r(x))dr

}
.

The desired estimate follows by (1.11) and ∇θ−1
s,t (x) = (∇θs,t)−1(θ−1

s,t (x)).

(ii) Fix s < t. For u ∈ [s, t], by definition we have

θs,u(x) = x+

∫ u

s

b|r−s|1/α(r, θs,r(x))dr,

and for ε = |t− s|1/α,

θ(ε)
s,u(x) = x+

∫ u

s

bε(r, θ
(ε)
s,r(x))dr.

By (2.6) with ε′ = |r − s|1/α and ε = |t− s|1/α, we have for all u > s,

|θs,u(x)− θ(ε)
s,u(x)| 6

∫ u

s

∣∣∣b|r−s|1/α(r, θs,r(x))− bε(r, θ(ε)
s,r(x))

∣∣∣dr
. |t− s|β/α+1 + (t− s)(β−1)/α

∫ u

s

|θs,r(x)− θ(ε)
s,r(x)|dr,

which yields by Gronwall’s inequality that

|θs,t(x)− θ(ε)
s,t (x)| . e(t−s)(β−1)/α+1

|t− s|β/α+1 . |t− s|1/α, (2.9)

where the second inequality is due to α+ β > 1. Thus, by (2.5) and (2.9), we have

|θs,t(x)− y| 6 |θ(ε)
s,t (x)− y|+ |θs,t(x)− θ(ε)

s,t (x)|

. |x− θ(ε)
s,t (y)|+ |t− s|1/α . |x− θt,s(y)|+ |t− s|1/α.

The right hand side inequality of (2.7) follows. By symmetry, we also have the left
hand side inequality.

(iii) Let s, r, t > 0 and ε := |r ∨ s ∨ t− r ∧ s ∧ t|1/α. By (2.3) we have

|θs,t(x)− θr,t ◦ θs,r(x)| 6 |θs,t(x)− θ(ε)
s,t (x)|+ |θ(ε)

r,t ◦ θ(ε)
s,r(x)− θ(ε)

r,t ◦ θs,r(x)|

+ |θ(ε)
r,t ◦ θs,r(x)− θr,t ◦ θs,r(x)|.

The desired estimate (2.8) again follows by (2.5) and (2.9). �

Remark 2.3. By (2.8), we have

|x− θt,s ◦ θs,t(x)| .C2
|t− s|1/α, (2.10)

and by (2.7),

|t− s|1/α + |x− y| �C1
|t− s|1/α + |θs,t(x)− θt,s(y)|. (2.11)
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Put it differently, we have an approximate flow property for the ODE (1.12).
Namely, the flow property holds up to an additive time factor which has the same
magnitude as the current typical time (self-similarity index of the driving process).

2.2. Probability estimates. We need the following master formula.

Lemma 2.4. (Lévy system) Let Xt := X0,t be any solution of SDE (1.1). For any
nonnegative measurable function f : R+ × Rd × Rd → R+ and finite stopping time
τ ,

E
∑

r∈(0,τ ]

f(r,Xr−,∆Xr) = E
∫ τ

0

∫
Rd
f(r,Xr−, z)

κ(r,Xr−, z)

|z|d+α
dzdr,

where ∆Xr := Xr −Xr− and κ(r, x, z) is defined in (1.5).

Proof. Let N(dt, dz) be the counting measure associated with L
(α)
t , i.e.,

N((0, t]× E) :=
∑
s∈[0,t]

1E(∆L(α)
s ), E ∈ B(Rd).

Noting that

∆Xt = a(t,Xt−)∆L
(α)
t ,

we have for any ε > 0,∑
r∈(0,τ ]

f(r,Xr−,∆Xr)1|∆Xr|>ε =

∫ τ

0

∫
|a(r,Xr−)z|>ε

f(r,Xr−, a(r,Xr−)z)N(dr, dz).

Since the compensated measure of N(dt, dz) is dzdt
|z|d+α , by the change of variable,

we have

E
∑

r∈(0,τ ]

f(r,Xr−,∆Xr)1|∆Xr|>ε = E
∫ τ

0

∫
|a(r,Xr−)z|>ε

f(r,Xr−, a(r,Xr−)z)
dzdr

|z|d+α

= E
∫ τ

0

∫
|z|>ε

f(r,Xr−, z)
κ(r,Xr−, z)

|z|d+α
dzdr,

where κ(r, x, z) is given in (1.5), which in turn gives the desired formula by the
monotone convergence theorem. �

Fix (s, x) ∈ R+ × Rd. For η > 0, define the stopping time

τηs,x := inf
{
t > s : |Xs,t(x)− θs,t(x)| > η

}
, (2.12)

which corresponds to the exit time of the diffusion from a tube around the de-
terministic ODE introduced in (1.12). We now give a tube estimate which roughly
says that, for a given spatial threshold η, the probability that the difference between
the process Xs,·(x) and the deterministic regularized flow θs,·(x) leaves the tube of
radius η before a certain fraction εηα of the corresponding typical time scale ηα is
somehow small.

Lemma 2.5. Under (Hβ
b ) and (H0

a), for any T > 0, there is an ε ∈ (0, 1) only

depending on T,Θ such that for all (s, x) ∈ R+ × Rd and η ∈ (0, T 1/α],

P(τηs,x < s+ εηα) 6 1/2.

Proof. Without loss of generality, we assume (s, x) = (0, 0), and for simplicity write

Xt := X0,t(0), θt := θ0,t(0), τ := τη0,0.
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Let f ∈ C2
b (Rd) with f(0) = 0 and f(x) = 1 for |x| > 1. For η > 0, set

fη(x) := f(x/η), u := εηα.

Note that

Yt := Xt − θt =

∫ t

0

(b(r,Xr)− br1/α(r, θr))dr +

∫ t

0

a(r,Xr−)dL(α)
r .

By Itô’s formula, we have

Efη(Yu∧τ ) = E
∫ u∧τ

0

[
(b(r,Xr)− br1/α(r, θr)) · ∇fη(Yr) + 1

2Lrfη(Yr)
]
dr.

Note that

|b(r,Xr)− br1/α(r, θr)| 6 |b(r,Xr)− b(r, θr)|+ |b(r, θr)− br1/α(r, θr)|

6
(Hβ

b ),(2.6)

κ0(|Xr − θr|β + |Xr − θr|) + κ0r
β/α.

Also, with the notation of (1.4),

|δ(2)
fη

(x; z)| 6 (|z|2‖∇2fη‖∞) ∧ (4‖fη‖∞) . (|z|2/η2) ∧ 1.

Hence,

Efη(Yu∧τ ) . E
∫ u

0

[
(|Yr|β + |Yr|+ rβ/α) ·

1|Yr|6η

η
+

∫
Rd

(|z|2/η2) ∧ 1

|z|d+α
dz

]
dr

.
∫ u

0

(ηβ−1 + 1 + rβ/αη−1 + η−α)dr

.
u=εηα

ε(ηα+β−1 + ηα + εβ/αηα+β−1 + 1) . ε(T 1+(β−1)/α + T + 1),

where the last inequality is due to α + β > 1 and η 6 T 1/α. Importantly, the
implicit constant is independent of ε. Note that

P(τ < u) = E1τ<u 6 Efη
(
Yu∧τ

)
. ε(T 1+(β−1)/α + T + 1).

The desired estimate follows by choosing ε small enough. �

The following lemma will be used to show the lower bound estimate of the
heat kernel. It gives a lower bound estimate for the probability that, considered
two points x, y in the off-diagonal regime between times s and t, namely such
that |x − θt,s(y)| > K(t − s)1/α, after a time ε(t − s) with ε as in Lemma 2.5,
the stochastic forward transport of x by the SDE, i.e. Xs,s+ε(t−s)(x) and the
backward deterministic transport of y by the regularized flow θt,s+ε(t−s)(y) belong

to a diagonal tube, with radius K(t− s)1/α, where again (t− s)1/α corresponds to
the current typical scale between times s and t.

Lemma 2.6. Suppose that (Hβ
b ) and (H0

a) hold. Let ε ∈ (0, 1) be as in Lemma
2.5. For any T > 0, there are constants c0 ∈ (0, 1),K > 1 depending only on T,Θ
such that for all 0 6 s < t 6 T and |x− θt,s(y)| > K(t− s)1/α,

P
(
|Xs,s+ε(t−s)(x)− θt,s+ε(t−s)(y)| 6 K(t− s)1/α

)
>

c0(t− s)1+d/α

|x− θt,s(y)|d+α
.

This Lemma will be crucial for the lower bound estimate of the heat kernel,
since it precisely gives the control needed for a chaining argument, see Theorem
3.5 below. As opposed to the continuous case, for SDEs driven by pure jump
processes, a single intermediate time, associated with a large jump, is needed for
the chaining. Roughly speaking between times s+ε(t−s) and t we will use the global
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diagonal bound of order (t− s)−d/α, since ε is meant to be small enough, and the
above Lemma controls the probability that the process enters a good neigborhood
of the backward flow to do so. The lower bound is the sought one in the sense
that when multiplying it by (t − s)−d/α exactly makes the expression in (1.15),
(t − s)((t − s)1/α + |θs,t(x) − y|)−(d+α) �C (t − s)|θs,t(x) − y|−(d+α) appear since

|x− θs,t(y)| > K(t− s)1/α (off-diagonal regime).

Proof of Lemma 2.6. Without loss of generality, we assume s = 0 and for simplicity,
we write

η := t1/α, u := εηα = εt, Xr(x) := X0,r(x).

Define a stopping time

σ := inf
{
r > 0 : |Xr(x)− θt,r(y)| 6 η

}
.

By the right continuity of r 7→ Xr(x)− θt,r(y), one sees that

|Xσ(x)− θt,σ(y)| 6 η, a.s.

In particular, for σ 6 u, by (2.11) and (2.8), there is a constant C0 = C0(Θ) > 1
such that

|Xu(x)− θt,u(y)| 6 |Xσ,u(Xσ(x))− θσ,u(Xσ(x))|
+ |θσ,u(Xσ(x))− θσ,u(θt,σ(y))|
+ |θσ,u(θt,σ(y))− θt,u(y)|
6 |Xσ,u(Xσ(x))− θσ,u(Xσ(x))|+ C0η.

Let K > C0 + 1. Then{
|Xσ,u(Xσ(x))− θσ,u(Xσ(x))| < η

}
⊂
{
|Xu(x)− θt,u(y)| 6 Kη

}
.

Thus, by the strong Markov property, we have

P(|Xu(x)− θt,u(y)| 6 Kη) > P(σ 6 u; |Xu(x)− θt,u(y)| 6 Kη)

> P (σ 6 u; |Xσ,u(Xσ(x))− θσ,u(Xσ(x))| < η)

> P(σ 6 u) inf
(s,z)∈[0,u]×Rd

P (|Xs,u(z)− θs,u(z)| < η) .

Let τηs,z be defined by (2.12). By Lemma 2.5 we have

P (|Xs,u(z)− θs,u(z)| > η) 6 P(τηs,z 6 u) 6 P(τηs,z 6 s+ εηα) 6 1/2, (2.13)

which implies that

inf
(s,z)∈[0,u]×Rd

P (|Xs,u(z)− θs,u(z)| < η) > 1/2

and

P(|Xu(x)− θt,u(y)| 6 Kη) > P(σ 6 u)/2. (2.14)

Next we need to obtain a lower bound estimate for P(σ 6 u). Let τ := τη0,x. For

r < u ∧ τ , by (2.7), there are constants c0, C1 > 0 such that

|Xr(x)− θt,r(y)| > |θ0,r(x)− θt,r(y)| − |Xr(x)− θ0,r(x)|

> c0|x− θt,0(y)| − C1t
1/α − η.

In particular, if we choose K > (C0 + 1)∨ ((C1 + 2)/c0), then since by assumption

|x− θt,0(y)| > Kη,
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it holds that for r < u ∧ τ ,

|Xr(x)− θt,r(y)| > c0Kη − (C1 + 1)η > η. (2.15)

Thus we have

1{|Xu∧τ (x)−θt,u∧τ (y)|6η} =
∑

r∈(0,u∧τ ]

1{|Xr(x)−θt,r(y)|6η},

i.e. we have at most one term in the above summand. We then derive from Lemma
2.4,

P{|Xu∧τ (x)− θt,u∧τ (y)| 6 η} = E
∑

r∈(0,u∧τ ]

1{|Xr(x)−θt,r(y)|6η}

= E
∫ u∧τ

0

∫
|z−θt,r(y)|6η

κ(r,Xr−(x), z −Xr−(x))

|z −Xr−(x)|d+α
dzdr.

On the other hand, noting that for r < u ∧ τ and |z − θt,r(y)| 6 η, we get

|z −Xr−(x)| 6 |z − θt,r(y)|+ |θt,r(y)− θ0,r(x)|+ |θ0,r(x)−Xr−(x)|

6 η + C2|x− θt,0(y)|+ C2t
1/α + η 6 C2|x− θt,0(y)|+ C3η,

using as well (2.7) for the last but one inequality. Since

{|Xu∧τ (x)− θt,u∧τ (y)| 6 η} ⊂ {σ 6 u},
we further have

P{σ 6 u} > P{|Xu∧τ (x)− θt,u∧τ (y)| 6 η}

> E
∫ u∧τ

0

∫
|z−θt,r(y)|6η

κ−1
1

(C2|x− θt,0(y)|+ C3η)d+α
dzdr

=
E(u ∧ τ)κ−1

1 ηd ·Vol(B1)

(C2|x− θt,0(y)|+ C3η)d+α
>

c0t
1+d/α

|x− θt,0(y)|d+α
, (2.16)

where the last step is due to |x− θt,0(y)| > Kη and

E(u ∧ τ) > uP(τ > u)
(2.13)

> u/2 = εt/2.

Combining (2.14) and (2.16), we obtain the desired estimate. �

2.3. Convolution inequalities. This Section is dedicated to some useful convo-
lution controls associated with functions that are known to be upper-bounds of the
isotropic stable density and its gradient, see e.g. [20], [4]. Though a bit technical,
these results will turn out to be crucial in order to control the parametrix series
representation of the density and its gradient (see e.g. equation (3.10), Lemma 3.3
and Theorem 3.5 below).

For η ∈ (0, 2) and (t, x) ∈ R+ × Rd, let

%(η)(x) := (1 + |x|)−d−η, %(η)(t, x) := t−d/α%(η)(t−1/αx).

For β > 0 and γ ∈ R, we introduce the following functions for later use

%
(η)
β,γ(t, x) := (1 ∧ (t1/α + |x|))βt(γ−η)/α%(η)(t, x) (2.17)

and

φ
(η)
β,γ(s, x, t, y) := %

(η)
β,γ(t− s, x− θt,s(y)). (2.18)

Note that

%
(η)
β,γ(t, x) =

(1 ∧ (t1/α + |x|))βtγ/α

(t1/α + |x|)d+η
.
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For T > 0, by (2.7) we have for (s, x, t, y) ∈ DT ,

φ
(η)
β,γ(s, x, t, y) � %(η)

β,γ(t− s, θs,t(x)− y), (2.19)

and for β ∈ [0, η],∫
Rd
φ

(η)
β,γ(s, x, t, y)dy .

∫
Rd
%

(η)
β,γ(t− s, y)dy . (t− s)

β+γ−η
α . (2.20)

For two functions f, g on D∞, we write

(f � g)r(s, x, t, y) :=

∫
Rd
f(s, x, r, z)g(r, z, t, y)dz

and

(f ⊗ g)(s, x, t, y) :=

∫ t

s

(f � g)r(s, x, t, y)dr.

The following lemma is the same as in [8, Lemma 2.1].

Lemma 2.7. Fix α ∈ (0, 2). For any β1, β2 ∈ [0, α4 ] and T > 0, there is a
C = C(T,Θ, β1, β2) > 0 such that for all γ1 > −β1 and γ2 > −β2, r ∈ [s, t] and
x, y ∈ Rd,(

φ
(α)
β1,0
� φ(α)

β2,0

)
r
(s, x, t, y) .C

(
(r − s)

β1−α
α + (t− r)

β2−α
α

)
φ

(α)
β1∧β2,0

(s, x, t, y)

(2.21)

and

φ
(α)
β1,γ1

⊗ φ(α)
β2,γ2

(s, x, t, y) .C B(β1+γ1
α , β2+γ2

α )φ
(α)
β1∧β2,β1+β2+γ1+γ2

(s, x, t, y), (2.22)

where B(γ, β) is the usual Beta function defined by

B(γ, β) :=

∫ 1

0

(1− s)γ−1sβ−1ds, γ, β > 0.

Proof. We follow the proof in [11]. Let `(u) := ud+α

1∧uβ . It is easy to see that, as soon
as d+ α > β, ` is increasing on R+ and for any λ > 1,

`(λu) 6 λd+α`(u). (2.23)

Hence,

`(u+ w) 6 `(2(u ∨ w)) 6 2d+α`(u ∨ w) 6 2d+α(`(u) + `(w)). (2.24)

Now for r ∈ [s, t] and x, y ∈ Rd, since

|t+ s|1/α + |x+ y| 6 21/α
(
|s|1/α + |x|+ |t|1/α + |y|

)
,

by (2.23) and (2.24), we have

`(|t+ s|1/α + |x+ y|) .C `(|s|1/α + |x|) + `(|t|1/α + |y|).

In particular,

((t+ s)1/α + |x+ y|)d+α

1 ∧ ((t+ s)1/α + |x+ y|)β1∧β2
.

(s1/α + |x|)d+α

1 ∧ (s1/α + |x|)β1
+

(t1/α + |y|)d+α

1 ∧ (t1/α + |y|)β2
.

Hence,

1 ∧ (s1/α + |x|)β1

(s1/α + |x|)d+α
× 1 ∧ (t1/α + |y|)β2

(t1/α + |y|)d+α

.C

[
1 ∧ (s1/α + |x|)β1

(s1/α + |x|)d+α
+

1 ∧ (t1/α + |y|)β2

(t1/α + |y|)d+α

]
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× 1 ∧ ((t+ s)1/α + |x+ y|)β1∧β2

((t+ s)1/α + |x+ y|)d+α
.

By this, the desired estimates follow by (2.19), (2.20) and (2.8). �

2.4. Density estimate. Let a : R+ → Rd⊗Rd be a measurable d×d-matrix-valued
function satisfying the non-degeneracy condition

κ−1
1 |ξ|2 6 |a(s)ξ|2 6 κ1|ξ|2. (2.25)

Fix α ∈ (0, 2) and consider the following jump process

Xa
s,t :=

∫ t

s

a(r)dWSr , (2.26)

where W is a d-dimensional Brownian motion and S is an α/2-stable subordinator
independent from W , both defined on some probability space (Ω,F ,P). Note that

Xa
s,t

(d)
= (t− s)1/αX ã

0,1,

where

ã(r) := a(s+ r(t− s)).
We have the following lemma that can be derived from the approach initially

used in [2] (see also [4]). We provide below a proof for completeness.

Lemma 2.8. For any 0 6 s < t < ∞, Xa
s,t has a smooth density pas,t(x) with the

scaling property

pas,t(x) = (t− s)−d/αpã0,1((t− s)−1/αx), (2.27)

which enjoys the following estimates:

pas,t(x) �C0
%

(α)
0,α(t− s, x), (2.28)

and for any j ∈ N,

|∇jpas,t(x)| .Cj %
(α+j)
0,α (t− s, x), (2.29)

where the constants only depend on κ1, d, α. Moreover, suppose that the integrand
in (2.26) writes as aξ(r) and smoothly depends on the parameter ξ ∈ Rd so that
(2.25) holds uniformly and supr,ξ |∇kξaξ(r)| < ∞ for any k ∈ N. Let p

aξ
s,t be the

density of the integral in (2.26) associated with aξ. Then we have for k ∈ N and
j ∈ N0,

|∇kξ∇jxp
aξ
s,t(x)| .Cj,k %

(α+j)
0,α (t− s, x). (2.30)

Importantly, this last bound means that, the differentiation w.r.t. the parameter ξ
appearing in the diffusion coefficient aξ does not yield an additional time singularity.

Proof. The two sided estimate (2.28) is well known (see e.g. [9]). We show (2.29).
Without loss of generality, we assume s = 0 and write

Xt :=

∫ t

0

a(r)dWSr .

Fix a càdlàg path `s. Consider the following Gaussian random variable:

X`
t :=

∫ t

0

a(r)dW`r .

It has a density

ga,`t (x) = (2π)−d/2
√

det
(
(Ca,`t )−1

)
exp{−〈

(
Ca,`t

)−1
x, x〉/2}, (2.31)
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where

Ca,`t :=

∫ t

0

(aa∗)(r)d`r.

From the non-degeneracy assumption (2.25), we have

〈
(
Ca,`t

)−1
x, x〉 � |x|2/`t, det

(
(Ca,`t )−1

)
� `−dt ,

and

|∇ga,`t (x)| . |x|/`t exp{−λ|x|2/`t}.
The density pa0,t(x) =: pat (x) of Xt is given by

pat (x) = Ega,St (x). (2.32)

The bound of (2.29) is direct from the Fourier representation of the density when
|x| 6 t1/α. On the other hand, for |x| > t1/α, from the global bound on the law of
the subordinator

µSt(dr) := P ◦ S−1
t (dr) . t r−α/2−1dr,

it readily follows that

|∇pat (x)| 6 E|∇ga,St (x)| . |x|E(S
−d/2−1
t exp{−λ|x|2/St}) < +∞.

Hence, from the bounded convergence theorem it holds that

|∇pat (x)| . |x|
∫ ∞

0

r−(d+2)/2e−λ|x|
2/rµSt(dr),

and the integral expression in the r.h.s. precisely corresponds to the stable heat
kernel in dimension d + 2 at time t and point x̃ ∈ Rd+2 s.t. |x̃| =

√
λ|x|. Thus,

from (2.28),

|∇pat (x)| . |x|t−(d+2)/α 1

(1 + t−1/α|x̃|)d+2+α

. t(t1/α + |x|)−d−α−1 = %
(α+1)
0,α (t, x).

The approach is similar for higher order derivatives. This is also the case for (2.30)
recalling that differentiating a Gaussian density w.r.t. the variance does not induce
additional singularities. The proof is complete. �

Remark 2.9. We would like to emphasize that the gradient estimate (2.29) plays
a crucial role for two-sided estimates due to the fact that for any β ∈ [0, 1],

|x|β%(α+1)
0,α (t, x) =

t|x|β

(t1/α + |x|)d+α+1
6

t(α+β−1)/α

(t1/α + |x|)d+α
= %

(α)
0,β+α−1(t, x).

In particular, for any β ∈ [0, 1],

|x− θt,s(x)|βφ(α+1)
0,α (s, x, t, y) 6 φ(α)

0,β+α−1(s, x, t, y). (2.33)

We carefully point out that the Gradient estimate (2.29), which remarkably em-
phasizes a concentration gain, does not hold for a general α-stable like process [15].
This is also why, for the driving process in (1.1), we limit ourselves to the rota-
tionally invariant, and thus symmetric, α-stable process and do not handle general
α-stable like processes.

The following lemma is taken from [9, Lemmas 3.2 and 3.3 ].
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Lemma 2.10. Under (2.25), there is a constant C = C(d, α, κ1) > 0 such that

|∇pas,t −∇pās,t|(x) .C ‖a− ā‖∞%(α+1)
0,α (t− s, x). (2.34)

Also,

|D(α)pas,t|(x) .C %
(α)
0,0 (t− s, x), (2.35)

and

|D(α)(pas,t − pās,t)|(x) .C ‖a− ā‖∞%(α)
0,0 (t− s, x). (2.36)

Moreover, we also have∫
Rd
|δ(2)
pas,t

(x1; z)− δ(2)
pas,t

(x2; z)| dz

|z|d+α

.C

(
|x1 − x2|
(t− s)1/α

∧ 1

)( ∑
i=1,2

%
(α)
0,0 (t− s, xi)

)
.

(2.37)

Proof. From the scaling property (2.27), it suffices to consider s = 0 and t = 1.
Note that

|δ(2)
pa1

(x; z)| = |pa1(x+ z) + pa1(x− z)− 2pa1(x)|

. (|z|2 ∧ 1)(%(α)(x+ z) + %(α)(x− z) + %(α)(x)).

By elementary calculations, one sees that∫
Rd
%(α)(x+ z)

(|z|2 ∧ 1)dz

|z|d+α
.C %(α)(x). (2.38)

Thus (2.35) follows. As for (2.36) and (2.37), they can be derived similarly to [11,
Lemma 2.7 and Lemma 2.8]. The statement (2.34) can also be derived from the
arguments developed therein. We omit the details. �

3. Heat kernel of nonlocal operators with smooth coefficients

In this section we assume that (Hβ
b ) and (Hγ

a) hold and additionally that for
any j ∈ N,

‖∇jb‖∞ + ‖∇ja‖∞ <∞. (3.1)

We shall denote

C :=
{

(b, a) : satisfying (Hβ
b ), (Hγ

a) with common bounds κ0, κ1 and (3.1).
}

Under (Hγ
a) and (3.1), for each (s, x) ∈ R+ × Rd, it is well known that there is

a unique solution (Xs,t(x))t>s to SDE (1.1), and Xs,t(x) has for t > s a density
p(s, x, t, y) so that (cf. [13, 7])

Ps,tf(x) := Ef(Xs,t(x)) =

∫
Rd
f(y)p(s, x, t, y)dy, f ∈ L∞(Rd).

The density is also a mild solution of the Kolmogorov equation in the sense that
for all ϕ ∈ C2

0 (Rd)

Ps,tϕ(x) = ϕ(x) +

∫ t

s

Ps,rLrϕ(x)dr. (3.2)

Fix (τ, ξ) ∈ [s, t]× Rd. Consider the following freezing process

X
(τ,ξ)
s,t := x+

∫ t

s

b|r−τ |1/α(r, θτ,r(ξ))dr +

∫ t

s

a(r, θτ,r(ξ))dL
(α)
r .
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By Lemma 2.8, the density of X
(τ,ξ)
s,t is given by

p̃(τ,ξ)(s, x, t, y) = pa
(τ,ξ)

s,t

(
x− y +

∫ t

s

b|r−τ |1/α(r, θτ,r(ξ))dr

)
, (3.3)

where a(τ,ξ)(r) := a(r, θτ,r(ξ)) and pa
(τ,ξ)

s,t is the density of
∫ t
s
a(τ,ξ)(r)dL

(α)
r given in

Lemma 2.8. In particular,

∂sp̃
(τ,ξ)(s, x, t, y) + L̃ (τ,ξ)

s p̃(τ,ξ)(s, ·, t, y)(x) = 0, (3.4)

where

L̃ (τ,ξ)
s f(x) := 1

2 L̃
(τ,ξ)
s f(x) + b|s−τ |1/α(s, θτ,s(ξ)) · ∇f(x)

and

L̃(τ,ξ)
s f(x) =

∫
Rd
δ

(2)
f (x; z)

κ(s, θτ,s(ξ), z)

|z|d+α
dz

with

κ(s, θs,τ (ξ), z) :=
det(a−1(s, θτ,s(ξ))|z|d+α

|a−1(s, θτ,s(ξ))z|d+α
.

For simplicity, we shall write

A (τ,ξ)
s f(x) := (Ls − L̃ (τ,ξ)

s )f(x) = K (τ,ξ)
s f(x) + B(τ,ξ)

s f(x), (3.5)

where

K (τ,ξ)
s f(x) := 1

2 (Ls − L̃(τ,ξ)
s )f(x),

and

B(τ,ξ)
s f(x) :=

(
b(s, x)− b|s−τ |1/α(s, θτ,s(ξ))

)
· ∇f(x).

Let us introduce the corresponding frozen semi-group:

P̃
(τ,ξ)
s,t f(x) := Ef(X

(τ,ξ)
s,t (x)). (3.6)

We have the following Duhamel type representation formula:

Lemma 3.1. For any f ∈ C∞b (Rd) and (τ, ξ) ∈ [s, t]× Rd, it holds that

Ps,tf = P̃
(τ,ξ)
s,t f +

∫ t

s

Ps,rA
(τ,ξ)
r P̃

(τ,ξ)
r,t fdr = P̃

(τ,ξ)
s,t f +

∫ t

s

P̃ (τ,ξ)
s,r A (τ,ξ)

r Pr,tfdr.

Proof. We drop for the proof the superscript (τ, ξ) for notational simplicity. Since
from (3.2) and (3.4),

∂tPs,tf = Ps,tLtf, ∂sP̃s,tf = −L̃sP̃s,tf,

by the chain rule, we have

∂r(Ps,rP̃r,tf) = Ps,rLrP̃r,tf − Ps,rL̃rP̃r,tf = Ps,rArP̃r,tf.

Integrating both sides from s to t with respect to r yields

Ps,tf = P̃s,tf +

∫ t

s

Ps,rArP̃r,tfdr.

Similarly, one can show that

P̃s,tf = Ps,tf −
∫ t

s

P̃s,rArPr,tfdr.

The proof is complete. �
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By Lemma 3.1, we have for each (τ, ξ) ∈ [s, t]× Rd and x, y ∈ Rd,

p(s, x, t, y) = p̃(τ,ξ)(s, x, t, y) +

∫ t

s

∫
Rd
p(s, x, r, z)A (τ,ξ)

r p̃(τ,ξ)(r, ·, t, y)(z)dzdr.

In particular, if we take (τ, ξ) = (t, y) and define

p0(s, x, t, y) := p̃(t,y)(s, x, t, y) = pa
(t,y)

s,t (x− θt,s(y)) , (3.7)

then we obtain the forward representation,

p(s, x, t, y) = p0(s, x, t, y) +

∫ t

s

∫
Rd
p(s, x, r, z)A (t,y)

r p0(r, ·, t, y)(z)dzdr. (3.8)

Let
q0(s, x, t, y) := A (t,y)

s p0(s, ·, t, y)(x),

and define recursively for n > 1,

qn := q0 ⊗ qn−1, q =

∞∑
n=0

qn. (3.9)

By iteration, we formally obtain from (3.8) and (3.9),

p = p0 + p⊗ q0 = p0 +

∞∑
n=0

p0 ⊗ qn = p0 + p0 ⊗ q. (3.10)

The following lemma is a direct consequence of (3.7), (2.35) and (2.29).

Lemma 3.2. For any α ∈ (0, 2) and j = 0, 1, · · · , we have

|∇jp0(s, ·, t, y)|(x) . φ(α+j)
0,α (s, x, t, y) (3.11)

and

|D(α)p0(s, ·, t, y)|(x) . φ(α)
0,0 (s, x, t, y). (3.12)

The following lemma corresponds to [8, Theorem 3.1].

Lemma 3.3. The series q =
∑∞
n=0 qn is absolutely convergent, and for each s < t,

(x, y) 7→ q(s, x, t, y) is equi-continuous in (b, a) ∈ C . Moreover, for any T > 0,
there is a constant C = C(T,Θ) > 0 such that for all (s, x, t, y) ∈ DT ,

|q(s, x, t, y)| .C
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y), (3.13)

where γ0 := (α+ β − 1) ∧ γ, and for any γ1 ∈ (0, γ0),

|q(s, x, t, y)− q(s, x′, t, y)| .C (|x− x′|γ1 ∧ 1)

×
((
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x′, t, y)

)
.

(3.14)

Proof. (i) First of all, note that by (1.6),

|κ(s, x, z)− κ(s, θt,s(y), z)| . (|x− θt,s(y)|γ ∧ 1)

and by (Hβ
b ),

|b(s, x)− b|s−t|1/α(s, θt,s(y))| . |x− θt,s(y)|β + |x− θt,s(y)|+ |t− s|β/α.
Thus, we have by (3.12),

|K (t,y)
s p0(s, ·, t, y)(x)| . φ(α)

γ,0(s, x, t, y),

and by (3.11) and (2.33),

|B(t,y)
s p0(s, ·, t, y)(x)| . φ(α)

0,α+β−1(s, x, t, y).
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So, for γ0 = γ ∧ (α+ β − 1),

|q0(s, x, t, y)| .
(
φ

(α)
γ,0 + φ

(α)
0,α+β−1

)
(s, x, t, y) .

(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y).

Suppose now that for some k ∈ N,

|qk−1(s, x, t, y)| 6 Ck
(
φ

(α)
γ0,(k−1)γ0

+ φ
(α)
0,kγ0

)
(s, x, t, y).

By Lemma 2.7, we have

|qk(s, x, t, y)| 6 CCk
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
⊗
(
φ

(α)
γ0,(k−1)γ0

+ φ
(α)
0,kγ0

)
(s, x, t, y)

6 C0CkB(γ0α ,
kγ0
α )
(
φ

(α)
γ0,kγ0

+ φ
(α)
0,(k+1)γ0

)
(s, x, t, y). (3.15)

Hence,
Ck+1 = C0CkB(γ0α ,

kγ0
α ).

From the relation B(γ, β) = Γ(γ)Γ(β)
Γ(γ+β) , where Γ is the usual Gamma function, we

obtain

Ck = Ck0

k−1∏
i=1

B(γ0α ,
(k−1)γ0

α ) =
(C0Γ(γ0/α))k

Γ(kγ0/α)
,

with the usual convention that
∏0
i=1 = 1. Thus

∞∑
k=0

|qk(s, x, t, y)| 6
∞∑
k=0

(C0Γ(γ0/α))k

Γ(kγ0/α)

(
φ

(α)
γ0,kγ0

+ φ
(α)
0,(k+1)γ0

)
(s, x, t, y)

6
∞∑
k=0

(C0Γ(γ0/α))k

Γ(kγ0/α)

(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y).

This gives (3.13).
(ii) For fixed s < t, by Lemma 2.8 and the definition of q0, one sees that (x, y) 7→
q0(s, x, t, y) is equi-continuous in (b, a) ∈ C . Furthermore, it follows by induction
that, for each k ∈ N, (x, y) 7→ qk(s, x, t, y) is also equi-continuous in (b, a) ∈ C .
Hence, (x, y) 7→ q(s, x, t, y) is equi-continuous in (b, a) ∈ C .

(iii) If |x− x′| > (t− s)1/α, then we have

|q0(s, x, t, y)| . (|x− x′|γ1 ∧ 1)(t− s)−γ1/α
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

= (|x− x′|γ1 ∧ 1)
(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y).

Next we assume |x−x′| 6 (t−s)1/α. In this case, it is easy to see from (2.17)-(2.18),
that

φ
(η)
0,0(s, x, t, y) � φ(η)

0,0(s, x′, t, y), η > 0. (3.16)

By (2.35), (2.37) and (3.16), we have

|K (t,y)
s p0(s, ·, t, y)(x)−K (t,y)

s p0(s, ·, t, y)(x′)|

6 ‖κ(·, x, ·)− κ(·, x′, ·)‖∞
∫
Rd
|δ(2)
p0(s,·,t,y)(x; z)| dz

|z|d+α

+ ‖κ(·, x, ·)− κ(·, θt,s(y), ·)‖∞

×
∫
Rd
|δ(2)
p0(s,·,t,y)(x; z)− δ(2)

p0(s,·,t,y)(x
′; z)| dz

|z|d+α

6 (|x− x′|γ ∧ 1)φ
(α)
0,0 (s, x, t, y) + (|x− θt,s(y)|γ ∧ 1)

×
(
|x− x′|

(t− s)1/α
∧ 1

)(
φ

(α)
0,0 (s, x, t, y) + φ

(α)
0,0 (s, x′, t, y)

)
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. (|x− x′|γ1 ∧ 1)
(
φ

(α)
0,γ−γ1(s, x, t, y) + φ

(α)
γ,−γ1(s, x, t, y)

)
.

Moreover, by (3.11), (3.16) and (2.33), we also have

|B(t,y)
s p0(s, ·, t, y)(x)−B(t,y)

s p0(s, ·, t, y)(x′)| 6 |b(s, x)− b(s, x′)| · |∇p0(s, ·, t, y)|(x′)
+
∣∣b(s, x)− b|s−t|1/α(s, θt,s(y))

∣∣ · |∇p0(s, ·, t, y)(x′)−∇p0(s, ·, t, y)(x)|

. |x− x′|βφ(α+1)
0,α (s, x, t, y) + (|x− θt,s(y)|β + |t− s|β/α)|x− x′|φ(α+2)

0,α (s, x, t, y)

. (|x− x′|γ1 ∧ 1)φ
(α)
0,α+β−1−γ1(s, x, t, y).

Combining the above calculations and recalling γ0 = γ ∧ (α+ β − 1), we obtain

|q0(s, x, t, y)− q0(s, x′, t, y)| .C (|x− x′|γ1 ∧ 1)

×
((
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x′, t, y)

)
.

Using this last estimate, equation (3.14) follows from the same iterative argument
as in (i). �

Remark 3.4. This lemma allows to iterate the representation (3.8) which leads to
the representation (3.10) of the density.

We now aim at proving the following a priori estimate about p(s, x, t, y).

Theorem 3.5. Under (Hγ
a), (Hβ

b ) and (3.1), for each 0 6 s < t < ∞, Xs,t(x)
admits a density p(s, x, t, y) that is equi-continuous in (b, a) ∈ C as a function of
x, y ∈ Rd, and there is a constant C = C(T,Θ) > 0 so that for all (s, x, t, y) ∈ DT ,

p(s, x, t, y) �C φ
(α)
0,α(s, x, t, y). (3.17)

Proof. Note that by (3.7), (2.28) and (2.7),

p0(s, x, t, y) �C φ
(α)
0,α(s, x, t, y).

By Lemma 2.7, we have

|p0 ⊗ q|(s, x, t, y) .C (φ
(α)
0,α+γ0

+ φ(α)
γ0,α)(s, x, t, y).

The upper bound follows from (3.10).
Next we use Lemma 2.6 to show the lower bound estimate. Let K be as in

Lemma 2.6. Suppose that |x− θt,s(y)| 6 2K(t− s)1/α. Then we have

p(s, x, t, y) > p0(s, x, t, y)− |p0 ⊗ q(s, x, t, y)|

> c0φ
(α)
0,α(s, x, t, y)− (φ

(α)
0,α+γ0

+ φ(α)
γ0,α)(s, x, t, y)

> (c0 − C1(t− s)
γ0
α )φ

(α)
0,α(s, x, t, y).

In particular, if t− s 6 ` with ` small enough and |x− θt,s(y)| 6 2K(t− s)1/α, then

p(s, x, t, y) > c0
2 φ

(α)
0,α(s, x, t, y) > c1(t− s)−d/α. (3.18)

Next we prove the above estimate still holds for

|x− θt,s(y)| > 2K(t− s)1/α.

Let ε ∈ (0, 1/2) be as in Lemma 2.6 and small enough so that 2(1− ε)1/α > 1. Let

r := s+ ε(t− s), B := {z : |z − θt,r(y)| 6 2K(t− r)1/α}.

Since 2(1− ε)1/α > 1, we clearly have

B ⊃ {z : |z − θt,r(y)| 6 K(t− s)1/α} =: B′.
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Now from the Chapman-Kolmogorov equation, we have for t− s 6 `,

p(s, x, t, y) =

∫
Rd
p(s, x, r, z)p(r, z, t, y)dz

>
∫
B

p(s, x, r, z)p(r, z, t, y)dz

> inf
z∈B

p(r, z, t, y)

∫
B

p(s, x, r, z)dz

(3.18)

> c1(t− r)−d/αP(Xs,r(x) ∈ B)

> c2(t− s)−d/αP(Xs,r(x) ∈ B′)

> c3(t− s)|x− θt,s(y)|−d−α,

where the last step is due to Lemma 2.6. Thus we obtain that for some c4 > 0 and
all s, t ∈ [0, T ],

p(s, x, t, y) > c4φ
(α)
0,α(s, x, t, y), t− s 6 `, x, y ∈ Rd.

For t−s > `, the bound follows iteratively from the Chapman-Kolmogorov equation.
The proof is complete. �

For the fractional derivative estimates, we need the following lemma.

Lemma 3.6. For s < t, let hs,t(x) :=
∫
Rd p0(s, x, t, y)dy. We have for some C > 0,

|D(α)hs,t|(x) .C (t− s)γ0/α−1, γ0 := γ ∧ (α+ β − 1).

Proof. By definition we have

|D(α)hs,t|(x) =

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

p̃(t,y)(s,·,t,y)
(x; z)dy

∣∣∣∣ dz

|z|d+α

=

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(t,y)
s,t

(x− θt,s(y); z)dy

∣∣∣∣ dz

|z|d+α

6
∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(t,y)
s,t −pa(s,x)s,t

(x− θt,s(y); z)dy

∣∣∣∣ dz

|z|d+α

+

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− θt,s(y); z)dy

∣∣∣∣ dz

|z|d+α
=: I1 + I2.

For I1, noting that by (Hγ
a) and Lemma 2.2,

|a(r, θs,r(x))− a(r, θt,r(y))| . 1 ∧ |x− θt,s(y)|γ + |t− s|γ/α,

we have

I1 6
∫
Rd
|D(α)(pa

(t,y)

s,t − pa
(s,x)

s,t )|(x− θt,s(y))dy

(2.36)

.
∫
Rd

(
φ

(α)
γ,0 + φ

(α)
0,γ

)
(s, x, t, y)dy

(2.20)

. (t− s)γ/α−1.

For I2, by the change of variable we have

I2 =

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− y; z) det(∇θ−1
s,t (y))dy

∣∣∣∣ dz

|z|d+α

=

∫
Rd

∣∣∣∣∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− y; z)
(

det(∇θ−1
s,t (y))− 1

)
dy

∣∣∣∣ dz

|z|d+α
,



HEAT KERNEL OF SUPERCRITICAL SDES WITH UNBOUNDED DRIFTS 21

where we have used that∫
Rd
pa

(s,x)

s,t (x− y)dy = 1⇒
∫
Rd
δ

(2)

pa
(s,x)
s,t

(x− y)dy = 0.

Thus by (i) of Lemma 2.2 and (2.35), we have

I2 . (t− s)
β+α−1
α

∫
Rd
|D(α)pa

(s,x)

s,t |(x− y)dy

. (t− s)
β+α−1
α

∫
Rd
%

(α)
0,0 (t− s, x− y)dy

. (t− s)
β−1
α = (t− s)−1+α+β−1

α .

The proof is complete. �

Lemma 3.7. (Fractional derivative estimate) For any T > 0, we have for some
C = C(T,Θ) > 0,

|D(α)p(s, ·, t, y)|(x) .C φ
(α)
0,0 (s, x, t, y).

Proof. Let u = (s+ t)/2. By (3.10) and the definition of δ(2), we have

δ
(2)
p(s,·,t,y)(x; z̄) = δ

(2)
p0(s,·,t,y)(x; z̄) +

∫ t

s

∫
Rd
δ

(2)
p0(s,·,r,z)(x; z̄)q(r, z, t, y)dzdr

= δ
(2)
p0(s,·,t,y)(x; z̄) +

∫ u

s

(∫
Rd
δ

(2)
p0(s,·,r,z)(x; z̄)dz

)
q(r, θs,r(x), t, y)dr

+

∫ u

s

∫
Rd
δ

(2)
p0(s,·,r,z)(x; z̄)(q(r, z, t, y)− q(r, θs,r(x), t, y))dzdr

+

∫ t

u

∫
Rd
δ

(2)
p0(s,·,r,z)(x; z̄)q(r, z, t, y)dzdr.

With the notations of Lemma 3.6, set hs,r(x) =
∫
Rd p0(s, x, r, z)dz. By (1.14) and

the Fubini theorem, we have

|D(α)p(s, ·, t, y)|(x) 6 |D(α)p0(s, ·, t, y)|(x) +

∫ u

s

|D(α)hs,r|(x)|q(r, θs,r(x), t, y)|dr

+

∫ u

s

∫
Rd
|D(α)p0(s, ·, r, z)|(x)|q(r, z, t, y)− q(r, θs,r(x), t, y)|dzdr

+

∫ t

u

∫
Rd
|D(α)p0(s, ·, r, z)|(x)|q(r, z, t, y)|dzdr

=: I1(x) + I2(x) + I3(x) + I4(x).

For I1, by (3.12) we have

I1(x) . φ(α)
0,0 (s, x, t, y).

Recall

γ0=(α+ β − 1) ∧ γ, γ1 ∈ (0, γ0).

For I2, by Lemma 3.6, (3.13), (2.19) and (2.8), we have

I2(x) .
∫ u

s

(r − s)
γ0
α −1

(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(r, θs,r(x), t, y)dr

.

(∫ u

s

(r − s)
γ0
α −1dr

)(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

.
(
φ(α)
γ0,γ0 + φ

(α)
0,2γ0

)
(s, x, t, y).
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For I3, by (3.12), (3.14) and (2.22), we have

I3(x) .
∫ u

s

∫
Rd
φ

(α)
γ1,0

(s, x, r, z)
(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, z, t, y)dzdr

+

∫ u

s

∫
Rd
φ

(α)
γ1,0

(s, x, r, z)dz
(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y)dr

.
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y).

For I4, by (3.12), (3.13) and (2.21), we have

I4(x) .
∫ t

u

(
φ

(α)
0,0 � (φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
)
r
(s, x, t, y)dr . φ(α)

0,0 (s, x, t, y).

Combining the above estimates, we complete the proof. �

4. A priori gradient estimates

The aim of this section is to show the following a priori gradient estimate.

Theorem 4.1. Under (Hβ
b ), (Hγ

a) and (3.1), for any T > 0, there is a constant

C = C(T,Θ) > 0 such that for all f ∈ Bb(Rd), 0 6 s < t 6 T and x ∈ Rd,

|∇Ps,tf(x)| .C (t− s)−1/αPs,t|f |(x). (4.1)

Moreover, x 7→ ∇Ps,tf(x) is equi-continuous in (b, a) ∈ C .

We shall prove this theorem for α ∈ [1, 2) and α ∈ (0, 1) separately by different
methods.

4.1. Critical and Subcritical cases: α ∈ [1, 2). In this subsection we start from
the series expansion (3.10) for the density to derive the estimate

|∇xp(s, x, t, y)| .C3
φ

(α)
0,α−1(s, x, t, y), (4.2)

when (Hβ
b ), (Hγ

a) and (3.1) are in force and α ∈ [1, 2). This precisely gives (4.1).
We recall that, with the notations of Section 3:

p(s, x, t, y) = p0(s, x, t, y) + (p0 ⊗ q)(s, x, t, y).

Therefore, for u = s+t
2 and ξ = θs,r(x),

∇xp(s, x, t, y) = ∇xp0(s, x, t, y) +

∫ t

u

∫
Rd
∇xp0(s, x, r, z)q(r, z, t, y)dzdr

+

∫ u

s

∫
Rd

(∇xp0 −∇xp̃(r,ξ))(s, x, r, z)q(r, z, t, y)dzdr

+

∫ u

s

∫
Rd
∇xp̃(r,ξ)(s, x, r, z)(q(r, z, t, y)− q(r, ξ, t, y))dzdr

=: G1(s, x, t, y) +G2(s, x, t, y) +G3(s, x, t, y) +G4(s, x, t, y),

where for the last term, we have used precisely the cancellation property∫
Rd
∇xp̃(r,ξ)(s, x, r, z)dz = 0.

For G1, by (3.11) we clearly have

|G1(s, x, t, y)| . φ(α+1)
0,α (s, x, t, y) 6 φ(α)

0,α−1(s, x, t, y),
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using Remark 2.9, equation (2.33), for the last inequality. For G2, by (3.11), (3.13)
and (2.22), we have

|G2(s, x, t, y)| 6
∫ t

u

∫
Rd
φ

(α+1)
0,α (s, x, r, z)|q(r, z, t, y)|dzdr

. (t− s)− 1
αφ

(α)
0,α ⊗

(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

. (t− s)− 1
αφ

(α)
0,α+γ0

(s, x, t, y) = φ
(α)
0,α+γ0−1(s, x, t, y).

For G3, noting that by (3.3),

∇xp0(s, x, r, z) = ∇xpa
(r,z)

s,r

(
x− z +

∫ r

s

b|r′−r|1/α(r′, θr,r′(z))dr
′
)
,

∇xp̃(r,ξ)(s, x, r, z) = ∇xpa
(r,ξ)

s,r

(
x− z +

∫ r

s

b|r′−r|1/α(r′, θr,r′(ξ))dr
′
)
,

by (2.34), (2.29), (1.11) and (2.5), one finds that

|∇xp0 −∇xp̃(r,ξ)|(s, x, r, z) . φ(α+1)
0,α (s, x, r, z)(1 ∧ |z − θs,r(x)|γ)

+ φ
(α+2)
0,α (s, x, r, z)

(
|z − θs,r(x)|β + (r − s)

β
α

)
(r − s)

.
(2.33)

(
φ

(α)
0,α+γ−1 + φ

(α)
0,2α+β−2

)
(s, x, r, z)

. φ(α)
0,α−1+γ0

(s, x, r, z), (4.3)

where γ0 = γ ∧ (α+ β − 1). Therefore, due to α ∈ [1, 2), by (2.22),

|G3(s, x, t, y)| . φ(α)
0,α−1+γ0

⊗
(
φ

(α)
γ0,0

+ φ
(α)
0,γ0

)
(s, x, t, y)

. φ(α)
0,α−1+2γ0

(s, x, t, y) 6 φ(α)
0,α−1(s, x, t, y). (4.4)

For G4, by (3.3), (2.29) and (3.14) we have for γ1 ∈ (0, γ0),

|G4(s, x, t, y)| 6
∫ u

s

∫
Rd
|∇xp̃(r,ξ)(s, x, r, z)| |(q(r, z, t, y)− q(r, ξ, t, y))|dzdr

.
∫ u

s

dr

∫
Rd

dzφ
(α)
0,α−1(s, x, r, z)(1 ∧ |z − ξ|γ1)

×
[(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, z, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, ξ, t, y)

]
.

Since t− r � t− s for r ∈ [s, u] and ξ = θs,r(x), from (2.7) in Lemma 2.2, it holds(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, ξ, t, y) .

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y).

Thus by (2.22), we eventually have

|G4(s, x, t, y)| .
∫ u

s

dr

∫
Rd

dzφ
(α)
0,α+γ1−1(s, x, r, z)

×
[(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(r, z, t, y) +

(
φ

(α)
γ0,−γ1 + φ

(α)
0,γ0−γ1

)
(s, x, t, y)

]
.
(
φ

(α)
0,γ0−γ1 + φ

(α)
γ0,α−1

)
(s, x, t, y).

Combining the above calculations, we obtain (4.2). Moreover, by the dominated
convergence theorem, from the above calculations, it is easy to see that

lim
x→x0

sup
(b,a)∈C

|Gb,ai (s, x, t, y)−Gb,ai (s, x0, t, y)| = 0, i = 1, 2, 3, 4,
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where Gb,ai are defined as above through the coefficients b, a. For instance,

lim
x→x0

sup
(b,a)∈C

|Gb,a2 (s, x, t, y)−Gb,a2 (s, x0, t, y)|

6
∫ t

u

lim
x→x0

sup
(b,a)∈C

∫
Rd
|∇xp0(s, x, r, z)−∇xp0(s, x0, r, z)| |q(r, z, t, y)|dzdr,

and for each r ∈ (u, t), by (3.13) and (3.11),

lim
x→x0

sup
(b,a)∈C

∫
Rd
|∇xp0(s, x, r, z)−∇xp0(s, x0, r, z)| |q(r, z, t, y)|dz

.
∫
Rd

lim
x→x0

sup
(b,a)∈C

|∇xp0(s, x, r, z)−∇xp0(s, x0, r, z)|φ(α)
0,0 (r, z, t, y)dz = 0.

In particular, Theorem 4.1 holds for α ∈ [1, 2).

Remark 4.2. We remark that for α ∈ (0, 1), under α+β > 1, the second inequality
in (4.4) may not hold since α+γ0−1 may be less than zero. This is also the reason
that we have to make a different treatment for supercritical case. Let us mention
that this proof anyhow works even in the super-critical case under the most stringent
condition α + β

2 > 1. Eventually, we also point out that the previous arguments
can be simplified if α ∈ (1, 2) for which the full parametrix expansion (3.10) of the
density can actually be directly differentiated since the induced singularity in time
remains integrable.

4.2. Supercritical case α ∈ (0, 1). The following gradient estimate comes in [29].

Theorem 4.3. (Gradient estimate) Under (Hβ
b ), (Hγ

a) and (3.1), for any T > 0,

there is a constant C > 0 such that for all f ∈ Bb(Rd) and 0 6 s < t 6 T ,

|∇Ps,tf(x)| .C (t− s)−1/α‖f‖∞,
where the constant C may depend on ‖∇b‖∞ and ‖∇a‖∞.

Below we fix s < t and x ∈ Rd and divide the proof into six steps.
(Step 1). For notational simplicity, we shall write for r ∈ [s, t],

Ãr := A (s,x)
r = K (s,x)

r + B(s,x)
r =: K̃r + B̃r,

and

h(s, x, t, y) :=
(
∇p̃(τ,ξ)(s, ·, t, y)(x)

)
(τ,ξ)=(s,x)

(3.3)
= −∇yg(s,x)

s,t (θs,t(x)− y), (4.5)

and for a function f ,

Hs,tf(x) :=

∫
Rd
h(s, x, t, y)f(y)dy.

By Lemma 3.3 we have

∇Ps,tf(x) = ∇P̃ (τ,ξ)
s,t f(x) +

∫ t

s

∇P̃ (τ,ξ)
s,t A (τ,ξ)

r Pr,tf(x)dr.

Taking (τ, ξ) = (s, x) and using the above notations, we can write

∇Ps,tf(x) = Hs,tf(x) +

∫ t

s

Hs,rÃrPr,tf(x)dr = Hs,tf(x) +

4∑
i=1

I
(i)
s,tf(x), (4.6)

where for u := s+t
2 ,

I
(1)
s,t f(x) :=

∫ u

s

Hs,rK̃rPr,tf(x)dr,
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I
(2)
s,t f(x) :=

∫ u

s

Hs,rB̃rPr,tf(x)dr,

I
(3)
s,t f(x) :=

∫ t

u

Hs,rK̃rPr,tf(x)dr,

I
(4)
s,t f(x) :=

∫ t

u

Hs,rB̃rPr,tf(x)dr.

(Step 2). Note that for j∈ N,

|∇jyh(s, x, t, y)| (4.5)
= |∇j+1

y g
(s,x)
s,t (θs,t(x)− y)|

(2.29)

. φ
(α+j+1)
0,α (s, x, t, y). (4.7)

Thus we have

|Hs,tf(x)| .
∫
Rd
φ

(α+1)
0,α (s, x, t, y)|f(y)|dy

6 (t− s)− 1
α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy.

For I
(1)
s,t f(x), noting that by Lemma 3.7,

|K̃rPr,tf(z)| . (1 ∧ |z − θs,r(x)|γ)|D(α)Pr,tf |(z)

. (1 ∧ |z − θs,r(x)|γ)

∫
Rd
φ

(α)
0,0 (r, z, t, y)|f(y)|dy,

and using (2.33) and Lemma 2.7, we have

|I(1)
s,t f(x)|

(4.7)

.
∫ u

s

∫
Rd
φ(α+1)
γ,α (s, x, r, z)

∫
Rd
φ

(α)
0,0 (r, z, t, y)|f(y)|dydzdr

(2.33)

.
∫ u

s

∫
Rd

(
φ

(α)
0,α+γ−1 � φ

(α)
0,0

)
r
(s, x, t, y)|f(y)|dydr

(2.21)

.
∫
Rd
φ

(α)
0,α+γ−1(s, x, t, y)|f(y)|dy.

For I
(2)
s,t f(x), noting that

|B̃rPr,tf(z)| . (|θs,r(x)− z|β + |θs,r(x)− z|+ (r − s)β/α)|∇Pr,tf(z)|,
using (4.7) and (2.33), we have

|I(2)
s,t f(x)| .

∫ u

s

∫
Rd
φ

(α)
0,α+β−1(s, x, r, z)|∇Pr,tf(z)|dzdr

. (t− s)− 1
α

∫ t

s

∫
Rd
φ

(α)
0,α+β−1(s, x, r, z)(t− r) 1

α |∇Pr,tf(z)|dzdr.

(Step 3). In this step we treat the hard term I
(3)
s,t f(x). Let ε := (t− r)1/α and

κε(r, z, z
′) := κ(r, ·, z′) ∗ ρε(z), κ̄ε(r, z, z

′) := κε(r, z, z
′)− κε(r, θr,s(x), z′)

and

K̃ (ε)
r f(z) = 2

∫
Rd
δ

(1)
f (z; z′)

κ̄ε(r, z, z
′)

|z′|d+α
dz′.

Let us write

I
(3)
s,t f(x) =

∫ t

u

(
Hs,r(K̃r − K̃ (ε)

r )Pr,tf(x) +Hs,rK̃
(ε)
r Pr,tf(x)

)
dr

=:

∫ t

u

(
J

(ε)
1,r (s, x, t) + J

(ε)
2,r (s, x, t)

)
dr.
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Let γ1 ∈ (0, γ). Noting that

|(κ− κε)(r, z, z′)− (κ− κε)(r, θr,s(x), z′)| .C (|z − θr,s(x)|γ1 ∧ 1)εγ−γ1 ,

by definition and Lemma 3.7, we have

|(K̃r − K̃ (ε)
r )Pr,tf(z)| . (|z − θr,s(x)|γ1 ∧ 1)εγ−γ1 |D(α)Pr,tf |(z)

. (|z − θr,s(x)|γ1 ∧ 1)εγ−γ1
∫
Rd
φ

(α)
0,0 (r, z, t, y)|f(y)|dy.

For J
(ε)
1,r , recalling ε = (t− r)1/α, we have∫ t

u

|J (ε)
1,r (s, x, t)|dr

(4.7)

.
∫ t

u

∫
Rd

(
φ

(α)
0,α+γ1−1 � φ

(α)
0,γ−γ1

)
r
(s, x, t, y)|f(y)|dydr

(2.21)

.
∫
Rd
φ

(α)
0,α+γ−1(s, x, t, y)|f(y)|dy.

For J
(ε)
2,r , by the change of variables and Fubini’s theorem, we have

J
(ε)
2,r (s, x, t) =

∫
Rd
h(s, x, r, z)

∫
Rd
δ

(1)
Pr,tf

(z; z′)
κ̄ε(r, z, z

′)

|z′|d+α
dz′dz

=

∫
Rd

∫
Rd
δ

(1)
h(s,x,r,·)κ̄ε(r,·,z′)(z; z

′)
dz′

|z′|d+α
Pr,tf(z)dz

=

∫
Rd
h(s, x, r, z)

∫
Rd
δ

(1)
κ̄ε(r,·,z′)(z; z

′)
dz′

|z′|d+α
Pr,tf(z)dz

+

∫
Rd

∫
Rd
δ

(1)
h(s,x,r,·)(z; z

′)κ̄ε(r, z + z′, z′)
dz′

|z′|d+α
Pr,tf(z)dz.

Noting that by (Hγ
a),

|δ(1)
κ̄ε(r,·,z′)(z; z

′)| . (εγ−1|z′|) ∧ |z′|γ ∧ 1,

we have∫
Rd
|δ(1)
κ̄ε(r,·,z′)(z; z

′)| dz′

|z′|d+α
.
∫
Rd

((εγ−1|z′|) ∧ |z′|γ ∧ 1)
dz′

|z′|d+α
. ε(γ−α)∧0.

On the other hand, by (4.5) and (2.29),

|δ(1)
h(s,x,r,·)(z; z

′)| .
(
((r − s)− 1

α |z′|) ∧ 1
)(
φ

(α)
0,α−1(s, x, r, z + z′) + φ

(α)
0,α−1(s, x, r, z)

)
.

Thus, as in (2.38) we have∫
Rd

|δ(1)
h(s,x,r,·)(z; z

′)|dz′

|z′|d+α
.
∫
Rd

(
((r − s)− 1

α |z′|) ∧ 1
)
φ

(α)
0,α−1(s, x, r, z + z′)

dz′

|z′|d+α

+ φ
(α)
0,α−1(s, x, r, z)

∫
Rd

(
((r − s)− 1

α |z′|) ∧ 1
) dz′

|z′|d+α

. φ(α)
0,α−1(s, x, r, z)(r − s)−1 = φ

(α)
0,−1(s, x, r, z).

Therefore,

|J (ε)
2,r (s, x, t)| .

∫
Rd

[
ε(γ−α)∧0φ

(α)
0,α−1(s, x, r, z) + φ

(α)
0,−1(s, x, r, z)

]
Pr,t|f |(z)dz.

Recall ε = (t− r) 1
α . By (2.33), we obtain∫ t

u

|J (ε)
2,r (s, x, t)|dr . (t− s)− 1

α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy.
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(Step 4). For ε = (t− r)1/α, we define

b̄ε(r, z) := (b ∗ ρε)(r, z)− (b ∗ ρε ∗ ρ|r−s|1/α)(r, θr,s(x))

and

B̃(ε)
r f(z) := b̄ε(r, z) · ∇f(z).

For I
(4)
s,t , we similarly write

I
(4)
s,t f(x) =

∫ t

u

(
Hs,r(B̃r − B̃(ε)

r )Pr,tf(x) +Hs,rB̃
(ε)
r Pr,tf(x)

)
dr

=:

∫ t

u

(
J

(ε)
3,r (s, x, t) + J

(ε)
4,r (s, x, t)

)
dr.

For J
(ε)
3,r , since

|b̄0 − b̄ε|(r, z) 6 κ0ε
β = κ0(t− s)β/α,

by (4.7) we have

|J (ε)
3,r (s, x, t)| =

∣∣∣∣∫
Rd
h(s, x, r, z)(b̄0(r, z)− b̄ε(r, z)) · ∇Pr,tf(z)dz

∣∣∣∣
.
∫
Rd
φ

(α+1)
0,α (s, x, r, z)(t− r)

β
α |∇Pr,tf(z)|dz,

and∫ t

u

|J (ε)
3,r (s, x, t)|dr . (t− s)− 1

α

∫ t

s

∫
Rd
φ

(α)
0,α(s, x, r, z)(t− r)

β
α |∇Pr,tf(z)|dzdr.

For J
(ε)
4,r , we derive integrating by parts that

|J (ε)
4,r (s, x, t)| =

∣∣∣∣∫
Rd
h(s, x, r, z) b̄ε(r, z) · ∇zPr,tf(z)dz

∣∣∣∣
6

∣∣∣∣∫
Rd
h(s, x, r, z) divb̄ε(r, z)Pr,tf(z)dz

∣∣∣∣
+

∣∣∣∣∫
Rd
b̄ε(r, z) · ∇zh(s, x, r, z)Pr,tf(z)dz

∣∣∣∣ .
Since

|divb̄ε(r, z)| = |divbε(r, z)| 6 κ0ε
β−1 = κ0(t− r)(β−1)/α

and

|b̄ε|(r, z) . |z − θr,s(x)|β + (r − s)β/α,
by (4.7) and (2.33) we have

|J (ε)
4,r (s, x, t)| .

∫
Rd
φ

(α)
0,α−1(s, x, r, z)(t− r)(β−1)/α|Pr,tf(z)|dz

+

∫
Rd
φ

(α)
0,α+β−2(s, x, r, z)|Pr,tf(z)|dz.

Thus,∫ t

u

|J (ε)
4,r (s, x, t)|dr .

∫ t

u

∫
Rd

(
φ

(α)
0,α−1 � φ

(α)
0,α+β−1

)
r
(s, x, t, y)|f(y)|dydr

+

∫ t

u

∫
Rd

(
φ

(α)
0,α+β−2 � φ

(α)
0,α

)
r
(s, x, t, y)|f(y)|dydr

(2.21)

.
∫ t

u

[
(r − s)

α−1
α (t− r)

α+β−1
α + (r − s)

α+β−2
α (t− r)

]
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×
[
(r − s)−1 + (t− r)−1

]
dr

∫
Rd
φ

(α)
0,0 (s, x, t, y)|f(y)|dy

.
∫
Rd
φ

(α)
0,2α+β−2(s, x, t, y)|f(y)|dy

. (t− s)− 1
α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy,

recalling that α+ β > 1 for the last inequality. Hence,

|I(4)
s,t f(x)| . (t− s)− 1

α

(∫ t

s

∫
Rd
φ

(α)
0,α(s, x, r, z)(t− r)

β
α |∇Pr,tf(z)|dzdr

+

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy

)
.

(Step 5). Combining the above calculations, we obtain

|∇Ps,tf(x)| . (t− s)− 1
α

∫
Rd
φ

(α)
0,α(s, x, t, y)|f(y)|dy

+ (t− s)− 1
α

∫ t

s

∫
Rd
φ

(α)
0,α(s, x, r, z)(t− r)

β
α |∇Pr,tf(z)|dzdr

+ (t− s)− 1
α

∫ t

s

∫
Rd
φ

(α)
0,α+β−1(s, x, r, z)(t− r) 1

α |∇Pr,tf(z)|dzdr.

By the lower bound estimate, we further have

(t− s) 1
α |∇Ps,tf(x)| . Ps,t|f |(x) +

∫ t

s

(t− r)
β
αPs,r|∇Pr,tf |(x)dr

+

∫ t

s

(r − s)
β−1
α (t− r) 1

αPs,r|∇Pr,tf |(x)dr.

(4.8)

For fixed 0 6 u < t 6 T and s ∈ (u, t), we let

Γtu(s, x) := (t− s) 1
αPu,s|∇Ps,tf |(x).

Using Pu,s act on both sides of (4.8) and by Pu,sPs,r = Pu,r, we derive that

Γtu(s, x) . Pu,t|f |(x) +

∫ t

s

[
(r − s)

β−1
α + (t− r)

β−1
α

]
Γtu(r, x)dr.

Note that by Theorem 4.3,

sup
s∈[u,t]

‖Γtu(s, ·)‖∞ <∞.

Since α + β > 1, from the Volterra-Gronwall inequality, we obtain that for all
s ∈ (u, t),

Γtu(s, x) . Pu,t|f |(x).

Taking limit u ↑ s, we obtain

(t− s) 1
α |∇Ps,tf |(x) . Ps,t|f |(x),

which eventually yields the desired gradient estimate.
(Step 6). Finally, by (4.6) and the dominated convergence theorem, one can

show that
lim
x→x0

sup
(b,a)∈C

|∇P b,as,t f(x)−∇P b,as,t f(x0)| = 0.

Indeed, from the above proof, it suffices to show that

lim
x→x0

sup
(b,a)∈C

|Hb,a
s,t f(x)−Hb,a

s,t f(x0)| = 0.
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This follows by Lemma 2.8.

5. Proof of Theorem 1.1

The point is here to prove Theorem 1.1. Namely, we want to extend the bounds

of Theorem 3.5 and Lemmas 3.7 and (4.2) under the sole assumptions (Hγ
a), (Hβ

b ).
Let aε and bε be the smooth approximations of a and b, respectively. Hence,

assumptions (Hγ
a), (Hβ

b ) and (3.1) are met by aε, bε for the SDE

dXε
t = bε(t,X

ε
t )dt+ aε(t,X

ε
t−)dL

(α)
t . (5.1)

The following convergence in law result was established in [7], see Theorem 1.1
therein.

Theorem 5.1. Let Xε
s,t(x) be the unique solution of SDE (5.1). Then Xε

s,t(x)
weakly converges to Xs,t(x).

Proof. For fixed (s, x) ∈ R+ × Rd, since the coefficients b, a are linear growth, it is
by now standard to show that the law of Xε

s,·(x) is tight in the space of all cádlág
functions. By a standard way, one can show that any weak accumulation point of
the law of Xε

s,·(x) is a weak solution of SDE (1.1). Finally, by the weak uniqueness,
one sees that Xε

s,t(x) weakly converges to Xs,t(x). �

Denoting by pε the associated density, it therefore holds from Theorem 3.5,
Lemma 3.7 and Theorem 4.1 that

(i) (Two-sides estimate) For any T > 0, there is a constant C1 = C1(T,Θ) > 0
such that for all 0 6 s < t 6 T and x, y ∈ Rd,

pε(s, x, t, y) �C1
φ

(α)
0,α(s, x, t, y). (5.2)

(ii) (Fractional derivative estimate) For any T > 0, there is a constant C2 =
C2(T,Θ) > 0 such that for all 0 6 s < t 6 T and x, y ∈ Rd,

|D(α)pε(s, ·, t, y)|(x) .C2
φ

(α)
0,0 (s, x, t, y). (5.3)

(iii) (Gradient estimate in x) For any T > 0, there is a constant C3 = C3(T,Θ) >
0 such that for all 0 6 s < t 6 T and x, y ∈ Rd,

|∇P εs,tf(x)| .C3 (t− s)−1/αP εs,t|f |(x). (5.4)

where the constants in the above controls only depend on (Hγ
a), (Hβ

b ) through Θ
(see precisely (1.13)).

By Theorem 5.1, we have for any f ∈ Cb(Rd),
lim
ε→0

P εs,tf(x) := lim
ε→0

Ef(Xε
s,t(x)) = Ef(Xs,t(x)) =: Ps,tf(x). (5.5)

(i) (Two-sided estimates) For nonnegative measurable functions f , we get from
(5.2)

C−1
1

∫
Rd
φ

(α)
0,α(s, x, t, y)f(y)dy 6 Ef(Xs,t(x)) 6 C1

∫
Rd
φ

(α)
0,α(s, x, t, y)f(y)dy,

which implies that Xs,t(x) has a density p(s, x, t, y) having lower and upper bound
as in (1.15). On the other hand, for fixed s < t, by Theorem 3.5 we have

(x, y) 7→ pε(s, x, t, y) is equi-continuous in ε ∈ (0, 1).

From the Ascoli-Arzelà theorem, there are a subsequence εk and a continuous func-
tion p̄(s, x, t, y) as a function of x, y ∈ Rd such that

pεk(s, x, t, y)→ p̄(s, x, t, y) locally uniformly in x, y ∈ Rd, (5.6)
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which together with (5.5) yields that

p(s, x, t, y) = p̄(s, x, t, y) is continuous as a function of x, y ∈ Rd. (5.7)

(ii) (Fractional derivative estimates) It follows by (5.3), (5.6), (5.7) and Fatou’s
lemma that

|D(α)p(s, ·, t, y)|(x) =

∫
Rd

lim
k→∞

|δ(2)
pεk (s,·,t,y)(x; z)| dz

|z|d+α

6 lim
k→∞

∫
Rd
|δ(2)
pεk (s,·,t,y)(x; z)| dz

|z|d+α

= lim
k→∞

|D(α)pεk(s, ·, t, y)|(x) .C2
φ

(α)
0,0 (s, x, t, y).

(iii) (Gradient estimates) For fixed f ∈ Cb(Rd), by (5.4),

x 7→ ∇P εs,tf(x) is equi-continuous in ε,

which together with (5.5) implies that x 7→ Ps,t(x) is continuous differentiable. By
taking limits along a subsequence εk for (5.4), we obtain

|∇Ps,tf(x)| .C3 (t− s)−1/αPs,t|f |(x).

Finally, for fixed t′ > t and y ∈ Rd, we let f(x) := p(t, x, t′, y), then by the
Chapman-Kolmogorov equation, we obtain

|∇p(s, ·, t′, y)(x)| .C3
(t− s)−1/αp(s, x, t′, y).

This then readily gives estimate (4.2) (logarithmic derivative) of Theorem 1.1.
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operator. Adv. Nonlinear Anal. 9 (2020), 1453-1462.

[25] S. Menozzi, A. Pesce ad X. Zhang. Density and gradient estimates for non degenerate Brow-

nian SDEs with unbounded measurable drift, J. Differential Equations, 272, 330–369(2021)

[26] R. Mikulevicius and H. Pragarauskas. On the Cauchy problem for integro-differential op-
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