Aleksandar Milenkoski
email: amilenkoski@ernw.de

The TPM: Integrity Measurement

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows operating system

Introduction

In this work, we discuss the integrity measurement mechanism of Windows 10 and the role that the TPM plays as part of it. This mechanism, among other things, implements the production of measurement data. This involves calculation of hashes of relevant executable files or of code sequences at every system startup. It also involves the storage of these hashes and relevant related data in the TPM device and in log files for later analysis.

The analysis of measurement data is normally performed by a trusted remote platform, a platform different than the one where hashes have been calculated. The remote platform can be reached over a secure network connection. A typical analysis of measurement data consists of, for example, comparing the most recently calculated hashes with hashes calculated at a previous time, or with hashes known as good hashes. A mismatch in the hash values indicates platform corruption. The verification of platform integrity by a remote platform is known as remote attestation.

Figure 1 depicts the architecture of the integrity measurement mechanism implemented in Windows 10. During the booting process of a given platform, the Unified Extensible Firmware Interface (UEFI) firmware, the boot manager, and the Windows loader measure relevant entities. They then store a processed form of the produced measurement data in the platform configuration registers (PCRs) of the TPM installed on the platform (measured into in Figure 1). In Figure 1, we refer to the UEFI firmware, the boot manager, and the Windows loader as the pre-operating system (OS) environment (Pre-OS in Figure 1). We discuss in greater detail the measurement performed in the pre-OS environment in Section 4. A new WBCL is generated at every system startup since this is when new integrity measurements are made. Each WBCL is archived into a log file, referred to as the WBCL file. WBCL files are stored in the %System-Root%\Logs\MeasuredBoot directory. We discuss the content and format of WBCL files in Section 3.

The Windows loader loads the kernel, which may implement ELAM technology in the form of an ELAM driver (ELAM and kernel in Figure 1. In case it detects the loading of a malicious driver, the ELAM driver may revoke the current WBCL using the Tbsi_Revoke_Attestation function of the TBS library ([Ste16], Section 'Invalidating the System Trust State').1,2 Among other things, a revocation of a WBCL consists of storing an unspecified value in the PCR with index 12. This indicates system corruption to the remote entity verifying platform integrity.

We analyzed the Windows Defender ELAM driver revoking the WBCL in a scenario where a given boot driver is considered malicious. We first configured the policy at Computer Configuration -> Administrative Templates -> System -> Early Launch Antimalware such that the kernel initializes only known good images. We then set breakpoints at the functions for submitting and processing TPM commands implemented as part of the export TPM driver tbs.sys and the TPM driver tpm.sys. Finally, we modified the return value of the EbLookupProperty function to 1 when the Windows Defender ELAM driver was checking a boot driver for malware. This return value indicates a known bad image. To remind, the return value of EbLookupProperty represents the decision of the ELAM driver on the maliciousness of a given boot driver.

We did not observe the Windows Defender ELAM driver or the kernel invoking Tbsi_Revoke_Attestation in order to revoke the current WBCL. They also did not invoke any other function of the TBS library or sent any TPM command to the TPM device after a decision on the maliciousness of the driver was made. It remains to be investigated whether the WBCL is revoked using means other than the ones we were focusing on, those specified in the Microsoft's development guidelines for ELAM drivers. 3 Although we did not observe the revocation of the WBCL, we observed that the kernel did not load the boot driver designated as a known bad image; that is, we observed that the Windows Defender ELAM driver effectively blocks the loading of malicious drivers.

The Windows kernel loads drivers and eventually the Windows subsystem, enabling the execution of system services and user applications (Services and applications in Figure 1). At this point, the content of WBCL files may be read by an application that transfers relevant content of these files to a remote entity verifying platform integrity. 4 In Figure 1, we refer to the former as attestation client and to the latter as attestation server.

The attestation client may obtain the most recent WBCL by invoking the Tbsi_Get_TCG_Log function of the TBS library.5

Windows Boot Configuration Log

WBCL files contain data in binary form. This data can be translated into Extensible Markup Language (XML) format using the PCPTool utility. Figure 2 depicts an excerpt of a WBCL file in XML format. This WBCL file was generated after a regular system reboot.

A WBCL file consists of multiple entries, where each entry contains relevant information on a given measured entity in the form of a TCG_PCR_EVENT structure. This structure is defined in the TCG (Extensible Firmware Interface) EFI Protocol Specification, family 2.0, level 00, revision 00.13 ([Tru16a], Section 5), which is the latest TCG EFI specification at the time of writing. It represents each measurement of an entity as a single 'measurement event' in TCG terminology (see the XML tags starting with EV_ in Figure 2). Some relevant fields of TCG_PCR_EVENT are PCRIndex and Digest. PCRIndex is the number of the PCR into which the entity has been measured (PCR Index in Figure 2). Digest is the calculated hash of the measured entity (Digest in Figure 2).

Hashes of measured entities may be Secure Hash Algorithm (SHA)-1 hashes or hashes of other types, referred to as crypto agile hashes in the TCG EFI Protocol Specification ([Tru16a], Section 5.2). They are extended into specific PCRs of the TPM (see the values of the PCR XML tags in Figure 2). Extension of a hash into a given PCR is done by updating the value already stored in the PCR as follows: PCRnew = H (PCRold || Digest), where PCRold is the old value stored in the PCR, PCRnew is the new value to be stored in the PCR, and H is a hash algorithm. In summary, the extension of a hash of a measured entity into a PCR consists of:

• oncatenating the old value stored in the PCR with the hash of the entity;

• hashing the resulting value of the above operation; and

• storing the resulting hash into the PCR. Into what PCRs hashes are extended depends on what is measured. Table 1 of the TCG PC Client Platform Firmware Profile Specification, family 2.0, level 00, revision 00.21 [Tru17] presents a mapping between measured entities and PCR indexes. In summary, the PCRs with indexes between 0 and 7 are used when extending hashes of firmware-related entities. Example such entities are UEFI variables. PCRs with indexes between 8 and 15 are used for measuring entities related to the installed operating system. What is stored in these PCRs is left to the discretion of the operating system's vendor. The PCRs with indexes between 0 and 15 are non-resettable PCRs, that is, the values stored in them cannot be cleared by the operating system, but only by hardware at each system reboot (non-resettable PCRs in Figure 1, [Tru13], Section 5.3). 6 Each measurement event is of a specific type, which indicates what has been measured. For example, the measurement event of type EV_EFI_VARIABLE_BOOT contains measurement of a UEFI variable ([Tru17], Table 5). Table 1 presents a mapping between PCR indexes and types of measurement events. The events were extended into the PCRs on the Windows 10 system after a regular system reboot. Table 1 lists only events specified in the TCG PC Client Platform Firmware Profile Specification. We obtained the results presented in Table 1 using a parser of WBCL files translated into XML format, which we developed. Some event types listed in Table 1 have multiple sub-types storing comprehensive information on measured entities. We refer to ([Tru17], Section 9.3.1) for detailed descriptions of event types.

In addition to the data presented in Table 1, we extracted from the WBCL file a list of measured executables. This includes system drivers, system services, and driver executables. Measurements of executables are stored in WBCL files as events of type EV_Event_Tag. This event type contains information on the hashes of the exe-

Implementation of Integrity Measurement

Measurements of Windows entities are performed by the boot manager and the Windows loader (Pre-OS in Figure 1). In this paragraph, we focus on the implementation of the integrity measurement mechanism in the Windows loader. We observed that the implementation of this mechanism in the boot manager is conceptually identical to the one presented in this section. SipapMeasureEventAndAppendToCommitedTCGLog first calculates hashes and therefore conducts the actual measurements. It then extends the measurements into PCRs by invoking TpmApiExtendPCR.TpmApiExtendPCR constructs a TPM command buffer and invokes TpmApiCallbackTpmCall. This function communicates with the TPM by invoking BlTpmpDriverCallback.

Operations for hash calculation are implemented as functions of the Windows loader, that is, they are softwareimplemented (see SipapFormatTCGLogEntry, SymCryptSha1/256 in Figure 3). For example, if the Intel SHA extensions are present, hash calculation is performed by executing CPU instructions specifically developed for that purpose (sha256rnds2 in Figure 3).

Appendix

Figure 1 :

 1 Figure 1: The architecture of the integrity measurement mechanism of Windows 10

3Figure 2 :

 2 Figure 2: An excerpt of a WBCL file

Figure 3 :

 3 Figure 3: Integrity measurement in the Windows loader

Table 1 :

 1 A mapping between PCR indexes and types of measurement events cutables. Measurements of executables are extended into the PCRs with indexes 12 and 13 ([Ste16], Section 'Windows Integrity Measurements'). The list of executables we extracted is placed in the Appendix, section 'Measured Executables'. It contains the filenames of the measured executables.

	PCR Event Type
	0	EV_CRTM_Contents; EV_CRTM_Version; EV_Post_Code; EV_EFI_Handoff_Tables; EV_Separator
	1	EV_Event_Tag;EV_EFI_Handoff_Tables; EV_Separator; EV_EFI_Variable_Boot
	2	EV_Separator
	3	EV_Separator
	4	EV_Separator; EV_EFI_Boot_Services_Application
	5	EV_Separator;EV_EFI_Action
	6	EV_Separator;EV_Action
	7	EV_EFI_Variable_Driver_Config;EV_Separator
	11	EV_Compact_Hash
	12	EV_Event_Tag;EV_Separator
	13	EV_Event_Tag;EV_Separator

https://msdn.microsoft.com/en-us/library/windows/desktop/jj553829(v=vs.85).aspx [Retrieved:

22/9/2017] 2 https://docs.microsoft.com/en-us/windows-hardware/drivers/install/elam-driver-requirements [Retrieved: 22/9/2017]

https://docs.microsoft.com/en-us/windows/device-security/protect-high-value-assets-by-controlling-the-health-of-windows-10based-devices [Retrieved: 22/9/2017]

5 https://msdn.microsoft.com/de-de/library/windows/desktop/bb530712(v=vs.85).aspx [Retrieved: 22/9/2017]

[START_REF] Thom | Using the Windows 8 Platform Crypto Provider and Associated TPM Functionality[END_REF], Section 'Root of Trust Overview') presents a mapping between measured Windows 8 entities and PCR indexes. To the best of our knowledge, such a mapping for Windows 10 entities is not available at the time of writing. Based on our analysis of the content of WBCL files, we assume that the mapping between Windows 10 entities and PCR indexes is to a great extent the same as that specified in[START_REF] Thom | Using the Windows 8 Platform Crypto Provider and Associated TPM Functionality[END_REF].

This project has been contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).

. For general inquiries contact Aleksandar Milenkoski (amilenkoski