Aleksandar Milenkoski 
email: amilenkoski@ernw.de
  
The TPM: Communication Interfaces

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows operating system

Introduction

In this work, we discuss how the different components of the Windows 10 operating system deployed in userland (Section 2) and in kernel-land (Section 3), use the TPM. We focus on the communication interfaces between Windows 10 and the TPM, which we depict in Figure 1. In addition, we discuss the construction of TPM usage profiles, that is, information on system entities communicating with the TPM as well as on communication patterns and frequencies (Section 3.1).

TPM Communication Interfaces: User-land

The components of the Windows 10 system deployed in user-land (referred to as Executable in Figure 1) can communicate with the TPM in two ways: direct (direct TPM communication in Figure 1) or abstracted (abstracted TPM communication in Figure 1). 

Direct TPM communication

The direct TPM communication involves executing functions declared as part of the TPM Base Services (TBS) library file named tbs.dll (TBS library in Figure 1). This library file implements a number of functions, structures, and data types for communicating with the TPM. 1 Example functions are Tbsi_GetDeviceInfo for obtaining relevant information about the TPM device and Tbsi_Get_OwnerAuth for obtaining the owner authorization value. Most of the functions implemented as part of the TBS library perform TPM operations by constructing TPM command buffers (see Section 1.3) and submitting them to the TPM device by invoking the Tbsip_Submit_Command function. 2 From the perspective of user-land system entities, this function represents the communication interface to the TPM at the lowest-level; that is, it submits commands to the TPM device in their raw form, as byte sequences.

The submission of commands from the TBS library to the TPM involves issuing a system call to the TPM driver, passing the TPM command byte sequence in the form of (input/output) I/O request packets (IRPs). 3 The system call may be issued, for example, using the NtDeviceIoControlFile Windows application programming interface (API) function. 4 The TPM driver is implemented in the %SystemRoot%\System32\drivers\tpm.sys driver executable file. This driver submits commands passed to it from the TBS library to the TPM device as discussed next.

Windows drivers may be structured into driver stacks, where drivers at higher levels process submitted IRPs and submit them to drivers at lower levels. The driver at the lowest level communicates with the actual device to which the submitted IRP is destined. 5 In a given driver stack, there may be: a single function driver, which is a driver developed by the vendor of the device handling the majority of submitted IRPs; filter drivers performing auxiliary roles in IRP processing; and bus drivers communicating with the actual device.

With each driver that is part of a driver stack is associated a driver object and a device object of the physical device. 6 The device object is a representation of the device at the level at which the driver resides. For example, there are functional device objects (FDOs), which are associated with functional drivers, and physical device objects (PDOs), which are associated with bus drivers. The driver and device objects have names associated with them so that user-land system entities can reference them in program code. 7 The TPM driver is the upper layer of the TPM driver stack. On Advanced Configuration and Power Interface (ACPI)-enabled platforms, this stack consists of the functional driver tpm.sys and the bus ACPI driver acpi.sys.

A functional device object is associated with the functional driver tpm.sys (driver object named \Driver\TPM) and a physical device object is associated with the ACPI driver acpi.sys (driver object named \Driver\ACPI).

Following the hierarchy of the TPM driver stack, when a command in the form of an IRP is submitted to the TPM driver tpm.sys, it passes the procession of the IRP to the ACPI driver acpi.sys. According to the Trusted Computing Group (TCG) ACPI Specification, version 1.2, revision 8 (this is the latest TCG ACPI specification at the time of writing [Tru17]), acpi.sys submits relevant command information to the TPM device by writing this information at a location within a memory region starting at a specific address. This address is stored in the field Control area ([Tru17], Table 7) of the ACPI hardware interface description table of the TPM device, named TPM2 (TPM hardware interface and TPM2 in Figure 1).

The layout of the memory starting at the Control area address consists of several fields, among which are Command size, Command, Response size, and Response. 8 Relevant TPM command information is written in a memory region starting at the address stored in the field Command, with a size stored in the field Command size. Once the TPM device has finished processing the command, it returns information by storing it in a memory region starting at the address stored in the field Response, with a size stored in the field Response size. This information is then read by the drivers that are part of the TPM driver stack and passed to the issuer of the TPM command.

We now demonstrate a direct communication with the TPM through an example scenario. Through this scenario we obtained an accurate insight into how the TPM device is communicated with in a direct manner. We developed a simple application that uses the Tbsip_Submit_Command function of the TBS library to execute a TPM command represented by the byte sequence 0 0xc0 0 0 0 0x0a 0 0 0 0x50. Figure 2 depicts a snippet of the application's program code for submitting the TPM command.

Using the windbg debugger operating in user-land, we set a breakpoint at Tbsip_Submit_Command to analyze the execution of this function. Figure 3 depicts relevant aspects of the function's execution. We observed that Tbsip_Submit_Command issues an IRP containing TPM command information using the NtDeviceIoControlFile Windows API function ([1] in Figure 3). NtDeviceIoControlFile submits IRPs to a device driver such that its first parameter is a handle of the device object associated with the driver.9 As per Microsoft's function calling convention, the first parameter of a function receiving a single or multiple integers as parameters is stored in the rcx register.10 By printing out the contents of this register, we obtained the handle value 0xac ([2] in Figure 3). We then obtained the address at which information about the object associated with this handle is stored. This address is 0xffffac883a4a7ba0 ([3] in Figure 3). This enabled us to obtain information about the driver stack consisting of the drivers processing the IRP, tpm.sys and acpi.sys, represented by the driver objects \Driver\TPM (i.e. the TPM driver tpm.sys) and \Driver\ACPI (i.e., the bus ACPI driver acpi.sys, [4] in Figure 3).

[3]

[4]

[2]

[1] MemBase::SubmitCommand in Figure 4). 11,12 We observed that TpmTransportMemBase::SubmitCommand submits commands to the TPM and it is invoked as follows. When an IRP containing a TPM command is received by the TPM driver, it schedules the creation of a thread handling the IRP in the Tpm20Scheduler::SchedulerThreadWrapper function. When the TPM is available for command processing, the driver triggers the submission of the TPM command in the Tpm20Scheduler:: SubmitRequest function. The actual submission of the command to the TPM is done by TpmTransport:: DispatchCommand; that is, it invokes TpmTransportMemBase::SubmitCommand.

As previously mentioned, the ACPI driver acpi.sys passes command information to the TPM by storing the information in the memory region starting at the address specified by the Control area field of the TPM2 table.

Figure 5 depicts the contents of this table as presented by the RW utility. We observed that the value stored in Control area is not zero. According to the TCG ACPI Specification, version 1.2, revision 8 ([Tru17], Table 7), this indicates that the memory region starting at the address stored in this field is used as previously described.

Figure 5: The ACPI TPM2 table

After command information is passed to the TPM, it starts processing the command. The procedure of command procession is described in ([Tru16b], Section 5). As part of this procedure, the processed command is authorized by evaluating the provided authorization value (see [Tru16a]; Section 19 on authorization of TPM commands).

In addition, the procedure defines the behavior of the TPM in different authorization scenarios. This involves, for example, increasing the count of failed TPM authorization attempts if the authorization fails.

Abstracted TPM communication

Windows 10 provides the Cryptography API: Next Generation (CNG) library, first introduced in Windows Vista, for abstracting the functionalities of the TBS library. The functions implemented as part of the CNG library act as wrappers of functions of the TBS library, adding functionalities and making their use easier. 13 CNG uses the concept of cryptographic providers, where providers are entities performing cryptographic operations (e.g., hashing, digital signature verification). 14 These entities may be implemented in software, hardware, or both. There are two main types of CNG providers: algorithm and key storage providers. The former are primarily used for performing basic cryptographic operations, such as hashing and signing, 15 whereas the latter are primarily used for performing key operations, such as creating and storing keys. 16 CNG abstracts the TPM device in the form of a hardware-implemented cryptographic key storage and algorithm provider, referred to as the Platform Cryptographic Provider. 17 Microsoft's basic software-implemented cryptographic provider is referred to as the Microsoft Primitive Provider. 18 The majory of the functions implemented as part of CNG are implemented in the %SystemRoot%\System32\bcrypt.dll and %SystemRoot%\System32\ncrypt.dll library files. The library files %SystemRoot%\System32\PCPks.dll and %SystemRoot%\System32\PCPTPM12.dll implement CNG functionalities related to the TPM (CNG TPM Implementations in Figure 1). These may invoke functions implemented as part of the TBS library.

The access and use of cryptographic provider functionalities, including those of the Platform Cryptographic Provider, is managed by CNG routers. For example, access to the key storage functionalities of the Platform Cryptographic Provider is managed by the CNG key storage router implemented in ncrypt.dll. 19 In order to verify the use of the TPM when the CNG library is utilized, we developed a simple application creating an array of random data using the Platform Cryptographic Provider. Figure 6 depicts a snippet of the application's program code, where the BcryptOpenAlgorithmProvider function is used for loading and initializing this provider. 20 We set a breakpoint at BcryptOpenAlgorithmProvider. We observed that it dynamically loads the CNG TPM implementations (i.e., the library files PCPks.dll and PPCPTPM12.dll) and the TBS library (i.e., the library file tbs.dll); see Figure 7. We also observed that TPM command execution is performed by invoking the Tbsip_Submit_Command function of the TBS library (see paragraph 'Direct TPM communication').

TPM Communication Interfaces: Kernel-land

The components of the Windows 10 system deployed in kernel-land can communicate with the TPM by invoking functions implemented in the TPM export driver (see Figure 1). Export drivers are kernel-mode library files exporting routines to the kernel or other drivers. 21 The TPM export driver is implemented in %System- Root%\System32\drivers\tbs.sys. It represents the kernel-mode implementation of the TBS library; that is, it implements the same functions as this library, modified for operation in kernel-mode. For example, instead of issuing a system call using the NtDeviceIoControlFile function (see Figure 3), which can be invoked only from user-mode, the Tbsip_Submit_Command function implemented in the TPM export driver issues IRPs by invoking the ZwDeviceIoControlFile function. ZwDeviceIoControlFile is the kernel-mode counterpart of NtDeviceIoCon-trolFile. 22

TPM Usage Profiles

In Section 2 and Section 3, we observed that TPM commands are sent in the form of IRPs to the TPM driver tpm.sys using the NtDeviceIoControlFile or the ZwDeviceIoControlFile function. We aim at automating the collection of information identifying user processes or the kernel communicating with the TPM. We also aim at collecting relevant related information, such as communication patterns and frequencies. We refer to this information as TPM usage profile and developed a script to gather it (see Appendix, section 'TPM Usage Profiler').

Once a breakpoint at NtDeviceIoControlFile or ZwDeviceIoControlFile is triggered, the script identifies the target driver of the IRP. This is based on the handle value passed as the first parameter of NtDeviceIoControlFile or ZwDeviceIoControlFile. In addition, the script displays relevant information, such as:

• timestamp information on the invocation of NtDeviceIoControlFile or ZwDeviceIoControlFile;

• the driver stack of the driver to which an IRP is being sent;

• the process ID (PID), name, and command parameters on the user process (if any) sending an IRP to the driver;

• the name of the driver object associated with the driver to which an IRP is being sent.

Since the script provides relevant information at the ingress points to the TPM driver tpm.sys (i.e., the functions NtDeviceIoControlFile and ZwDeviceIoControlFile), it enables the construction of comprehensive TPM usage pro-files. The output of the script can be stored into a file using the .logopen and .logclose windbg commands for subsequent parsing and constructing TPM usage profiles. For example, in the Appendix, section 'TPM Usage', we provide a table listing user-land executables (column 'Executable') that submit commands to the TPM until a user is presented with the login screen at system booting. This table also presents relevant parameters (column 'Parameters') and the name of the entity implemented in the executable (column 'Entity'). We emphasize that the executable list presented in the Appendix is specific for the platform where the Windows 10 system was installed on. This list may differ for other platforms, depending on their configurations, for example, configurations enabling BitLocker. 23 

Figure 1 :

 1 Figure 1: Interfaces for communicating with the TPM

Figure 2 :

 2 Figure 2: Submitting a TPM command using Tbsip_Submit_Command

Figure 3 :Figure 4 :

 34 Figure 3: Execution of Tbsip_Submit_CommandThe TPM driver manages the scheduling of TPM resources and submits commands to the TPM device in a procedural manner. Figure4depicts some of the functions implemented in tpm.sys, which are involved in command processing. Figure4depicts a function callstack when a breakpoint we set at the SubmitCommand function was triggered. This function is implemented as part of the TpmTransportMembase data structure (TpmTransport-

Figure 6 :

 6 Figure 6: Loading and initializing the Platform Cryptographic Provider

  https://msdn.microsoft.com/de-de/library/windows/desktop/aa375479(v=vs.85).aspx [Retrieved: 22/9/2017]; the function's third parameter with a value of MS_PLATFORM_CRYPTO_PROVIDER specifies the Platform Cryptographic Provider.

	13 https://msdn.microsoft.com/de-de/library/windows/desktop/aa376210%28v=vs.85%29.aspx [Retrieved: 22/9/2017]
	14 https://msdn.microsoft.com/en-us/library/windows/desktop/bb931380(v=vs.85).aspx [Retrieved: 22/9/2017]
	15 https://msdn.microsoft.com/en-us/library/windows/desktop/bb931354(v=vs.85).aspx [Retrieved: 22/9/2017]
	16 https://msdn.microsoft.com/en-us/library/windows/desktop/bb931355(v=vs.85).aspx [Retrieved: 22/9/2017]
	17 https://msdn.microsoft.com/en-us/library/windows/hardware/hh998513(v=vs.85).aspx [Retrieved: 22/9/2017]
	18 https://msdn.microsoft.com/en-us/library/windows/desktop/aa375479(v=vs.85).aspx [Retrieved: 22/9/2017]
	19 https://msdn.microsoft.com/en-us/library/windows/desktop/bb204778(v=vs.85).aspx [Retrieved: 22/9/2017]

20 

https://msdn.microsoft.com/de-de/library/windows/desktop/ms724457(v=vs.85).aspx [Retrieved: 22/9/2017]

https://technet.microsoft.com/en-us/library/security/zthk2dkh(v=vs.90).aspx [Retrieved: 22/9/2017]

In this work, we use the scope operator :: when referring to functions declared as part of data structures.

There are several different implementations of the SubmitCommand function, which are implemented as part of data structures different than TpmTransportMembase. We set breakpoints to these functions using the windbg debugger, observing that they are not invoked during regular system operation.

This project has been contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).

. For general inquiries contact Aleksandar Milenkoski

Appendix TPM Usage Profiler

This script can also be found in the folder files of the Windows Insight file repository, under the name windbg_-handle_drivername.wds.

$$ ** S c r i p t usage : [ f u n c t i o n b r e a k p o i n t ] "$$>a < [ p a t h _ t o _ s c r i p t _ f i l e ] [ System address ] " $$ [ f u n c t i o n b r e a k p o i n t ] : a b r e a k p o i n t t o a s i n g l e or m u l t i p l e * D e v i c e I o C o n t r o l F i l e f u n c t i o n s $$ ( e . g . , ' bu n t d l l ! N t D e v i c e I o C o n t r o l F i l e ' , bm / a n t ! * D e v i c e I o C o n t r o l F i l e ) $$ [ p a t h _ t o _ s c r i p t _ f i l e ] : path t o t h i s s c r i p t f i l e $$ [ System address ] : the address o f the EPROCESS s t r u c t u r e o f the k e r n e l System thread . I t can be o b t a i n e d by i s s u i n g ' ! process 4 0 '

. echotimestamps 1

} . e l s e { r ? $t0 = @$proc->O b j e c t T a b l e } r ? $t1 = @$t0->TableCode r ? $t19 = @$t1 & 0 x3 r ? $t1 = @$t1 & ( ~0 x3 ) . i f ( @$t19 == 0 ) { r ? $t3 = @$t1 + ( 4 * ( @$t18&0x 3 f c ) ) } . i f ( @$t19 == 1 ) { r ? $t3 = ( ( unsigned i n t 6 4 * ) ( @$t1 + @ $ p t r s i z e * ( ( ( @$t18&0x 3 f c 0 0 ) ) > >10) ) ) [ 0 ] + 4 * ( ( @$t18&0x 3 f c ) ) } . i f ( @$t19 == 2 ) { r ? $t17 = ( ( unsigned i n t 6 4 * ) ( @$t1 + @ $ p t r s i z e * ( ( ( @$t18&0x 3 fc 0 0 0 0 ) ) > >18) ) ) [ 0 ] r ? $t3 = ( ( unsigned i n t 6 4 * ) ( @$t17 -0 x1 + @ $ p t r s i z e * ( ( ( @$t18&0x 3 f c 0 0 ) ) > >10) ) ) [ 0 ] + 4 * ( ( @$t18&0x 3 f c ) ) } r ? $t4 = ( ( ( _HANDLE_TABLE_ENTRY * ) @$t3 ) -> O b j e c t P o i n t e r B i t s << 4 ) | 0 x f f f f 0 0 0 0 0 0 0 0 0 0 0 0 r ? $t4 = @$t4 + 0 x30 r ? $t5 = ( ( _FILE_OBJECT * ) @$t4 ) -> D e v i c e O b j e c t r ? $t6 = ( ( _DEVICE_OBJECT * ) @$t5 ) -> D r i v e r O b j e c t r ? $t7 = ( unsigned i n t 6 4 ) @$t6 + 0 x38 r $t8 = p o i ( @$t7 + 0 x008 ) . i f ( ( @$t18 & 0 x80000000 ) == 0 x80000000 ) { . p r i n t f " **************** \n " ;

. p r i n t f " Image /Command : Kernel \ n " . p r i n t f " D r i v e r a s s o c i a t e d t o IRP-ed d e v i c e : %mu\ n " , @$t8 ! de v sta c k @$t5 . p r i n t f " **************** \n " ; } . e l s e { . p r i n t f " **************** \n " ; r ? $t15 = ( ( unsigned i n t 6 4 * ) ( ( unsigned i n t 6 4 ) ( & ( ( @$proc->Peb )->ProcessParameters )->CommandLine ) + 0 x008 ) ) [ 0 ] . p r i n t f " Image /Command : %mu\ n " , @$t15 r ? $t15 = ( unsigned i n t 6 4 ) ( @$proc->UniqueProcessId ) . p r i n t f " PID : %d \ n " , @$t15 . p r i n t f " D r i v e r a s s o c i a t e d t o IRP-ed d e v i c e : %mu\ n " , @$t8 ! de v sta c k @$t5 . p r i n t f " **************** \n " ; } g