
HAL Id: hal-03088360
https://hal.science/hal-03088360

Submitted on 26 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MTD, Where Art Thou? A Systematic Review of
Moving Target Defense Techniques for IoT

Renzo Efrain Navas, Frédéric Cuppens, Nora Boulahia Cuppens, Laurent
Toutain, Georgios Papadopoulos

To cite this version:
Renzo Efrain Navas, Frédéric Cuppens, Nora Boulahia Cuppens, Laurent Toutain, Georgios Pa-
padopoulos. MTD, Where Art Thou? A Systematic Review of Moving Target Defense Techniques for
IoT. IEEE Internet of Things Journal, 2020, pp.1 - 1. �10.1109/JIOT.2020.3040358�. �hal-03088360�

https://hal.science/hal-03088360
https://hal.archives-ouvertes.fr


IEEE INTERNET OF THINGS JOURNAL, VOL. V, NO. N, MMMM 2020 1

MTD, Where Art Thou? A Systematic Review of
Moving Target Defense Techniques for IoT

Renzo E. Navas , Student Member, IEEE, Frédéric Cuppens, Member, IEEE, Nora Boulahia Cuppens,
Member, IEEE, Laurent Toutain, Member, IEEE, and Georgios Z. Papadopoulos , Member, IEEE

Abstract—Context: Internet of Things (IoT) systems are in-
creasingly deployed in the real world, but their security lags
behind the state of the art of non-IoT systems. Moving Target
Defense (MTD) is a cyberdefense paradigm, successfully imple-
mented in conventional systems, that could improve IoT security.

Objective: Identify and synthesize existing MTD techniques
for IoT and validate the feasibility of MTD as a cybersecurity
paradigm suitable for IoT systems.

Method: We use a systematic literature review method to
search and analyze existing MTD for IoT techniques up to July
2020. We evaluated the existing techniques in terms of security
foundations and real-world deployability using the evidence they
provide. We define and use entropy-related metrics to categorize
them. This is the first MTD survey to use Shannon’s entropy
metric empirically.

Results: Thirty-two distinct MTD for IoT techniques exist:
54% are Network-layer-based, 50% present strong evidence
about their real-world deployment, and 64% have weak security
foundations.

Conclusion: MTD for IoT is a feasible cyberdefense approach.
A variety of proposals exist, with evidence about their im-
plementation and evaluation. Nevertheless, the MTD for IoT
state of the art is still immature: the security foundations
of most existing proposals are weak. Novel techniques should
prioritize providing convincing security foundations and real-
world deployment evidence.

Index Terms—Internet of Things, Moving Target Defense,
Cyber Security, Metrics, Entropy, Systematic Literature Review

I. INTRODUCTION

THE Internet of Things (IoT) is a reality. Billions of IoT
devices are already deployed in real-world environments,

and the number increments every year [1]. IoT systems are
used in a wide variety of use cases like agriculture, city
infrastructure services, industrial automation, personal health,
and home usage. Modern societies are increasingly reliant
on IoT systems. Their widespread usage also translates into
them being a high-value target for cyberattackers [2]. From a
cyberdefense perspective, the constrained nature of most IoT
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devices imposes additional challenges to protect them. On the
one hand, most legacy security techniques are not straight-
forward to use and need to be adapted. On the other hand,
defining novel security mechanisms is a task that requires
lots of research effort and validation; a flaw in their design
or implementation can have serious consequences. Research
effort in IoT security has risen in recent years, but many
challenges still remain open [3].

Moving Target Defense (MTD) has been proposed as a
cyber-defense paradigm in 2009 [4]. It is motivated by the
inherent disadvantage at which static systems are when facing
cyberattackers. With enough time and a static target, attackers
will eventually find and exploit vulnerabilities of the system.
In other words, it is not a question of if but when the system
will be penetrated. By acknowledging this fact, MTD proposes
to inherently make systems dynamic in order to limit the
cyberattackers in the domain of time. Against an MTD system,
the attacker has limited time to find and exploit vulnerabilities.
A vulnerability found -but not exploited yet- may not be
present in the next system state. Even if a vulnerability is
exploited, the future state of the system may neutralize its
effects. This is a desirable feature for resilient systems.

In 11 years since the inception of MTD, more than 80
distinct techniques have been proposed [5]. Also, several
MTD techniques survey articles have been published [5]–
[11]. However, limited work has been published about MTD
targeted at IoT systems. The most recent peer-reviewed MTD
surveys [9], [11], identify less than five IoT-specific MTD
techniques. A recent book chapter [12] focuses on MTD for
IoT and effectively identifies around a dozen techniques. MTD
for IoT is an acknowledged promising field of study [9], [12].
However, we believe there is still a lack of an in-deep survey
of its state of the art.

In this work, we present a survey of MTD for IoT as
thorough and transparent as possible. We also intend to provide
evidence-based justification for MTD as a suitable cyber-
defense paradigm for the IoT and not a mere promising or
future work technique. Hence, this survey uses a systematic
literature review methodology, widely employed in the Med-
ical science fields, but adapted for the Software Engineering
fields by P. Brereton, B.A. Kitchenham et al. [13]. This method
focuses on defining and documenting the survey process
(e.g., the search databases and strings, inclusion-exclusion
criteria, data extraction methods), making it as transparent as
possible, and reproducible by independent researchers. The
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methodology aims at producing evidence-based answers to
clearly defined Research Questions.

To the best of our knowledge, this is the first MTD survey to
empirically use Shannon’s entropy metric for the studied MTD
techniques. We also developed other entropy-related metrics
to measure qualitative aspects that are not captured by the
Shannon entropy.

Contributions In summary, the major contributions of this
work are the following:

• A Systematic Review of MTD techniques for IoT. This
review enforces the guidelines by Kitchenham et al. [14].
This is the first peer-reviewed MTD survey focused on
IoT. Moreover, two-thirds of the techniques were not
previously identified by MTD literature.

• An evidence-based assessment of the security status of
the techniques and validation of the feasibility of MTD
for IoT. To the best of our knowledge, this is the first
MTD review to focus on the cryptographic primitives of
the studied techniques.

• The definition of four new entropy-related metrics and
their empirical application. Moreover, this is the first
review to make practical use of Shannon’s entropy as
a metric. The metrics have applications beyond the scope
of this article.

The rest of this work is structured as follows. Background
and related work are presented in Sec. II. The entropy-related
metrics are defined in Sec. III. The methodology used in this
survey is documented in Sec. IV and the results in Sec. V.
Some discussion and future work perspectives are offered in
Sec. VI. Finally, Sec. VII concludes this work.

II. BACKGROUND AND RELATED WORK

In this section, we first present the MTD cyberdefense
paradigm. Then, we focus on MTD techniques: definitions,
design principles, and their taxonomy. Finally, we highlight
related work about MTD surveys and the systematic review
approach.

A. The MTD Paradigm

MTD is a cyberdefense paradigm that proposes to proac-
tively dynamize systems’ components to thwart cyber attackers
that rely on the static nature of them. Leaked system informa-
tion is now ephemeral, and time is a constraint for attackers.

a) History: The concept of changing system components
to prevent unintended parties to disrupt its purpose is not new.
Applications of this concept can be tracked in modern science
at least to more than one hundred years ago in a patent of
N. Tesla [15] in a precursor idea of the Frequency-Hopping
Spread-Spectrum techniques for wireless communication sys-
tems. Defense through constant change in the Internet era can
also be found at least since 2001: a U.S. DARPA project
explored dynamic IP address and TCP port numbers [16].
However, it is not until 2009 that the term “MTD” was
coined and explicitly proposed as a cyberdefense paradigm
by the Networking and Information Technology Research and
Development (NITRD) program in the context of a U.S.
National Cyber-Defense Summit [17].

b) MTD Definition: R. Zhuang et al. [18] concisely de-
fine MTD as “constantly changing a system to reduce or move
the attack surface available for exploitation by attackers”. The
NITRD program originally defined the MTD paradigm as
follows [19]:

MTD enables us to create, analyze, evaluate, and
deploy mechanisms and strategies that are diverse
and that continually shift and change over time to
increase complexity and cost for attackers, limit
the exposure of vulnerabilities and opportunities for
attack, and increase system resiliency.

c) Rationale: MTD acknowledges that vulnerabilities
are present in any system and that there is an information
asymmetry between static systems and attackers. Because
information about the system does not expire, cyber attackers
with enough resources –time in particular– will eventually find
an exploit, develop and launch a successful attack. The defeat
of a static system facing a persistent attacker is ineluctable.

MTD tries to equilibrate this information asymmetry by
limiting the time validity of –possibly leaked– system infor-
mation. MTD’s security goal is to make the task of finding
and exploiting a vulnerability more resource-consuming for
the attackers, as compared to a non-MTD version of a system.
MTD proposes to achieve this by constantly changing some of
the system’s components that, in turn, will also imply changing
the system’s attack surface. A system’s attack surface is “the
subset of the system’s resources that an attacker can use to
attack the system” [20].

The components-attack surface’s constant “movement”
makes that the information an attacker gathered about the
system is now limited in time. Thus, a discovered and then
crafted attack at a given time t0, might not work when the
attacker launches it later at t0+∆t; because the target system is
no longer the same: the attack surface shifted, and the vector of
attack may no longer be valid. Even if the attack is successful
at t1, the MTD movement may limit the attack’s effectiveness;
e.g., the system at t1+∆t is no longer vulnerable. This MTD’s
game-changer property can be resumed [17] as “attacks only
work once if at all”.

MTD contrasts with systems’ security measures that try to
keep the attack surface small (i.e., attack surface reduction).
In the software domain, these approaches remove bugs at the
source, identify malicious attacks against deployed software,
and patch software as rapidly as possible [19]. However, the
“perfect” software approach does not scale to the increasing
complexity current system’s software. The patch distribution
approach is standard practice in modern systems, but it has
proven difficult to be ahead of the attackers. Avoiding exposed
vulnerabilities should still be a priority, but MTD is proposed
as a game-changing (pro)active approach that can complement
that standard reactive practices. Furthermore, defenders do
not entirely know a system’s attack surface (e.g., zero-day
vulnerabilities). Thus, those unknown vectors of attack can
not be reduced in number nor quality, but at least they can be
“moved” by MTD techniques.

d) Literature: The MTD literature can be divided into
three fields [7]: theory [18], [21]–[23], strategy [5]–[11], and
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evaluation [24]–[26]. The Strategy field covers concrete MTD
techniques that can be implemented in real systems. This
survey focuses on this field, with the particularity of being
applicable to constrained IoT systems, and we detail it in the
next subsection.

MTD Theory deals with mathematical-analytical theory,
systems and attacker models, and theoretical tools to formally
discuss about MTD. R. Zuang et al. defined three components
that constitute the foundations of MTD Theory: MTD Systems
Theory [18], a Cyber Attack Theory [22], and their interaction
[23].

The MTD Evaluaton field deals with methods to evaluate
and quantify the effectiveness of MTD systems. This research
field includes mostly the definition of metrics that allow not
only the assessment of the effectiveness of a particular MTD
system’s technique but also allow the comparison among
different ones. The field has practical importance because
metrics can guide the design and implementation of novel or
existing MTD techniques.

B. MTD Techniques, Design Principles, and a Taxonomy

An MTD technique is an instance of the MTD paradigm
detailed for a specific system and use case. We define the
Moving Parameter (MP) as a component of the system that
will be changed-adapted over time by the MTD technique.

In this subsection, we focus on general design principles
shared by the more than 100 distinct techniques that exist
and were previously identified and analyzed in the literature.
An MTD technique needs to define three fundamental design
questions: WHAT, HOW, and WHEN to move. These princi-
ples were first proposed by Cai et al. [7], and can be defined
as follows:

• WHAT to move determines the component(s) of the
system to which the technique will be applied. In other
words, the MP(s).

• HOW to move is about the methods for (i) define
valid states of the MP, and (ii) chose one valid state
for the system. MTD techniques use three types of
methods: Shuffling (randomization), Diversification, and
Redundancy-based.

• WHEN to move is about applying the state change, i.e.,
the decision process that triggers the MP value change.
The literature identifies three types of decision processes:
Time, Event, and Hybrid-based

To conclude this subsection, we present a taxonomy for
MTD techniques based on the system layer to which the MP
pertains. It was first proposed by Okhravi et. al [5], [6] and is
composed of the following categories:

• Dynamic Data: Techniques that change the format, en-
coding, or representation of application data, i.e., same
semantics with different syntax.

• Dynamic Software: Techniques that change an appli-
cation’s binary code dynamically, e.g., binary objects
shuffling, application diversification.

• Dynamic Runtime Environment: Techniques that
change the execution environment dynamically, e.g.,
RAM addresses, instruction set.

• Dynamic Platform: Techniques that change the com-
puting platform properties, e.g., CPU architecture, OS,
virtual machine instance.

• Dynamic Networks: Techniques that change network
properties, e.g., protocols, addresses, topology.

As stated before, this taxonomy is based on the MP’s system
layer and is widely used in MTD literature. We use these
categories extensively in the current work.

C. Related Work

MTD was proposed in late 2009, and the first peer-reviewed
survey of MTD techniques appeared in 2013 [6]. Since then,
many generic surveys of MTD techniques have been published
[5]–[11] identifying around 100 distinct techniques.

However, IoT applicability is not considered in most of
them. Indeed, only two peer-reviewed recent surveys consider
MTD for IoT. Zheng et al. [9] has a sub-subsection of
lightweight MTD; it identified two techniques and mentioned
that more MTD techniques for resource-constrained devices
are required. Cho et al. [11] has a sub-subsection of Internet-
of-Things within a discussion of application domains for MTD;
it identified four techniques and acknowledged that MTD
seems promising for IoT systems but with some limitations
when compared with conventional MTD. A recent book chap-
ter by Saputro et al. [12] focuses on the applicability of MTD
for IoT applications. It extensively discusses general concepts
of MTD, IoT, and Software-Defined Networking (SDN). It
dedicates an entire section to MTD for IoT techniques. They
focus on network-category techniques and propose a subdivi-
sion of the network taxonomy. They identify around a dozen
MTD for IoT techniques from the Network category. They
highlight the potential of SDN-based solutions and discuss
that the military and industrial IoT applications may benefit
from it.

In respect to the systematic literature review approach, none
of the aforementioned surveys used it. However, Torquato et.
al [27] conducted a systematic mapping study1 of MTD in
cloud computing. Hosseinzadeh et al. [28] performed a sys-
tematic review of Diversification and obfuscation techniques
for software security, a broader topic than MTD.

III. METRICS

In this section, we define the metrics that are employed in
the current literature review. Several metrics for MTD have
been proposed [24]–[26]. However, in general, they are of
difficult applicability to concrete and heterogeneous strategies.
In this survey, we use metrics related to the entropy of the
moving parameter. These metrics have the property of being
applicable to the surveyed MTD techniques with a reasonable
effort.

1There are differences between a systematic literature review and a system-
atic mapping study. A mapping study consists of broad research questions,
and its main output is to classify literature in some way. A systematic review
has a narrower subject, and fewer studies will be included. Sometimes, the
term systematic review is used for what is technically a mapping study.
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A. Shannon Entropy of the Moving Parameter

This metric is based on the maximum Shannon’s entropy
of the Moving Parameter (MP) of an MTD technique. Works
by Zhuang et al. [18], and Hobson et al. [21] already used
Shannon’s entropy concept for MTD systems in a theoretical
way. In this article, we present our own approach but refer the
reader to those works for more information.

Let X be a MP of a system, x be a valid state for X ,
and E be the set of all valid states {x1, x2, ..., xn}. We can
use Shannon’s information entropy concepts if we define X
as a discrete Random Variable (RV) with possible values
{x1, x2, ..., xn} and a probability mass function P (X). The
Shannon Entropy in bits of the MP X is defined as:

H(X) = −
n∑
i=1

P (X = xi) log2 P (X = xi) (1)

Large values of H(X) are desirable for MTD sytems. This
assumption is defined as the MTD Entropy Hypotesyis [18],
also Hobson et al. [21] defines that an MTD technique is
unpredictable iff H(X)� 0.

In this work, we are interested in the maximum value H(X)
for a given technique. For a practical application of this metric
to the MTD techniques in the literature, we use two results
from information theory. First, H(X) is maximized if P (X)
follows a discrete uniform distribution, i.e., every value x is
equiprobable. For a RV X with n possible values {x1, ..., xn},
this maximal value is log2(n) bits. Second, MTD techniques
will take inputs and deterministically produce an output, i.e.,
the MP value. It is well known that a theoretical limit exists
for the output entropy of a process [18]: the entropy of the
output RV can not be greater than the sum of the entropy of
the input RVs. For a single RV input Y , 0 ≤ H(X) ≤ H(Y ).

We present three examples of the use of H(X) as a metric
for MTD systems in which the MP X is:

• The OS firmware, and there are 2 possible states:
H(X) ≤ log2(2) = 1 bit.

• The Encryption Algorithm used, and there are 16 possible
states: H(X) ≤ log2(16) = 4 bits.

• The IPv6 Address of 128-bits, but the secret key to
calculate it is a value of 32-bits (input RV Y ): H(X) ≤
H(Y ) ≤ log2(232) = 32 bits.

To the best of our knowledge, this is the first MTD survey
that evaluates the Shannon entropy of the studied techniques.

B. Qualitative Entropy-related Metrics: Definitions

Many qualitative factors of the entropy are not captured
by the Shannon entropy H(X). For example, attacking 16
different OS firmwares is arguably harder than attacking 16
different IP addresses. In addition, switching an OS firmware
may consume more resources for the system than switching an
IP address, and this will impact a real-world implementation
of the technique. Thus, 1 bit of entropy of the OS firmware
as the MP is not qualitatively equivalent to 1 bit of entropy
of the IP address as the MP.

In order to capture some of these qualitative differences,
we define four novel metrics: GEN, STO, MOV, and ATT.

TABLE I: MTD Entropy-related Metrics.

Metric Description Possible values

H(X) Shannon Entropy of Moving Paramter X R≥0

GEN Cost of generating a valid state xi {Low, Med., High}
STO Cost of storing a valid state xi {Low, Med., High}

MOV Cost of a state change xi → xj {Low, Med., High}
Q g(GEN) + s(STO) +m(MOV) {0, 1, ... , 5, 6}

ATT Cost of an attack, assuming a state xi {Low, Med., High}

Besides, we define an indirect metric Q derived from the first
three. The metrics are based on the MP X modeled as a
discrete RV and are related to a valid value xi. Their definition
is in Table I.

GEN, STO, and MOV measure cost from a system’s per-
spective. ATT measures cost from an attacker’s perspective.
The cost is estimated in terms of the entity’s use of limited
resources (e.g., time, computing power, hardware). A priori,
the lower the cost of GEN, STO, and MOV, the higher
H(X) that will be attainable with fixed resources. The metric
Q aggregates the three system-centric metrics GEN , STO,
and MOV . In order to sum direct metrics, they should be
expressed in the same dimension or be dimensionless. For
a given technique, each individual system-centric metric can
be mapped to a dimensionless value in {0, 1, 2} from the
original domain of {Low,Med.,High}. Formally, we use
the functions g, s, and m to convert the direct metrics
to a dimensionless scalar value. From a system defense’s
perspective, 0 is the most desirable value (lower cost) and 2
the least (higher cost). We define Q as the arithmetic sum of
the mapped dimensionless system-centric metrics. We call Q
the entropy cost because it captures how expensive, in terms of
resources, is for the system the process of generating, storing,
and moving the MP value. Its value is in the range {0, 1, ..., 6}
and the lower this value, the better from a system’s perspective.
Ideally, we want MTD techniques with high values of entropy
H(X) at a low-cost Q.

The ATT metric aims at capturing the entropy exploration
cost from an attacker’s perspective. Because time is a limited
resource for an attacker facing an MTD system, ATT gives a
measurement of the entropy (attack surface) exploration speed.
From a system’s perspective, high ATT values are desirable.
It will translate in an attack surface that will be difficult (i.e.,
costly, slow) to explore.

C. Qualitative Entropy-related Metrics: From Definitions to
Empirical Use and Evaluation

a) The Third Value: All the qualitative metrics, but Q,
are of ternary value: Low, Med., and High. This choice is
justified because of the inherent uncertainty and difficulty
of measuring them for concrete and heterogeneous MTD
techniques. Binary values were discarded because of being too
coarse-grained, it was hard to define the limiting threshold, and
high uncertainty was present in values close to this threshold.
An ordered ternary system mitigates these issues. We can
approach the estimation in a binary-way, but if the estimation
proves not conclusive (e.g., because the value is close to the
binary threshold), the ternary value between the two extremes
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can be assigned. In this survey, we approached the evaluation
binarily and use the Med. value that way.

b) Dimension of Cost: Furthermore, in Sec. III-B we
defined the metrics as an estimation of the cost of the entity’s
limited resources, but we did not assign a dimension to
this cost, e.g., time-seconds, information-bit, volume-µm3,
currency-dollars. The definition is intentionally generic, be-
cause what is a limiting resource for one entity in a concrete
MTD setting, may not be limiting in another one. Thus, this
generic definition allows the metrics to be adaptable to a
variety of settings.

However, to compare two or more MTD techniques –like in
this survey–, the metric definition has to be consistent among
them. In other words, for an empirical use of the qualitative
metrics, more definitions are needed to express this cost.

Each direct qualitative metric has to be further defined in
terms of a commensurable quantity (i.e., same dimension) that
will be consistently used among all the techniques under study.
In this survey, we used the following cost dimensions for the
direct metrics: time for GEN, MOV, and ATT; and information
(e.g., bits) for STO.

As for the indirect metric Q, it synthesizes the three direct
system-centric metrics in a single scalar value. Consequently,
Q conveys less information than the three metrics (i.e., a
three-dimensional vector), but allows for more straightforward
comparisons and visual representations of the overall system’s
entropy cost. In this survey, the three functions g, s, and m that
map the values from the direct metrics to the same codomain
are simply: {Low 7→ 0,Med. 7→ 1, High 7→ 2}.

c) Estimation of Cost for concrete MTDs: Once the
dimension of each direct metric is defined, a fundamental
question should be answered: how to evaluate a direct metric
for a set of MTD techniques?

In an ideal setting, we should dispose of baseline hardware
for the IoT system and the attacker. Then, implement all the
MTD techniques into consideration and for the attacker to
implement the state-of-the-art attack that corresponds to each
technique. In this ideal hardware case, we could measure
the cost directly (time and bits), and even use more fine-
grained values (e.g., R≥0). A second approach by simulation
could ease the task, but a simulation model valid for all
the heterogeneous MTD techniques’ use cases (e.g., physi-
cal modulation, firmware image exploits, network addresses,
application resources) does not exist.

Neither of the aforementioned approaches is empirically
practicable in a survey, some of the reasons are: (i) The
required engineering person-hours to implement all the tech-
niques under consideration will be hard to acquire; for ex-
ample, in the current survey, only %22 of the articles imple-
mented in hardware the sole technique under its consideration.
(ii) Some techniques in the literature do not provide all the
design details to implement them in real hardware.

However, consider the following example, as similarly
stated in the intro of Sec. III-B: We can sensibly agree that
there is one ore more orders of magnitude in the GEN and
MOV time-cost difference when: (A) the MP is a 32-bit RAM
value inside a node (e.g., ≤ 100msec) (B) the MP is a

100 node physical topology arrangement (e.g., � 100msec).
Even if we can not precisely measure the time value, 32
information bits are considerably “less costly“ to generate and
move than a 100 physical IoT nodes’ topology. In other cases,
the techniques may be of the same order of magnitude. This
order-of-magnitude comparison can be attempted with any pair
of techniques and metric.

Yet, the question remains: how to capture–evaluate these
differences or similarities in orders of magnitude for every
heterogeneous MTD technique in a set? In this survey, we
use a relative metrics approach and state some hypotheses to
approach a methodology to make this comparison. We detail
this evaluation method in the remainder of this section.

d) Evaluation in this Survey – Approach: First, we do not
attempt to evaluate the direct metrics into an absolute value,
but in relative terms to the set under evaluation.

Second, the following general hypotheses–assumptions were
used, if needed: (i) A system with 100 nodes. (ii) A node with
32 KB of RAM and 250 KB flash.

Then, for the set of MTD techniques to evaluate, the
approach was the following:

1) Define a technique as representative of the “Low” value.
2) Define a technique as representative of the “High” value.
3) For each remaining technique, determine to which

category–order of magnitude it pertains, as follows:
a) If a similar technique has been categorized, use

that same category; unless the current technique
presents a game-changing technical innovation (in
that case, continue evaluation).

b) If the technique has empirical evaluation elements,
use them to match the order of magnitude with
“Low” or “High” techniques. Else, continue.

c) If no empirical evidence nor similar technique is
present, the evaluators can extrapolate the cost for
the metric and technique under study using their
knowledge in the field and the technique’s article
(or a “synthesis” of the article). For example,
propagating MP changes that impact a distributed
system will be more costly than changes that
impact only one node, or hardware-based MPs are
more resource-consuming that information-based
MPs. This is a non-methodical subjective step.

d) If no conclusive evaluation can be done, categorize
the technique as “Med.”.

In this survey, this evaluation was done by three of the
authors. First, we agreed on the representative “Low” and
“High” techniques for each metric. In this case, a same
representative reference was chosen for all metrics (GEN,
STO, MOV, and ATT): “Low” ≡ “IPv6 64-bit Addresses
randomization” by Sherburne et al. [29], and “High” ≡ “OS
firmware reconfiguration” by Casola et al. [30]. Then, the
evaluation was done independently using the extracted data for
each technique (See Listing 1). Moreover, at least one author
that read the full article was available to answer questions to
the others, if needed, in the subjective extrapolation step (3c).
Finally, the evaluation results were synthesised using simple
majority and using “Med.” in case of no majority.
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IV. METHODOLOGY

The survey methodology used in this work is based on
the systematic literature review guidelines by Kitchenam et
al. [14]. There are three main phases in a systematic review
process:

1) Planning: Involves specifying the research questions and
developing a protocol to follow.

2) Conducting: Involves study search, study selection, data
extraction, and data synthesis.

3) Documenting: Involves reporting the systematic review
process (e.g., protocol, outcomes), i.e., this article.

The conducting phase, with detail on the search and selec-
tion processes, is illustrated in Fig.1. In the following, we
explicit the research questions and detail the protocol and
execution of the conducting phase.

A. Research Questions

This systematic review aims to provide an overview of
existing MTD techniques for IoT and insights about their
maturity in terms of security and usability. To achieve this
goal, we defined four Research Questions (RQ) that guide
this review:

RQ1: How many proposals of MTD techniques for IoT exist?
RQ2: What characteristics can be observed in the proposals?
RQ3: How sound are the security foundations of the proposals?
RQ4: To what extent the proposals can be used in a real IoT

deployment?

The research questions are ordered from the more generic to
the more particular. The first two are broad research questions.
We separated them because RQ1 focuses on quantitative facts
while RQ2 on qualitative ones. The last two, RQ3 and RQ4,
inquire into technical qualitative properties of the proposals.
They are useful to give an assessment of the maturity of the
MTD for IoT field.

B. Search Process

The search process involved three complementary methods:
manual search, automated search, and snowballing.

1) Initial Manual Search and Update: The initial set of
articles was obtained non methodically from Dec. 2017 to Sep.
2019. It included articles suggested by colleagues, manually
found using references in other articles, and non-systematic
searches in Google Scholar. In addition, we manually searched
among all editions of the ACM Workshop on Moving Target
Defense. Initially, the set was not large enough to justify a
systematic literature review. In Sep. 2019 the set consisted of
18 articles, and we estimated a systematic literature review
meaningful. In July 2020, we did a manual update to include
recently published work.

Reproducibility. Manually including article [31], the auto-
mated search, and the snowballing method will yield the same
results without the need of this manual set.

2) Automated Search: For the automated search, we defined
a search string and used six well-known digital databases.

Databases. The databases used were the following:
• IEEE Xplore
• ACM Digital Library
• Springer Link
• Wiley Online Library
• ScienceDirect
• Scopus (meta-searcher)
Search String. The search string was the following:
("mtd" OR "moving target defense") AND

("iot" OR "internet of things")

Note that the term mtd yield many false positives
(e.g., machine-type devices, minimum-traces-to-disclosure).
We suggest researchers not using acronyms in the search
string. The title and abstract of the articles will include
the unabridged term of the acronym. This will reduce false
positives and make the search and selection process less time-
consuming. The automated search was conducted during the
month of April 2020.

Duplicates Removal. We used the JabRef reference man-
ager to combine and remove duplicates from the raw search
results. We prioritized exporting-importing in BibTeX format.

3) Snowballing: Snowballing is a search technique that
identifies potential additional articles to include in a system-
atic literature review [32]. Snowballing is a complementary
technique to the automated string search process and requires
a start set of papers that are known to be relevant and will
be included in the literature review. Snowballing’s rationale
is that papers about the same subject will reference each
other and by following these interconnections, we can identify
relevant work that may not have been included in the start
set. Backward snowballing identifies (past) articles that are on
the reference list of an included study. Forward snowballing
identifies (future) articles that refer to an included study.
These additional articles will go through the selection process
to determine if they are relevant or not. The snowballing
process can be applied iteratively over the new set of selected
articles. We applied both backward and forward snowballing
using the Scopus meta-searcher. The first iteration was applied
to the studies selected by the initial manual and automated
search process. We performed two iterations. Snowballing was
performed during April-May 2020.

C. Selection Process

The selection process is applied to search results and deter-
mines which studies are included in our review. We explicit
the inclusion and exclusion criteria used to filter the results.
The inclusion criteria are:

• I1: Studies that propose MTD-based techniques that can
be used in constrained IoT devices.

– The level of detail of the technique is not excluding.
– Not mentioning MTD nor IoT is not excluding.

• I2: Studies in the English language.
• I3: Peer-reviewed studies or books.
The exclusion criteria are:
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Initial Manual
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(12-2017 to 09-2019)

Remove Duplicates
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Title and Abstract
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(Search 540)

Snowballing II
(Search 96)

Data Extraction

Data Synthesis

18

30

7

1

+ 39

260310 49

Manual Update
Seach and Selection

(07-2020)

1

Fig. 1: Conducting the review: detail on the search and selection processes. The number of articles after an activity is represented
in labels at the exit edges.

• E1: Studies that despite mentioning MTD and IoT:
– Propose techniques for non-constrained devices, e.g.,

smart vehicles (broad use of the term IoT).
– Propose techniques not applicable to IoT devices

directly, but to other non-constrained components of
the system, i.e., the technique was transparent to the
IoT nodes. For example, firewalling, backbone/cloud,
or non-constrained SDN solutions.

• E2: Studies published before 2009.
• E3: Studies for which we could not access the full text.
The criteria I2, I3, and E2 were applied automatically on

the digital databases searches. Then, we applied the semantic-
dependent filtering criteria I1 and E1 in a two-step process.
Firstly, only taking into account title, keywords, and abstract
of the studies. Secondly, taking in account the full-text. In
case of doubt in the first step, the study was included for the
full-text selection step. Most studies were discarded during the
first step.

D. Data Extraction Process

Each of the 39 selected articles was read thoroughly by
Renzo E. Navas. The data extraction template evolved between
Jun 2019 and October 2020. The final template used to extract
relevant data from each study is shown in Listing 1. The 18
articles from the initial manual search were read and data
extracted (refined) at least twice having a time span of at least
three months between reads.

E. Data Synthesis Process

The goal of the data synthesis process is to provide mean-
ingful information about the current state of the art of MTD
techniques for the constrained IoT. Particularly, the outputs
of the data synthesis methods summarize the data results and
shall provide convincing answers to the research questions of
Sec. IV-A. There are a variety of data synthesis methods [14].
In this work, the syntheses outputs are presented in the form
of graphical plots, tables, and narrative synthesis, i.e., text.
We synthesized both quantitative and qualitative aspects of the

Listing 1: Data Extraction Template.

• Standard bibliography data:
– Title, author, year, type of publication, venue.

• MTD technique name or brief description.
• Moving Parameter (MP).
• MTD technique taxonomy (Sec. II-A):

– Data, Software, Runtime Environment, Platform, Network.
• Metrics:

– Evaluate MP Shannon entropy metric (See Sec. III-A).
– Evaluate MP qualitative metrics (Defined in Sec. III-B)

• Cryptography:
– Is cryptography used?
– Which cryptographic primitive is used?
– What are the cryptographic inputs? (e.g., a key)

• Implementation:
– Is the proposal implemented (even partially)?

• Evaluation:
– Is the proposal evaluated?
– How? Numerically, Simulation, Hardware prototype.

• IoT Software:
– What IoT OS or firmware is used?

• Synthesis of the proposal with technical details (1-6 pars.).

primary studies. An intermediate analytical step was necessary
to synthesize some aspects (mostly qualitative) of the primary
studies. In this process, we used existing MTD theory (e.g.,
moving parameter, accepted taxonomies) and the metrics we
developed in Sec. III. The metrics allow a common frame
of reference to synthesize and compare qualitative aspects of
different studies.

V. RESULTS

In this section, we present the results from the systematic
review process. The Research Questions (RQs) of Sec. IV-A
structure this section. Each subsection analyzes the results
in the context of the RQs, and factually provides answers.
Interpretive discussion is to be found in the last paragraph
addressing a RQ.
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A. RQ1: How many proposals of MTD techniques for IoT
exist? (Status of Field of Study: Quantitative)

The systematic review process, shown in Fig. 1, identified
39 documents containing 32 distinct proposals.

1) Documents: In Fig. 2 we plot the published documents
per year. The first article is from 2013, two years after the
first general-purpose MTD techniques that date from 2011.
Excluding the year 2020, the (average ± standard deviation)
number of publications per year is (5.3 ± 1.8). Since 2016
is (6.5 ± 1.3). Aside from the 2015-2016 increment, there is
no clear upward trend, and the number of published docu-
ments per year is stable with post-2016 values. The document
publication type distribution is shown in Fig. 3, conference
papers are predominant with a 69%. The top-3 countries are:
USA (49%, 19 doc.), Finland (15%, 6 doc.), and Italy (15%,
6 doc.). The top affiliations are: University of Turku (13%, 5
doc.), Virginia Polytechnic Institute and State University (13%,
5 doc.), University of Naples Federico II (10%, 4 doc.), and
George Mason University (10%, 4 doc.).

2) Proposals: 32 novel proposal have been identified. In
Fig. 4 we plot the novel proposals per year. There is not a
one-to-one correspondence between documents and proposals.
One proposal can spread among multiple documents, and
one document can contain multiple proposals. A proposal
is counted only once, taking the date of the first document
that included it. Excluding the year 2020, the (average ±
standard deviation) number of novel proposals per year is
(4.1±1.2). The minimum value was in 2014 (2 proposals) and
the maximum in 2019 (6 proposals). The number of proposals
per year is stable since 2013, with a slight upper trend of
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Fig. 4: Number of novel proposals per year (Total= 32).
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20% Run. Env.

13% Software

10%

Data

3% Platform

Fig. 5: Taxonomy distribution of MTD techniques for IoT.

∆ = 1 in the last two periods since the 2017-2018.
Interpretive discussion. The figure of thirty-two distinct

techniques was not evident prior to this survey. The identified
corpus in the MTD literature was of about a dozen techniques.

B. RQ2: What characteristics can be observed in the MTD
for IoT techniques? (Status of Field of Study: Qualitative)

This question aims at highlighting qualitative aspects of the
field of study of MTD for IoT techniques. We categorize,
measure, and analyze technical properties of the techniques.
We use general MTD theory concepts presented in Sec. II and
the metrics we defined in Sec. III.

1) MTD Taxonomy. Distribution and Trends: We present
the distribution of the techniques by MTD taxonomy in Fig.
5. Network techniques are predominant, with 54%. In the
second position are dynamic Runtime Environment techniques
with 20%. Software and Data techniques have a similar
share with 13% and 10%, respectively. Notably, there is only
one dynamic Platform technique (3%). Fig. 4 shows novel
proposals per year and taxonomy. Excepting the year 2015,
Network proposals have a constant rate of production and
account for ≥ 50% even on a year-to-year basis. A relevant
derived research question is:
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Fig. 6: Taxonomy distribution of general MTD techniques [5].

How do taxonomy distribution and trends compare
between MTD for IoT and general MTD techniques?

To answer this question, we leverage on the general MTD
survey from Lincoln MIT laboratory [5]. It dates from 2018
and comprises 89 distinct general purpose MTD techniques.
The taxonomy distribution of the techniques is shown in Fig.
6. Network techniques are not predominant as in IoT; they
account for 21%. Runtime Environment techniques take the
most significant share with 35%. Notably, Platform techniques,
almost non-existent in IoT systems, share the virtual second
place with 20%. Software and Data techniques have similar
values as in IoT with 15% and 9%, respectively. However,
there is an increasing interest in general-purpose MTD Net-
work techniques since 2015. We base this assertion on the rate
of publications of the MTD Network techniques included in
the 2020 survey of Sengupta et al. [10]. Also, recent MTD
surveys [11], [27] focus on Network MTD solutions, which
indicates a growing interest in the research community.

2) Moving Parameter. Shannon Entropy and other Metrics:
This subsection presents the results of applying several metrics
related to the Moving Parameter (MP) X . The metrics are
defined in Sec. III. To the best of our knowledge, this is
the first MTD survey to apply the Shannon entropy metric
to the studied techniques. The precise values of the metrics
per technique can be found at the end of this section in Table
II. In Fig. 7, we present the histogram of the Shannon entropy
H(X) in bits of the techniques. Each bin aggregates values
inferior to the label of the next bin, for example, in the bin
’32’ → 32 ≤ H(X) < 64. Neither Platform nor Software
categories have techniques with 64 bits or more of Shannon’s
entropy. On the other hand, the rest of the categories have at
least two techniques, each with 128 bits of entropy or more.

In the following, we synthesize results derived from the
use of the novel qualitative metrics defined in this work. The
goal is to highlight possible relationships between Shannon’s
entropy and other qualitative metrics of the moving parameter.
The results are shown in Fig. 8. The metric Q that aggregates
the system-centric metrics is shown in Fig. 8a. From a system’s
perspective, the lower the Q value, the better. Similarly, the
attacker-centric metric ATT is presented in Fig. 8b. From a
system’s perspective, the higher the ATT value, the better. A
higher cost translates into a given attacker exploring-attacking
fewer values of the MP using the same resources (e.g., time).

Analysis. For the most part, some expected correlations can
be observed in the empirical data in Fig. 8. Those are:

• For high H(X) techniques, the entropy cost Q should be
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Fig. 7: Histogram of Shannon’s entropy of the techniques.

1 2 4 8 16 32 64 128 256 512

High

Med.

Low

H(X)

E
nt

ro
py

co
st
Q

1

2

3

4

5

(a) H(X) and entropy cost metric (system-centric).

1 2 4 8 16 32 64 128 256 512

High

Low

Med.

H(X)

E
xp

lo
ra

tio
n

co
st
A
T
T

1

2

3

4

5

(b) H(X) and exploration cost metric (attacker-centric).

Fig. 8: Relationship between Shannon’s entropy and other
metrics (# of techniques per combination).

low. This justifies the empirical feasibility of a technique
with high entropy (i.e., the system is able to cope with
the cost of generating, storing, and moving new values
of this high-entropy moving parameter X).

• For low H(X) techniques, the exploration cost ATT
should be high. This justifies the usefulness of a technique
with low entropy (i.e., low quantity but of high quality).

The first expectation is observed in Fig. 8a in techniques
with H(X) ≤ 128. Aside from some outliers (in H(X) =
16 and 32), we observe that as H(X) grows Q decreases.
However, techniques with H(X) ≥ 256 reverse the trend with
Med. to High values of Q. This is possible, but not desirable.
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It means that those techniques will be costly to implement in a
real-world system. The second expectation is observed in Fig.
8b. In general, as an inherent trade-off, it is also expected that
higher H(X) will imply lower ATT . However, we find many
(five) exceptions, especially in techniques with H(X) ≥ 128
that have Med. to High values of ATT . This is desirable from
a system point of view.

Finally, in Fig. 9 we plot ATT vs. Q metrics. Low ATT
imply low entropy cost Q, 47% of techniques are in that case.
Aside from that, there is no apparent correlation between them.

Interpretive discussion. Around 69% of the techniques are
comprised between 16 ≤ H(X) ≤ 128. They are mostly of
the Network, Runtime Environment, or Data categories. For
the most part, both the entropy cost Q and the exploration
cost ATT are Low. These techniques fall into a reasonable
compromise among all the metrics. For system designers, at
equal Q and ATT , we recommend prioritizing the higher
Shannon entropy techniques, e.g., the ones with 128 bits.

C. RQ3: How sound are the security foundations of the
proposals?

We extracted three cryptography-related information items2

that we can relate to the security foundations of each tech-
nique. In Table II we present the raw extracted data in a per-
technique basis. In this section, we synthesize those results
using the following arguments:

• The fact that all techniques rely on a randomization
process3 (Thesis).

• A technique is secure only if it uses cryptographically
strong randomness (Hypothesis).

In other words, we associate the security foundation of a
proposal with the cryptographic primitive it uses. In order to do
a proper assessment of each technique, in many cases, we re-
quired more detailed information than the three cryptography-
related items. This complementary information was obtained
from the “Synthesis of the proposal with technical detail” field
in the data extracted.

Finally, we categorized each technique into one of the
following cryptographic categories:

• No Cryptography: We consider these techniques to lack
proper security foundations. Of the 32 distinct techniques,

2Is cryptography used? Which cryptographic primitive is used? What are
the cryptographic inputs?

3Even the ones that are diversification-based use randomization either to
create the variants or to select one of them.

Current

34%
Not Current*

28%

No Crypto

38%

*Deprecated or not-tested cryptography.

Fig. 10: Cryptographic categories of the techniques.

four explicitly do not use cryptography. They are instead
based on algorithms from game theory, deterministic or
stochastic optimization problems. Neither has any input
entropy to the problem other than the system variables.
Other studied techniques assume, sometimes even implic-
itly, a random process but do not give any detail about
it. We grouped all these techniques into this category.

• Not Current: We consider these techniques to lack proper
security foundations. Techniques in this category, either
use cryptography that is known to be vulnerable (e.g.,
MD5), or proposed their custom-made cryptographic
primitives or protocols but without security proofs.

• Current: We consider these techniques to have proper
security foundations. These techniques use legacy or
state-of-the-art cryptography with security proofs and
not-known attacks (e.g., SHA256, HMAC, ChaCha20,
Keccak).

The results are shown in Fig. 10. Only 34% of the tech-
niques (11 out of 32) use current cryptographic primitives.
The remaining majority (66%), uses not current or not cryp-
tography at all.

Interpretive discussion. The goal of an MTD technique is
to improve the security of an IoT system. To measure the
security of a system is a challenging task and depends on many
factors. Comparing different techniques is not straightforward.
We simplified this comparison problem by taking into account
the cryptographic primitives of each technique. If not current
cryptography is used, the security foundation of the proposal
is not convincing, an attacker can eventually replicate the
system’s movement and neutralize the effect of the MTD.
The results show that only 34% of the techniques use current
cryptography. It is a low value considering security is the main
objective of an MTD technique.

D. RQ4: To what extent the proposals can be used in a real
IoT deployment?

To answer this question, we use empirical evidence provided
by the proposals in their corresponding publications. All of
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Fig. 11: Evaluation status of the techniques (Total = 32).

them provide, with varying levels of detail, a design specifi-
cation. We put the focus on two other aspects of the proposed
techniques: the implementation and evaluation of them. Some
clarification about those aspects:

• An implementation of a proposal provides strong evi-
dence on the feasibility of using it in a real IoT de-
ployment. Some proposals implemented the technique in
software and evaluated it in a simulated system (without
using actual IoT hardware), while others used IoT hard-
ware. Despite those differences, we consider any of them
as proof of implementation. A technique is categorized
as either implemented or not.

• An evaluation of a proposal provides evidence about the
expected effectiveness or usability of it when deployed.
Evaluation was divided into three non-exclusive sub-
categories. Theoretical, if the evaluation was done analyt-
ically or numerically (e.g., for an abstracted mathematical
aspect of the technique). Simulation, if the IoT system
was simulated even partially (e.g., ContikiOS Cooja, NS-
2). Hardware (HW), if the technique was evaluated using
real IoT hardware.

An evaluation does not imply an implementation. For ex-
ample, some authors evaluated a partial or abstracted com-
ponent of the proposal (mostly theoretically or simulated).
If applicable, we also surveyed the IoT software used by an
implementation or evaluation.

The raw results are the following. For implementation, 50%
percent of the techniques were implemented, and the rest were
not. In Fig. 11, we show a Venn diagram of the evaluation
status of the techniques. Only 19% were not evaluated at
all. Of the rest, 44% were evaluated in simulation, 25% in
hardware, and 22% theoretically. Finally, in Fig. 12, we show
the distribution of the IoT OSs or firmwares used by the
techniques’ evaluation or implementation. Contiki OS was the
preferred IoT software, with 27% of techniques using it.

To answer RQ4, we define five exclusive categories that
correspond to the evidence a technique provides to be used in
a real IoT deployment. They are defined as follows, depending
on the implementation and evaluation status of a technique:

• Very Strong. Implementation and hardware evaluation.
• Strong. Implementation without hardware evaluation.
• Mild. No implem., but HW or Simulation evaluation.
• Weak. No implementation, but theoretical evaluation.
• No evidence. No implementation nor evaluation.

4
2

2

2

1 1 1
1
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Contiki OS
TinyOS
Zephyr RTOS
Bare-metal (No OS)
Pycom FW

ArduinoCore-avr FW
ArduPilot FW (ChibiOS)
Thingsee OS
Raspbian OS

Fig. 12: IoT OS or firmware (FW) used in a technique’s
implementation or evaluation (Total = 15).
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Fig. 13: Distribution of categories of evidence about real IoT
deployment of techniques.

The results are shown in Fig. 13. Half of the 32 techniques
provide Strong or Very Strong evidence about being used in
a real IoT deployment. About 38% present Mild to Weak evi-
dence. Finally, a minority of about 13% presents No evidence.

Interpretive discussion. An MTD technique has an impor-
tant empirical component because it is meant to be used in a
real deployment. Though theoretical proposals push forward
the field and eventually lead to more empirical variants, we
believe that the empirical component should be prominent in
the MTD for IoT. Highly theoretical MTD proposals, feasible
in legacy systems, may never be usable in constrained IoT
systems. The results of this section are encouraging: 50% of
techniques provided strong or very strong evidence about their
usability and only 13% did not provide any evidence.

E. Results detailed per technique.

We summarize the raw data extracted from the publications
on a per technique basis. The results can be seen in Table
II. Assumptions: To evaluate Shannon’s entropy H(X), we
made assumptions about many proposals. We detailed the
assumptions in the table’s footnotes. Those proposals either
lacked design-implementation details or where generic, and
we instantiate them assuming a baseline IoT system of 100
nodes and nodes with 32 KB of RAM and 250 KB flash. As
for the qualitative metrics, we detailed the procedure in Sec.
III-C.
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TABLE II: MTD for IoT Techniques

Metrics* Cryptography Impl. Evaluation
Ref. Technique Moving Parameter (X) Tax.* H(X) GEN STO MOV ATT Primitive Input Theo Sim HW
[30], [33], [34] Crypto-protocol reconf. Network Crypto-Protocols S 4 + / - + - 3
[30], [33], [34] Firmware reconf. OS Firmware (In local storage) P 1 + + + + - 3
[29], [35]–[37] µMT6D IPv6 IID Addresses (64-bit) N 64 - - - - SHA256 Key 3 3

[38]–[42] OS If. Div. Addr. Layout Memory layout of linked binaries R 32† / + + / MD5 Salt 3 3

[38]–[42] OS If. Div. Names Symbol names of OS libraries R 32† - / - / SHA-2 Salt 3
[43] Code Diversification Code to store and execute S 20** / / + / -
[31] µScramble Binary Linked Code S 32† / + + / LLVM PRNG Seed 3 3
[31] µSSP Stack Canary (32-bit) R 32 - - - - µRNG (Keccak [44]) Seed(SRAM) 3 3
[45] IPv6-Multicast (SARCAST) IPv6 Multicast Group-ID (80-bit) N 32 - - - - SHA-1 Salt(32b) 3 3 3

[46] An ASLR Proposal RAM addresss layout (ASLR) R 52‡ - - - - - 3
[47] SDN-IoT Topology Reconfiguration Network Topology (Routing) N 525§ + / + / - 3
[48] Honeypots with Cellphones Network Nodes Roles N 47 + / + / - 3
[49] AShA MAC/IPv6 Address (16-bit) N 16 - - - - HMAC Key 3

[50] ZD Game Theory Approach Resource Node Locations N 671¶ - / + - - 3
[51] 6HOP P2P IPv6 IID (64b) + Port (16b) N 160 - - - - An Unkeyed-Hash Secret(512b)
[52], [53] DLSeF Encryption Key for App. Data D 128 - - - - see note‖ Key 3
[54] Ephemeral IPv6 IID Addresses (64-bit) N 64 - - - - A Block Cipher Key 3 3

[55] Stochastic Cost Minimization Nodes that mutate Network Address N 44†† - - - - - 3
[56] Application Data re-Keying Encryption Key for App. Data D 64 - - - - LED Block Cipher Key(64b) 3 3
[57] PHY-layer Divesification PHY-layer Technology N 2 + + - + - 3

[58] APP-layer Protocol Diversification Communication Protocol S 8‡‡ - / - + A PRNG Seed 3 3
[59], [60] Re-keying with Side-Channel Attacks Encryption Key D 128 - - - + (Dziembowski [61]) Key
[62] Malware tolerant Mesh-Networks Device Groups and Group-Keys N 256¶¶ / - / - IRS [63] and note¶¶ Key 3
[64] Identity Virtualization Node IDs N 64*** - - - - An Unkeyed-Hash A Secret 3 3
[65] MAC Address Randomization MAC Address (48-bit) N 48 - - - - - 3

[66] MAVR Memory layout of linked binaries R 256† † † / + / + A PRP ? 3 3
[67] SDR defined PHY-layer PHY-layer Modulation N 3 - / - + - 3 3
[68] uOTA P2P IPv6 IID (64b×2) N 128 - - - - - 3 3
[69] AVRAND Memory layout of linked binaries R 256§§ / + / + A PRNG Seed 3 3
[70] SAD-SJ PHY-layer TDMA Slot allocation N 128 - - / / A PRP (Sym.Cipher-base) Key 3 3
[71] UDP Port-Hopping UDP Port Number N 16 - - - - ChaCha20 Key+Nonce 3 3 3
[71] REST protoc. URIs Randomization CoAP .well-known/core URI N 120 - - - - ChaCha20 Key+Nonce

* Taxonomy: Data (D), Software (S), Runtime Environment (R), Platform (P), Network (N).

Metrics Cost: Low (-), Med. (/), High (+).
† Assumed a 32-bit Salt/Seed.
** Assumed 1024 (210) Code Partitions, and 1024 Versions for each.
‡ Assumed 32KB RAM (213 32-bit addresses) and 4 regions to randomize.
§ Assumed 100 Nodes and number of possible Topologies ≈!100.
¶ Assumed 100 Nodes and 101 Resources to locate (100101 resource locations)

‖ Two custom-made crypto-protocols. Flaws: They re-use a 128-bit One-Time-Pad.
†† Assumed that 10 Nodes out of 100 can be chosen to mutate address.
‡‡ Assumed 200 protocols being used on the network.
¶¶ 2 privileged groups each with a 128b key. Authors suggest Burmester-Desmedt Group Key Agreement Protocol.
*** Assumed 64-bit length Node IDs.
† † † Assumed a 256-bit Seed. Authors claim 6567 bits. Valid for 800 symbols log(!800), but limited by input entropy.
§§ Assumed 256 bits of entropy for the Seed. Authors harvest entropy using an AVR timer and an oscillator.

VI. DISCUSSION

In this section, we summarize the state of the art of MTD
for IoT with an added component of interpretation. We assess
the limitations of the review and identify future research
opportunities.

A. The state of the art of MTD for IoT

One of this survey’s main objectives was to highlight MTD
as a viable defense paradigm for IoT. First, we identified
the proposals that exist. Secondly, once the IoT corpus iden-
tified, we categorized the techniques using standard MTD
taxonomies and compared the result with a well-known corpus
of legacy MTD techniques. The predominance of network
techniques in the IoT field was expected and validated.

Then, we evaluated more fine-grained qualitative factors
of the techniques. A hypothesis was that the MTD for IoT
state of the art is not as mature as the non-IoT counterpart.
Nevertheless, MTD is technically possible (usability) and de-
sirable (security). For example, non-IoT solutions have sound
implementation and experimental foundations. In contrast, IoT
systems have many software and hardware constraints that,
a priori, make the MTD techniques harder to implement.
To find answers to this usability question, we empirically
studied the techniques’ implementation and evaluation status.
Furthermore, we assessed the techniques’ cryptographic prim-
itives and linked deprecated or lack of cryptography usage as
a sign of weak security foundations. The overall results in
terms of usability and security of the techniques were mixed,
validating the hypothesis that the field is still in development.
Nonetheless, a non-minority number of techniques also proved

that MTD for IoT can be usable and have solid security
foundations.

Finally, another axis of research was the usage of metrics to
evaluate other qualitative factors of the corpus. More precisely,
we used metrics related to the entropy of the MP. To the
best of our knowledge, this is the first survey to apply the
Shannon entropy of the MP in an empirical way. However,
Shannon’s entropy was not entirely appropriate to make fair
comparisons among techniques with MPs of very different
nature4. To complement it, we defined metrics in the line of
Kolmogorov complexity [72], i.e., to evaluate the amount of
resources needed to do a set of actions over the MP. The novel
metrics capture various qualitative factors of the entropy of
the MP. This allowed us to provide a more comprehensive
characterization of the studied corpus using entropy as a
common denominator.

B. Limitations of this study

One of the main limitations of this study is that the 39
papers and the 32 distinct techniques are statistically limited
to make conclusive claims. Other surveys in similar but estab-
lished fields like “MTD in cloud computing” [27] worked with
95 papers. However, we believe that the amount of material
included in the current survey is sufficient to identify the most
prominent trends.

As with any survey work, we might have left relevant papers
out. Particularly difficult were edge cases where the publica-
tions did not explicitly mention MTD but used randomization
or diversification of system components. If our inclusion

4For example, a new 128-bit address is not qualitatively the same as a new
100-nodes physical network topology configuration.
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criteria become too permissive, this survey might include
entire research clusters that never mention MTD. However,
we believe that we minimized the risk of letting out relevant
work with the systematic review methodology. Particularly
useful were the snowballing techniques that iteratively capture
related work. Furthermore, as the search method and inclusion-
exclusion criteria are documented, future researchers could
improve upon the current survey and address its shortcomings.

The evaluation of the metrics could also be contested. A
subjective component is present in their evaluations. We had to
make assumptions to evaluate the Shannon entropy. They are
detailed in the footnotes of Table II. The other four qualitative
entropy metrics were evaluated by the experience/assessment
of the authors. Even if we tried to be consistent among all
techniques, there is still a subjective component on the final
value. We tried to minimize the subjective bias for all of them.
For Shannon’s entropy, we made assumptions that we applied
to every technique that needed them. For the qualitative
metrics, we used coarse-grained (ternary) values. The metric
values should be interpreted with a corresponding inherent
uncertainty. We believe that, despite being approximate values,
it is useful to have measurable quantities to compare different
techniques.

C. Research opportunities

In this subsection, we identify some research opportunities.
First, there is almost a complete lack of MTD for IoT
techniques in the Platform category that can be explained by
the inherent limitations of the IoT hardware. Novel techniques
could leverage on legacy MTD, where Platform techniques
account for 20%, and adapt the most suitable proposals.

Secondly, the usage of the entropy metrics can go beyond
the current survey. Naturally, it would be interesting to use the
metrics to measure the non-IoT MTD techniques and compare
their state of the art with that of the MTD for IoT. In a per
technique basis, metrics usage can help system designers make
relevant trade-off decisions.

Thirdly, novel proposals that use current cryptography and
explicitly prove cryptographic aspects of the proposal are re-
quired. They are a minority in the existing techniques. In terms
of implementation and evaluation, the current state of the art
is more developed. However, more hardware evaluations -with
available source code- will be beneficial for the community
and help to the overall establishment of MTD for IoT as a
mature field of research.

Finally, we highlight MTD as a suitable cyberdefense
paradigm for IoT. Current techniques have a mixed level of
maturity. Despite that, many have a working implementation,
hardware evaluation, and current cryptography. Network tech-
niques are predominant, but there are still many opportunities,
even in that field. For example, only one [47] SDN-based tech-
nique for IoT exist5. Overall, there are still many unexplored
areas. The MTD for IoT field could leverage from existing
legacy-MTD or explore novel ideas only possible within the
IoT paradigm.

5Many SDN-based techniques apply to the legacy network and not to the
IoT system. Thus, they are not tailored for IoT but are legacy SDN solutions.

VII. CONCLUSION

Moving Target Defense is acknowledged as a promising
cyberdefense paradigm for IoT systems, but an extensive state
of the art was missing in the literature. To fill this gap,
we conducted a systematic review of MTD techniques for
IoT systems. We identified and analyzed thirty-two different
techniques, of which half were from the Network category.
Furthermore, most of the techniques have convincing empirical
evidence about their real-world deployability. We used this fact
to validate the feasibility of MTD for IoT. However, only a
third of them have sound cryptographic foundations, indicating
that their security-related aspects need improvement. MTD for
IoT is a reality, and future work should prioritize providing
strong security foundations for the proposed techniques. Re-
search effort could also be well invested in techniques of the
least explored categories: Platform and Data. Within the Net-
work techniques, constrained-SDN is a promising technology
that can enable many novel MTDs. In respect to the MTD
metrics field of research, we developed entropy-based metrics
of empirical applicability that, in conjunction with Shannon’s
entropy, can be useful in future MTD-related applications
beyond the scope of this survey.
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