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ABSTRACT

Investigation of dynamic processes in cell biology very often relies on the observation in

two dimensions of 3D biological processes. Consequently, the data are partial and statis-

tical methods and models are required to recover the parameters describing the dynamical

processes. In the case of molecules moving over the 3D surface, such as proteins on walls

of bacteria cell, a large portion of the 3D surface is not observed in 2D-time microscopy. It

follows that biomolecules may disappear for a period of time in a region of interest, and then

reappear later. Assuming Brownian motion with drift, we address the mathematical problem

of the reconstruction of biomolecules trajectories on a cylindrical surface. A subregion of the

cylinder is typically recorded during the observation period, and biomolecules may appear or

disappear in any place of the 3D surface. The performance of the method is demonstrated on

simulated particle trajectories that mimic MreB protein dynamics observed in 2D time-lapse

fluorescence microscopy in rod-shaped bacteria.

1 INTRODUCTION

In 2D and 3D live-cell imaging, spatiotemporal events and biomolecule dynamics are

frequently observed with an incomplete field of view. Very often these observations are

related to regions of observation (ROO) inside a tissue, a cell, or in the neighborhood of

membranes. Nevertheless, it is quite unusual to analyze 3D dynamics of biomolecules or

events occurring on a closed surface and observed on a 2D plane. Our work is motivated by

the study of dynamics of MreB proteins, moving close to the inner membrane during cell wall

construction in rod-shaped bacteria ([2], [20]). Its dynamics can only be observed in a small

region and are recorded as 2D time-lapse movies (Fig. 1a). As for 3D image acquisition,

even it can solve the problem of partial observation, is not always appropriate, especially if

the objective is to capture fast and temporally short events as described in [2]. The frame

rate adapted to the scale of dynamics may be too high when compared to the period of time

to acquire temporal series of 3D volume ([5] and [9]).
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To our knowledge, identifying re-entrance events of the same entities inside the ROO is

not addressed in the literature. In experimental data, when the unobserved region represents

a significant part of the entire surface, a complete description of the dynamics on these

closed surfaces becomes of paramount importance for deciphering the mechanisms of some

processes. In our study of the regulation of the dynamics of MreB protein, as inputs, we

consider a set of trajectories estimated by tracking algorithms (e.g. [14], [8]). These tracking

algorithms are very sophisticated and allow us to handle large sets of particles, different

stochastic dynamical models [4], [6], and observation models [12], [16]. They take into

account birth/death events, and/or split/merge events. Particles may be unobserved or

undetected for short periods of time, especially in 2D+time microscopy. However, none

computational or statistical method manages the situation corresponding to a large hidden

region inside the region of interest. Also, the identification of particles leaving the ROO

through one border of the domain and re-entering from a far border is not addressed. Our

objective is then to provide a generic approach to tackle the problem of the reconstruction

of particle trajectories observed on a small part of a closed surface as illustrated in Fig. 1b.

In this paper, we focus on the design and evaluation of a self-contained mathematical

framework to tackle the reconstruction of particle trajectories on cylindrical surfaces, given

the tracklets observed in a small window sampled on the surface. In our study, the particles

are assumed to obey a stochastic Brownian motion with drift and may appear or disappear

during the observation period. Split or merge events are not considered in the modeling

framework. The trajectory reconstruction problem is defined as the maximization of the

likelihood function given tracklets inside the ROO. The optimization problem to be solved is

formulated as an integer linear programming problem. The final algorithm is a data-driven

algorithm with no hidden parameter to be set by the user. We demonstrate the performance

and robustness of our computational method on simulation data, by varying the ratio of

observed to unobserved region, the drift and variance of particles, as well as the rates of

birth and death of particles.

The remainder of the paper is organized as follows. In Section 2, we present the problem

formally and introduce notations. In Section 3, we describe the probabilistic framework,

including Poisson processes used to describe birth and death events, and Brownian motion

with drift to represent particle motion. We also describe the computational procedure aiming

at connecting tracklets belonging to the same trajectory, and then recovering the dynamics

of particles on the whole closed surface. Note that we suppose that the curvature of the

cylinder is known and so that the movements are represented on a 2D unwrapped surface.

In Section 4, the performance of our algorithm is evaluated on simulated data. Finally, we

conclude and propose some future work. A summary of notations useful for the evaluation

of the likelihood is given in Supplementary Materials (4).
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Figure 1: (a): Several consecutive images from a real TIRFM movie[1]. Tracks are su-

perposed on the images.(b) left: Illustration of trajectories observed during recorded time

[0, TS] on the surface of a cylinder. Only the motions inside the ROO ] − l, 0[×[0, H] can

be observed, even though the dynamics happen on the whole surface; right: Representation

of the dynamics on a 2D unwrapped surface ] − L, 0[×[0, H]. The objective is to recover

the dynamics on the whole surface from the partial observations, by coordinating the inputs

through {−l} × [0, H] and the outputs through {0} × [0, H] in a movie during TS, taking

into account particles birth and death events.

2 PROBLEM STATEMENT AND NOTATIONS

We consider a probabilistic model to represent particles that are born, move and die on

a cylindric membrane. Formally, let us denote H and L the height and perimeter of the

cylinder respectively (see Fig. 1). We associate 2D coordinates (x, y) ∈ [−L, 0] × [0, H] to

each point of the underlying cylindric manifold. The particles are ”born” with a constant

rate λ and appear uniformly at random on the membrane surface. We consider a Poisson

process with intensity λ to statistically represent the birth events. Each particle is assumed

to have the same constant rate of death τd such that life duration Td of a particle follows

an exponential law of parameter τd. During its lifetime, a particle k born at time t0 and

located at Zk
0 = (Xk

0 , Y
k

0 ), moves according to Brownian motion with drift. On the set

]−L, 0[×[0, H], the position of the particle at time t ≥ t0 prior to its death time is given by

Zk
t = Zk

0 + v(t− t0) + ΣBk
t−t0 (1)

where Zk
t = (Xk

t , Y
k
t ), v = (vx, vy), Σ =

[
σx 0

0 σy

]
, Bk

t is a two-dimensional Wiener process.

In order to model the topology of the cylinder as illustrated in Fig. 1, we impose deterministic

jumps when the process reaches one of the two borders {−L} × [0, H] or {0} × [0, H]. For

any y ∈ [0, H], the process reaching position (−L, y) jumps to position (0, y) and vice versa.
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In y direction the initial position of a particle lies between [0, H]. When a particle hits the

vertical borders, its following trajectory is no longer considered. Finally, we assume that

each particle behaves independently from the others and that there is no fission or fusion of

particles.

In the sequel, we observe the dynamics at discrete times ∆t, 2∆t, 3∆t . . . We denote ∆t

the time step on the subset [−l, 0]× [0, H] with l < L. The observations are recorded during

a time interval [0, TS]. As we suppose that a particle does not change its drift direction

along its trajectory, we assume that vx > 0, even though particles can actually move in both

directions, which requires a classification to separate them into two groups. We consider

that an observed tracklet of a given trajectory is an output if the last observed point of the

segment is within a neighborhood of {0}× [0, H]. Meanwhile, we consider that it is an input

if the first observed point is within a neighborhood of {−l} × [0, H]. Our main objective is

then to associate the set of tracklets exiting the observed set [−l, 0]× [0, H] with the set of

tracklets entering this observation set. The challenge is to correctly match the outputs and

the inputs associated to particles (see Fig. 1).

3 PROBABILISTIC MODELS AND METHODS

Let us consider a given sample S, the observation set of all the trajectories. Define

the sets OS = {o1, ..., op} and IS = {i1, ..., iq} of p outputs and q inputs. Each output

o = (to, yo) ∈ OS is characterized by its output time to and its position yo ∈ [0, H] where

the particle left the observed region. Similarly each input i = (ti, yi) ∈ IS is characterized

by its input time ti and its position yi ∈ [0, H] where it entered the observed region. A

particle ”involved” in an output o ∈ OS either died after time to in the unobserved region,

or is ”involved” in a given input i ∈ IS with ti > to. We will denote this event by {o → i}.
Similarly a particle ”involved” in an input i ∈ IS was either born before time ti in the

unobserved region, or is ”involved” in a given output o ∈ OS with ti > to, which corresponds

to the event {o→ i}.

Define c = (Dc, Bc, bc) with Dc ⊂ OS, Bc ⊂ IS and bc a bijection from OS \Dc to IS \Bc

in order to describe the configuration for which all outputs in Dc died in the unobserved

region, all inputs in Bc are born in the unobserved region, and the event⋂
o∈Os\Dc

{o→ bc(o)}

was realized. Our aim is to determine the maximum likelihood configuration c given the

sample S. The outline of the connection procedure is given in Fig. 2, to facilitate the

understanding of the modeling steps.
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Sample S, the outputs and

inputs sets OS and IS ,

(section 3.1)

Estimation of parameters

τ̂α, τ̂d, v̂ and σ̂,

(sections 3.1, 3.3)

Computation of the probability

P (Bc) that the inputs in Bc
are born in the unobserved

region.

(section 3.1 Eqs. (6) and (7))

Computation of the

probability P (Dc) that the

outputs in Dc died in the

unobserved region.

(section 3.1 Eq. (5))

Computation of the

probability P ([c) that a set

of outputs are connected to

a set of inputs.

(section 3.1 Eqs. (8) and

(9)

Likelihood

(section 3.1 Eqs. (4), (10)-(12))

Maximization of likelihood

with CPLEX,

(section 3.2 Eqs. (13)

and(14))

Tracks reconstruction and

estimation of connection

accuracy,

(section 4.2)

(+) Lifetime of a particle Td ∼ E(τd)

(+) The first passage time on l of a

Brownian motion Tl follows an Inverse

Gaussian distribution (Prop 1).

(+) To emphasize, τ̂α is a

novel estimator Eq.(19)

(+) The possibility to find

the nth optimal solution, sec-

ond part of section (3.2)

Figure 2: An outline of the connection procedure: from the estimation of the parameters

to connection accuracy measurement, including likelihood formulation. All notations are

defined in the corresponding sections.

3.1 Likelihood of a configuration

In this section, our objective is to derive an analytic expression of the likelihood Q(c) of

a configuration c. The aim is to find, for a given sample S, the configuration ĉ such that

P (ĉ/S) is maximal. It is difficult to calculate directly P (ĉ/S). Since c ⊂ S ⊂ OS, we can

compute P (ĉ/S) working conditionally on OS.
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However, since the model is in continuous time and involves random variables with con-

tinuous densities with respect to the Lebesgue measure, the conditional probability P (c/OS)

is equal to 0. This prevents to compute directly P (ĉ/S) with the classical conditional formula

P (c/S) =
P (c/OS)

P (S/OS)
,

because it gives P (S/OS) =
∑

c∈CS P (c/OS) = 0.

Therefore, for each input i = (ti, yi) ∈ IS, we consider a spatiotemporal neighborhood

V ε
i = T εi ×Hε

i with T εi = [ti − ε
2
, ti + ε

2
] and Hε

i = [yi − ε
2
, yi + ε

2
] for some ε > 0.

The idea is to replace a given configuration c by a set Cεc of configurations where each

element c∗ ∈ Cεc is similar to c but each input i ∈ IS is replaced by an input in V ε
i . Formally,

for each configuration c leading to the input set IS, Cεc is the set of configurations defined as

follows: c∗ = (Dc∗ , Bc∗ , bc∗) ∈ Cεc if and only if for each i ∈ IS, there exist i∗ε ∈ V ε
i satisfying:

Dc∗ = Dc,

Bc∗ = {i∗ε , i ∈ Bc},
For each i ∈ IS \Bc, bc∗ (b−1

c (i)) = i∗ε .

With this definition, we have

P (c/S) = lim
ε→0

P (Cεc/S) = lim
ε→0

P (Cεc/OS)∑
c′∈CS P (Cεc′/OS)

. (2)

In what follows, we study the behavior of P (Cεc/OS) when ε goes to 0. We will always

work conditionally on the realization of the output set OS but we will keep this conditioning

implicit and write P (Cεc) instead of P (Cεc/OS) in order to simplify the notations. The study

of P (Cεc) will involve the probability for a particle to die in the unobserved region but also

the probability that a particle born in this unobserved region enters the observed one in a

given spatiotemporal neighborhood V ε
i .

Furthermore, we assume that the particles born in the unobserved region, enter the

observed one with a constant rate τα and with a uniform distribution on {−l} × [0, H].

This is consistent with the fact that the particles are born with constant rate λ and appear

uniformly at random on the membrane surface. Therefore, denote by Nα the Poisson process

of intensity τα counting the number of inputs involved by particles born in the unobserved

region.

Consider an output o ∈ OS and the possibility for the particle involved in o to die in the

unobserved region. We have the following proposition (see [18], [19], [21]).
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Proposition 1 Given the particle motion model as Brownian motion with drift as described

in equation 1, the first passage time noted as Tl on the entrance line {−l}×[0, H] of a particle

starting at position z0 = (0, y0) for some y0 ∈ [0, H], follows a law of inverse Gaussian, that

is Tl ∼ IG
(
lu
vx
,
(
lu
σx

)2
)

where lu := L− l is the length of the unobserved region.

Recall that if X ∼ IG(µ, λ), then X ≥ 0 almost surely, and for each x ≥ 0,

P (X ≤ x) =

∫ x

0

√
λ

2πy3
exp

(
− λ(y − µ)2

2µ2y

)
dy. (3)

In our framework, the event corresponding to the death of a particle with life duration Td
following an exponential law of parameter τd in the unobserved region is precisely {Td < Tl}.
Hence, we can derive an explicit expression of P (Cεc).

Assume ε small enough so that for each i, i′ ∈ IS, T εi ∩T εi′ = ∅. For a given configuration c

and a given ε > 0, we will write Cεc = (Dc,Bεc, [εc) with Bεc = {Bc∗ , c
∗ ∈ Cεc} and [εc = {bc∗ , c∗ ∈

Cεc}.

Due to the independent behavior of the particles, we have the following decomposition:

P (Cεc) = P (Dc)P (Bεc)P ([εc). (4)

We can then compute separately the probabilities of events Dc, Bεc and [εc. First, note that

we can assume without loss of generality that each output o ∈ Dc starts at time to = 0

and that only the position yo ∈ [0, H] fluctuates with o, but with no influence on Td or Tl.

Moreover, the loss of memory property of the exponential law ensures that the life duration

Td of the particle after the output o still follows an exponential law of parameter τd.

Since all outputs behave identically and independently, we have P (Dc) = P (Td <

Tl)
|Dc|,where |Dc| stands for the cardinal of Dc. According to proposition 1, and since Td

and Tl are independent, we have

P (Td < Tl) =

∫ +∞

0

∫ tl

0

fTd(td)fTl(tl)dtd dtl, (5)

=

∫ +∞

0

∫ tl

0

τde
−τdtd lu

σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtd dtl,

=

∫ +∞

0

lu (1− e−τdtl)
σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtl,

where fTd and fTl respectively stand for the density functions of Td and Tl.

Now, consider the event Bεc. We call ”spontaneous input” an input related to a particle

born in the unobserved region that has never been observed. The set Bεc is defined so that,
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for each input i ∈ Bc, we have exactly one ”spontaneous input” appearing during the time

interval T εi , with a position in Hε
i . Moreover, outside ∪i∈BcT εi , there is no ”spontaneous

input”. Formally, we have

Bεc =

{
Nα

(
[0, TS] \

⋃
i∈Bc

T εi

)
= 0

}⋂(⋂
i∈Bc

(
{Nα(T εi ) = 1} ∩Hε

i

))
, (6)

where Nα is a Poisson process of intensity τα associated to the counting of inputs involved

by particles born in the unobserved region on the time interval [0, TS]. In order to simplify

the notations, Hε
i denotes also the event of ”spontaneous” appearance of an input i in Hε

i .

This event is independent of the process Nα, and since the ”spontaneous inputs” appear

uniformly on [0, H], we have P (Hε
i ) = ε

H
.

Meanwhile, for any time interval I, Nα(I) follows a Poisson law of parameter τα|I| where

|I| denotes the length of the interval I. Since ε is small enough so that for each i, i′ ∈
IS, T

ε
i ∩T εi′ = ∅, Nα(T εi ) and Nα(T εi′) are independent. Consequently, we can compute P (Bεc)

as follows:

P (Bεc) = e−τα(TS−|Bc|ε)
(
εταe

−ετα ε

H

)|Bc|
=
(
ε2τα
H

)|Bc|
e−ταTS . (7)

Finally, consider the event [εc. For each input i ∈ IS \ Bc, we denote by {oic → V ε
i }

the survival event of the particle involved in the output oic = b−1
c (i) in the unobserved

region which appears in the spatiotemporal neighborhood V ε
i . Since the particles behave

independently, we have

P ([εc) =
∏

i∈IS\Bc

P
(
{oic → V ε

i }
)
. (8)

In the sequel, we consider a given input i ∈ IS \ Bc and its related output o = b−1
c (i).

Defining si = ti − to and hi = yi − yo allows us to center the situation around the output o

in the following way. A particle born at time 0 in position z0 = (0, 0) has a life duration Td
following an exponential law of parameter τd. During its lifetime, the position of the particle

is driven by a Brownian motion with drift Zt = (Xt, Yt): Zt = vt + ΣBt, where Bt is a

two-dimensional Wiener process and v and Σ are given in Equation (1). Define Tl the first

reaching time of lu = L − l of the process Xt. The event {o → V ε
i } can now be written as

follows:

{oic → V ε
i } = {Td > Tl}

⋂{
Tl ∈

[
si −

ε

2
, si +

ε

2

]}⋂{
YTl ∈

[
hi −

ε

2
, hi +

ε

2

]}
.

This expression corresponds exactly to the fact that in order to realize {oic → V ε
i } the particle

needs to have a life duration longer than its first reaching time of lu and to appear in the

spatiotemporal neighborhood
[
si − ε

2
, si + ε

2

]
×
[
hi − ε

2
, hi + ε

2

]
. Furthermore, Td follows an
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exponential law of parameter τd, Yt follows a Gaussian law of parameters vyt and σ2
yt and

Tl ∼ IG
(
lu
vx
,
(
lu
σx

)2
)

. Moreover, due to the fact that Σ is diagonal, the process Yt is not only

independent of Td but also of Tl. This allows us to write

P
(
{oic → V ε

i }
)

=

∫ si+
ε
2

si− ε2

fTl(tl)

(∫ +∞

tl

fTd(td)

(∫ hi+
ε
2

hi− ε2

fYtl (y)dy

)
dtd

)
dtl.

As the two integrals involve a small domain of size ε, P ({oic → V ε
i }) ∼ O(ε2), and

lim
ε→0

P ({oic → V ε
i })

ε2
= fTl(si)fYsi (hi)

∫ +∞

si

fTd(u)du (9)

=
lu

σx
√

2πs3
i

exp

(
−(vxsi − lu)2

2σ2
xsi

)
1

σy
√

2πsi
exp

(
−(hi − vysi)

2

2σ2
ysi

)
e−τdsi

=
lu

2πσxσys2
i

exp

(
−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)
.

For each configuration c, we calculate the likelihood Q(c) of the configuration c as follows:

Q(c) := lim
ε→0

P (Cεc)
ε2|IS |

.

From (4) and Equations (5, 7, 8 and 9), we finally obtain the likelihood

Q(c) =
(τα
H

)|Bc|
e−ταTS

(∫ +∞

0

lu (1− e−τdtl)
σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtl

)|Dc|

×
∏

i∈IS\Bc

[
lu

2πσxσys2
i

exp

(
−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)]
. (10)

Note that the limit when ε goes to 0 of P (Cεc)
ε2|IS |

is well defined, strictly positive, and that

the exponent 2|IS| does not depend on the configuration c.

Recalling (2), this allows us to write

P (c/S) =
Q(c)∑

c′∈CS Q(c′)
(11)

and as a consequence, we have

ĉ = argmax
c∈CS
{Q(c)}. (12)
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3.2 Maximum likelihood and optimal configuration

The aim of this section is to identify the configuration c corresponding to the maximal

likelihood Q(c) (see Equation (10)). Define

β := − log
(τα
H

)
,

δ := − log

(∫ +∞

0

lu (1− e−τdtl)
σx
√

2πt3l
exp

(
−(vxtl − lu)2

2σ2
xtl

)
dtl

)
and for each configuration c and each i ∈ IS \Bc

γic := − log

[
lu

2πσxσys2
i

exp

(
−(vxsi − lu)2

2σ2
xsi

− (hi − vysi)
2

2σ2
ysi

− τdsi

)]
.

It follows that

ĉ = argmax
c∈C

Q(c) = argmin
c∈C
− log (Q(c)) (13)

= argmin
c∈C

β|Bc|+ δ|Dc|+
∑

i∈IS\Bc

γic

 .

This decomposition allows us to consider a linear optimization problem where β represents

the cost of the spontaneous birth of an input, δ the cost of the death of an output and γic
the cost of the connection between the output b−1

c (i) and the input i. The cost of connection

can be defined for any couple (o, i) ∈ OS × IS as

γio := − log

[
lu

2πσxσys2
o,i

exp

(
−(vxso,i − lu)2

2σ2
xso,i

− (ho,i − vyso,i)
2

2σ2
yso,i

− τdso,i

)]
,

where so,i := ti − to, ho,i = yi − yo and the convention γio = +∞ if ti ≤ to.

In order to write in a canonical way this linear optimization problem, we associate to

each configuration c a family of coefficients (co,i)(o,i)∈OS×IS such that co,i = 1 if bc(o) = i and

co,i = 0 if bc(o) 6= i. Since an output can be connected to at most one input, for each o ∈ OS,∑
i∈IS c

o,i ∈ {0, 1} and
∑

i∈IS c
o,i = 0 corresponds to the death of the output o. Similarly, for

each i ∈ IS,
∑

o∈OS c
o,i ∈ {0, 1} and

∑
o∈OS c

o,i = 0 corresponds to the fact that the input i

is a ”spontaneous input”.

Our optimization problem is then equivalent to finding the family of coefficients (co,i)(o,i)∈OS×IS
that minimizes the quantity

β

(∑
i∈IS

(
1−

∑
o∈OS

co,i

))
+ δ

(∑
o∈OS

(
1−

∑
i∈IS

co,i

))
+
∑
o∈OS

∑
i∈IS

γioc
o,i

10



or equivalently

K(c) :=
∑
o∈OS

∑
i∈IS

(
γio − β − δ

)
co,i s.t.


∀o ∈ OS, ∀i ∈ IS, co,i ∈ {0, 1},
∀o ∈ OS,

∑
i∈IS c

o,i ∈ {0, 1},
∀i ∈ IS,

∑
o∈OS c

o,i ∈ {0, 1}.
(14)

In order to avoid to have infinite costs γio when ti ≤ to,, we can also impose co,i = 0 if ti ≤ to.

Actually the problem (14) is a conventional linear optimization problem which can be solved

by applying the CPLEX Linear Programming solver (https://www.ibm.com/analytics/cplex-

optimizer).

The configuration ĉ is then the solution of the optimization problem (14) and corresponds

to the most likely configuration given the sample S. In order to complete the study, we

propose to compute the following most likely configurations in a reccurent way by solving

(14) with additional constraints ensuring that the solution is different from the previous

ones. In other words we define recursively the sequence (cn)n∈N in the following way:

� c1 := ĉ

� ∀n ≥ 2, cn solves (14) with the n− 1 additional constraints

∀k ∈ {1, . . . , n− 1},
∑
o∈OS

∑
i∈IS

[
co,in (1− co,ik ) + (1− co,in )co,ik

]
≥ 1. (15)

With this definition, cn is then the n−th most likely configuration. When n is greater

than the number nS of configurations compatible with the sample S, the constraints are

impossible to satisfy. In other words this sequence is well defined up to nS.

3.3 Estimation of parameters

Several parameters are involved in our computational approach. In this section, we

propose clues to set these parameters. First, the parameters v and Σ can be estimated with

classical maximum likelihood estimation procedures.

Second, we propose an estimator τ̂d of τd as explained below. The sample S can be

considered as a set of points p = (tp,Zp) observed at time tp and position Zp = (Xp, Yp)

grouped in clusters s corresponding to tracklets of trajectories. The death of a particle in

the observed region is detected in S for each point p ∈ S for which the associated tracklet

sp has no successor point at time tp + ∆t. In order to be sure that the absence of successor

is effectively due to the death of a particle and not to a particle leaving the observed region,

we restrict the analysis to a region excluding a neighborhood of the border. However, we

can check in this neighborhood the existence of successors for points in the restricted region.
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We denote by Sr ⊂ S the sample of points in the restricted region. For each point p ∈ Sr,
we denote by Dp the event corresponding to the absence of successor for p. This corresponds

to the fact that the particle involved in p died during the time interval [tp, tp + ∆t]. Since

the life duration Td of a particle follows an exponential law of parameter τd, and the absence

of memory property of the exponential law, we have

P (Dp) = P (Td ∈ [0,∆t]) = 1− e−τd∆t. (16)

Hence, we define our estimator τ̂d as

τ̂d =
1

∆t|Sr|
∑
p∈Sr

1[Dp], (17)

where |Sr| stands for the number of points in Sr and 1[·] denotes the indicator function. Due

to the absence of memory property of the exponential law, the random variables 1[Dp] are

i.i.d. As |Sr| goes to +∞, the strong law of large numbers yields to

lim
|Sr|→∞

τ̂d =
1− e−τd∆t

∆t
a.s.

The justification of this choice for τ̂d relies in the following almost sure convergence:

lim
∆t→0

lim
|Sr|→∞

τ̂d = τd a.s. (18)

Our estimator τ̂d is then consistent as ∆t is small enough. Moreover, since the variables 1[Dp]

are i.i.d Bernoulli random variables, we can calculate the related confidence interval. If qα
denotes the α-quantile of the standard normal distribution, we have the following confidence

interval of level α for 1−e−τd∆t

∆t
:

CIα =

τ̂d − qα
√
τ̂d
(

1
∆t
− τ̂d

)
|Sr|

, τ̂d + qα

√
τ̂d
(

1
∆t
− τ̂d

)
|Sr|

 . (19)

If ∆t is small enough, we get a good approximation of a confidence interval of level α for τd
since

lim
∆t→0

1− e−τd∆t

∆t
= τd.

Now, we describe the estimation procedure for the rate τα of ”spontaneous inputs” in-

duced by particles born in the unobserved region [−L,−l] × [0, H] and reached the border

{−l}× [0, H]. We assume here that the parameters v, Σ and τd are known, keeping in mind

that in practice estimators are used instead. As introduced earlier, L is the perimeter of the

cylinder, l is the length of the observed region, and lu = L− l is the length of the unobserved

region. For a given length x, we denote by Nx the number of tracklets born in the region

12



Figure 3: An artificially constructed zone ] − lu, 0] × [0, H] having the same size as the

unobserved region ]− L,−l]× [0, H]. The observed region is ]− l, 0]× [0, H] ; as the width

of the invisible part is lu, the extended zone has width le = lu − l.

] − x, 0] × [0, H] and reached the border {0} × [0, H]. Accordingly,
Nlu
TS

is a consistent esti-

mator of τα since the dynamics are assumed to be homogeneous on the surface of cylinder.

Our aim is actually to build an estimator for τα in the case where lu > l which prevents

us to compute directly Nlu . Therefore, we compute Nl by taking the whole observed region

into account, and denote by S∗l the set of tracklets having an input in {−l} × [0, H] and an

output in {0}× [0, H]. For each tracklet s ∈ S∗l and each length x ∈ [0, lu], we denote by Bx
s

the event corresponding to the birth of s within ]− l− x,−l]× [0, H]. Let le = lu − l be the

length of the extended zone [−lu,−l] × [0, H]. We are now interested in the realization of

the events Ble
s .

In Fig. 3, Nl = 2 correspond to tracks #1 and #4, S∗l = {2, 5}, and the event Ble
2 is

realized while Ble
5 is not.

Note that since the particles have the same independent dynamics, P (Bx
s ) does not

depend on s. For x < l, this probability can easily be estimated as follows:

p̂x =
Nx∣∣So∣∣ ,

where So is the set of tracklets having an output in {0} × [0, H]. The strong law of large

numbers yields a consistent estimator and allows us, in the case where le < l, to define our

estimator τ̂α as follows:

τ̂α =
Nl + p̂le|S∗l |

TS
. (20)

Intuitively, this estimator amounts to counting the number of particles reaching {0}× [0, H]

with weight 1 for each tracklet that we actually saw being born in the observed region and

13



with weight p̂le for each spontaneous input that appeared in {−l} × [0, H]. Note that, as

Nlu = Nl +
∑

s∈S∗l
1[Ble

s ], τ̂α is an unbiased estimator of τα. Moreover, if we assume that the

number of observed tracklets grows linearly with the observation time TS, this estimator is

consistent when TS goes to +∞.

Now, we consider the case l < le < 2l which can easily be extended to the general case

l < le. Consider s ∈ S∗l and denote for each interval J ⊂ [−L, 0] the event BJ
s where the

tracklet s is born in the region J × [0, H]. The event Ble
s can be decomposed as follows:

Ble
s = B[−2l,−l]

s

⋃(
B

[−2l,−l]
s ∩B[−lu,−2l]

s

)
.

The loss of memory and homogeneity properties of the dynamics lead to the following esti-

mator p̂le :

p̂le := p̂l + (1− p̂l) p̂le−l.

3.4 Limits of the model

The main assumptions in this work are homogeneity in time and space, induced by the

constant death and birth rates, as well as constant speed and noise. While these assumptions

lead to a simple model and allows a reasonably technical study, it is natural to question it.

The main reason of this choice is that it corresponds to uniform laws when we have no reason

prioritize one specific behavior in particular.

Note that a similar study can be made with different speeds among trajectories. This can

be done by classifying the trajectories according to their speeds and applying the present

procedure to each class. This would lead to the same estimation procedure with smaller

datasets but theoretical results will still hold.

We then discuss the homogeneity in time, for which the most questionable assumption

is the constant death rate that could possibly depend on the position or on the age of the

particle. Concerning the dependence in space, this modification would lead to the estimation

of a function of the position instead of the simple constant τd. From a practical point of view,

this would increase the dimension of the parameter to estimate, with the same size of dataset.

From a theoretical point of view a more technical study can be made as long as we assume

the death function rate (depending on the position) constant on each tracklet {y}×]− L, 0]

in order to overcome the issue of partial observation.

Concerning the dependence in time, the assumption that the death rate depends on the

age of the particle prevents to propose a similar study. Indeed, due to partial observation,

the age of each particle entering the observed region is unknown and can not be estimated.
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3.5 Modeling hypothesis and MreB dynamics

The study of the dynamics of MreB patches or assemblies in the vicinity of the inter-

nal membrane of Bacillus subtilis bacteria reveals several subpopulations undergoing con-

strained, randomly or directionally moving [2]. Herein we are interested in the directionally

moving subpopulation dynamics. This subpopulation moves possessively around the cell

diameter [11, 10]. Following Hussain et al [13], Billaudeau et al [3] confirmed that direc-

tionally moving filaments travel in a direction close to their main axis, perpendicularly to

the long axis of the cell (angle γ = 89.9◦ ± 37.0◦). Hence, for some filaments, the speed

vector may have a component in the main direction of the bacteria.

According to Wong et al. [22] a motion model (named “biased random walk”) reproduces

the dynamics patterns of MreB filaments. In their simulations, the speed is constant, the

noise variance between several time steps depends on the duration and, possibly on the local

curvature of the surface. These properties are shared with the Brownian motion model with

constant drift we consider.

4 SIMULATION STUDY

In this section, we present a series of experiments performed on synthetic datasets. These

experiments aim to evaluate and analyze the sensitivity of the reconstruction procedure when

the characteristics of the dynamics as well as the spatio-temporal sampling resolution of ob-

servations vary. In addition to demonstrate the potential of our procedure, these experiments

might also be useful for the design of the experimental setting for images acquisition. The re-

construction procedure has been implemented in MATLAB ver. R2018b. The codes are avail-

able on Github https://github.com/atrubuil/ReconstructionOfTruncatedTrajectories.

4.1 Generation of trajectories

Trajectories are generated on a rectangular unwrapped cylindrical surface of size [0, L]×
[0, H] (Fig. 4). In our experiments, we set L = 50, H = 30. The initial position of each

trajectory is drawn from uniform distribution on the surface. Time duration T between two

births follows an exponential law with birth rate parameter λ. At each birth, the intrinsic

properties of a trajectory i are given, such as velocity vi, variance Σi, and lifetime T id. The

lifetime Td follows an exponential law, with the same death rate τd for all trajectories in the

whole simulated image sequence. The drift vi = (vxi, vyi) and noise Σi =

[
σxi 0

0 σyi

]
are

set to be constant along one given trajectory.

According to the assumptions made on real biological context, unless otherwise stated,

it is set by default, θ = 0.01(≈ 0.6◦) is the angle between the direction of motion of particle

and the X direction, vy = tan(θ)vx, σx = σy = σ, vx = 0.6, σ = 0.2, λ = 0.03, τd = 0.005.
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Figure 4: A set of simulated trajectories during 2.5 minutes (in stationary regime). X(resp.

Y) axis represents the unfolded circumferential (resp. main) direction of the cylinder. Col-

ors from light to dark green represent time evolution. Shadowed area corresponds to the

unobserved region and white area corresponds to the ROO.

The time interval between two images ∆t = 0.25. As known, the theoretical depth of the

observation field of TIRFM is 200nm, the diameter of the bacteria cell is 1µm, therefore the

width of the ROO l is set to 14.76 and that of the unobserved region lu = 35.24 (unit in

pixel, note that in TIRF images 1 pixel ≈ 64nm).

As there is no particle on the surface at the beginning, the simulated set of trajectories

needs some warm-up time to reach the stationary regime, where the law of the number of

trajectories does not depend on time. The assumed dynamic process is a special case of

birth and death process. As a known result[15], the expectation of the trajectories number

N during stationary regime is E(N) = λ
τd

. To ensure that the dynamics are in a stationary

regime, the images sequence is simulated long enough, for around 2 hours (Fig. 5).

4.2 The ”Adjusted Rand Index” for the evaluation of connection results

Given the true and estimated class assignments, we compute the so called Adjusted Rand

Index to evaluate similarity or consensus between the two sets. The Adjusted Rand index

is the corrected-for-chance version of the Rand index. It is scored exactly 1 when the two

sets are identical, close to 0 for random labeling. It could be negative when the index is

lower than the expectation under random labeling. More precisely, let G and K be the true

and estimated assignments respectively, let us define a and b as: a the number of pairs of

elements that are in the same class in G and in the same class in K, b the number of pairs of

16



0 20 40 60 80 100

t (min)

0

2

4

6

8

10

12

N
u
m

b
e
r 

o
f 
tr

a
je

c
to

ri
e
s

Figure 5: Fluctuations of the number of trajectories w.r.t. time. At around t = 20 min, the

trajectories number fluctuates around the theoretical expectation value 6.

elements that are in different classes in G and in different classes in K. The raw (unadjusted)

Rand index is then given by:

RI =
a+ b

CM
2

, (21)

where CM
2 is the total number of possible pairs in the dataset (without ordering) of size M .

The RI score does not guarantee that random assignments will get a value close to zero. This

is especially true if the number of clusters has the same order of magnitude as the number of

samples. To overcome this difficulty, we prefer to consider the Adjusted Rand Index defined

by [17]:

ARI =
RI − E(RI)

1− E(RI)
. (22)

Here E(RI) denotes the expectation of the Rand Index where the estimated assignment

K is replaced by an assignment chosen uniformly at random. This means that the assignment

procedure does not do better than random assignment if the ARI score is zero, and that it

does worse than random if ARI < 0.

4.3 Experimental results

The good performance of the connection procedure relies on the estimation of the charac-

teristics of the dynamics: the speed, v, the diffusion variance, Σ, the arrival rate τα and the

death rate τd, as these quantities are used in the calculation of the likelihood (Eq. 13). Here

we evaluated the impact of spatio-temporal sampling (l/lu, TS) on the estimators and the

impact of parameters of the dynamics (v,Σ, τα, τd) on the accuracy of the reconstruction.
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Figure 6: At l/lu = 0.42, which corresponds to the realistic situation in 2D-TIRF, more than

half of the trials presents a relative error smaller than 10%. The proposed estimator τ̂α is

unbiased and the variance decreases as l/lu increases.

4.3.1 The estimator τ̂α performs well, in the case of realistic 2D-TIRF, where
l
lu
≈ 0.42

The estimator τ̂α is proposed in Eq. 20. Here we test how it performs with different spatio-

temporal sampling (l/lu, TS), and different birth rate λ and death rate τd.

By its definition in section 3.1, τα, the rate of ”spontaneous input” induced by particles

born in the unobserved region and reach the border of the ROO, is not a preset parameter. A

reference of the ”true” value of τα is given by
Nlu
Ts

, where Nlu denotes the number of tracklets

born in the region ] − lu, 0] × [0, H] and reached the border {0} × [0, H], lu is the width of

the unobserved region.

Next, we test the robustness of the estimator τ̂α w.r.t. l/lu (Fig. 6). To avoid the influence

of TS on the consistency of the estimator, TS is set to be long enough as 30 min. We can

conclude that, naturally, the more the observed area is larger, better is the performance of

the estimator τ̂α. In the case of the simulation of the real situation, where l/lu = 0.42, the

estimator works reasonably good.

Following, we test the robustness of τ̂α w.r.t. TS (Fig. 7). This test is essential because in

reality it is impossible to use a 30-min movie, because of technical issues like photobleaching

of fluorophores and natual growth in living samples. At this stage, the propotion of observed

and unobserved region l/lu is set to 0.42. TS varies from 2.5 min to 30 min. In Fig. 7, it can

be noticed that the reference ’ground truth’ of τα (blue boxes) decreases as TS lengthens.

Actually, the reference is only a pseudo ’ground truth’. It is sensible to TS when TS is small
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Figure 7: The counted ’ground truth’ τα and the estimated τ̂α obtained by movies of different

duration, varying from 2.5 min to 30 min. Blue boxes (resp. Magenta boxes) correspond to

the ’ground truth’, i.e. the counted value (resp. the estimator τ̂α). The blue horizontal line

represents the ’ground truth’ value when TS = 30 min.

and it converges as TS → ∞. The distributions of counted ’ground truth’ and estimator

become close to each other for TS ≥ 10 min.

The absolute value of τα depends on λ and τd. Fig. 8 displays for different combinations

of λ and τd, the estimations of τ̂α by 5-min movies (magenta) and 30-min movies (blue). It

shows that τα increases linearly as the birth rate λ increases, and decreases slightly linearly

as the death rate τd increases.

4.3.2 The estimator τ̂d is unbiased and performs reasonably well with 5-min

movies

As explained in section 3.3, τ̂d is a rather classical estimator. Fig. 9 shows the estimator

with 5-min movies (magenta) and 30-min movies (blue) respectively. It confirms that the

estimator is unbiased. Black horizontal lines represent the true value of τd. Naturally, the

variance is bigger with shorter movies.

4.3.3 The choice of TS

According to Figs. 8 and 9, when TS = 30 min, the estimators of τα and τd perform well,

being converged with small variance. As 30-min movie acquisition is almost infeasible under

the situation of fluorescence microscopy, we need to find a compromise with smaller TS and
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Figure 8: The estimation of arrival rate τα w.r.t. different λ and τd. For example, when

λ = 0.04, τd = 0.004, the median value of τ̂α is around 0.025, which means that at each

moment, the probability that a particle born in the invisible zone arrives at {−l}× [0, H] is

around 0.025.
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Figure 9: τ̂d with different λ and τd. The estimator is unbiased. The variance of the estimator

is larger with shorter movies (magenta). For a given τd, when birth rate λ increases (e.g. the

first four boxes), then the number of particles also increases, in consequence, the variance

decreases.

reasonably good estimators. We tested especially TS=2.5 min and TS=5 min. Comparing

the estimation results with 2.5-min movies, we found that TS = 5 min is a good choice to

limit the estimation error of τd and to ensure a good connection performance (more details

about the experiments for the choice of TS in Supplementary Materials 1).
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Figure 10: Connection performance comparison for different λ and τd, when TS = 5 min.

Blue (resp. magenta) boxes represents ARI values obtained with true parameters τd, τα, v

and σ (resp. with estimators τ̂d, τ̂α, v̂ and σ̂). The black line represents the mean number of

tracklets in a movie.

4.3.4 The connection procedure works well, even when true parameters are

unknown

In this part, we assess the performance of the connection algorithm with different parameters

λ and τd. We evaluate as well the impact of the error of the estimator, by using in the

connection procedure respectively true parameters τα, τd, v, σ and their estimators τ̂α, τ̂d, v̂, σ̂.

The duration of movies TS is set to 5 min. The connection results measured by ARI are

presented in Fig. 10.

Each pair of blue and magenta box represents the connection result of a setting of λ and

τd. The black line represents the mean value of the number of tracklets fluctuating with

different settings of λ and τd. The performance of connection is affected by the number of

tracklets in each movie to be connected. The higher the density of tracklets is, the more

difficult it is to find the right ones.

It can be noticed that the ARI value when we use the estimators τ̂d, τ̂α, v̂ and σ̂, is almost

as good as when we use true values for all the parameters. This is an encouraging result as it

means that it is feasible to apply the algorithm in real image sequences. When the number

of tracklets is around 20 (e.g. λ = 0.04 and τd = 0.008), the median values of ARI are higher

than 0.9, showing a promising connection performance. Even for the case with the highest

particle density, when the average number of tracklets reaches 100 (λ = 0.1 and τd = 0.004),

the median value of ARI is still higher than 0.7.
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Figure 11: The NEs of vx, vy, σx and σy in cases where σ = 0.2, 0.3 and 0.4.

4.3.5 The connection procedure is robust even when each particle moves at

different speed (but with constant speed along a trajectory). However v

and σ should be well estimated

In the previous experiments, all trajectories are generated with the same speed v and stan-

dard error σ. In this section, we design experiments to test the performance of the connection

algorithm, when the drift v varies from particle to particle, vx ∼ U(0.5, 0.9). In one movie,

as all particles are in the same environment, there is no obvious reason for different particles

to have different σ . Therefore the standard error σ is set to be constant for particles in

one movie. However, we test in independent movies, when σ = 0.2, 0.3 or 0.4, the influence

of σ on the performance of connection procedure. Other parameters to be specified are the

angle between the direction of the motion and the circumferential direction of the cylinder,

θ = 0.15(≈ 8.6◦), vy = tan(θ)vx, σy = tan(θ)σx, σx = σ, birth rate and death rate are fixed,

with λ = 0.08 and τd = 0.02.

The normalized error (NE) of an estimator is defined by the error of the estimator nor-

malized by its ground truth. For example, the NE of vx equals to vx−v̂x
vx

. In Fig. 11, the

NEs of v̂x, v̂y, σ̂x and σ̂y when σ takes different values are presented. It shows that when σ

increases, the variance of v̂x and v̂y increases.

For tracklets connection, we compare the results when true values of v and σ or when the

estimated value v̂ and σ̂ respectively are taken by the connection procedure. The experiments

are carried under three situations, when σ = 0.2, 0.3, and 0.4. The results in Fig. 12 shows

that whether using true v and σ or estimated value v̂ and σ̂, the performance measured by

ARI degrades when σ increases. When the standard error σ = 0.2, using true v and σ, the

median value of ARI reaches to 1. When using the estimated v̂ and σ̂, the median value
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Figure 12: Comparison of connection performance measured by ARI, when the procedure

takes true v and σ or estimated v̂ and σ̂, in three experiments where σ = 0.2, 0.3 and 0.4

respectively.

of ARI is approximately 0.75. It can be concluded that the estimation of v and σ has an

impact on the performance of the algorithm.

4.4 Analysis of the connection results

4.4.1 An example of tracklets connection

Figure 13 shows, on the left, trajectories in a movie and on the right, the results of tracklets

connection. The path from an output to the matched input is represented by the dashed

straight line, as we don’t know how exactly the particle went through the hidden zone.

The only wrong connection corresponds to the bold line. Compared with the figure on the

left, we can find the realization of these two tracklets. In reality, the orange bold tracklet

disappeared at the hidden region and the bold purple tracklet appeared nearby and entered

into the observed zone.

In fact, not only the optimal configuration can be calculated, but also the most likely

alternative configurations in decreasing order of probability (Fig. 14). It should be noticed

that the optimization algorithm tries to minimize K(c) = − logQ(c), instead of finding the

c∗ maximizing P (c). It costs too much to obtain the probability P (c∗), as it requires the

enumeration of all the possible configurations c ∈ C (Eq. 11). However, The number of

configurations can be determined in order to guarantee that the sum of the probability of

these configurations will be greater than a given threshold (see Supplementary Materials 3).

As a result, we can obtain lower and upper bounds for the probability.

For this example, we see that the second most likely configuration corresponds to the
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Figure 13: Left: Trajectories in one movie; Right: the connection results.
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Figure 14: The probability of nth optimal configuration and the probability of the realization.

realization of trajectories, 0.187 < P (ct) < 0.205 according to the algorithm (Fig. 14).

Combining with Fig. 13, the optimal configuration found by the algorithm, committing one

connection error, does not correspond to the realization. In section 2, we evaluated the

connection error caused by randomness.

4.4.2 The number of rotations around the cylinder

Once the connection procedure is achieved, we can address the question of the number of

rotations of a particle around the cylinder. In the context of simulation, the death rate τd
and the dynamic velocity vx are known. Accordingly, the value of the number of rotations

is known to be equal to vxTd
L
, where Td ∼ E(τd) ensures a theoretical expectation value of

vx
τdL
. By counting the tracklets for each trajectory, we can obtain a proxy of the number of
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rotations around the cylinder.

In Fig. 15, λ is set to 0.04 and different values of τd between 0.004 and 0.01 are eval-

uated. Blue bars represent the distribution of the number of rotations of true connections.

The magenta bars to display the distribution of the number of rotations estimated by the

connection procedure. The corresponding ARI values, indicating the connection accuracy,

are given as well. The density of the theoretical values of the number of rotations is pre-

sented in green color. The vertical lines represent the median values of the corresponding

distribution. Overall, when τd is small, the median value of number of rotations is higher

and the distribution has a heavier tail. In general, the distributions with all three colors are

similar to each other.

Figure 15: The density distribution of ’number of rotations’. Each row represents the result

for a different τd value.
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CONCLUSION

In this paper, we proposed a probabilistic framework and a computational approach with

no hidden parameter to connect tracklets from 2D partial observations. We provided several

consistent estimators of parameters to automatically drive the connection procedure. The

performance of our procedure is satisfying if we consider the ARI criterion. Moreover, an

ordered set of the best reconstructions could also be proposed. The robustness of the proce-

dure has been tested for different drifts, diffusion of the dynamics, and trajectory densities.

Our computational approach can be extended to the case when the drift/speed is not the

same for all particles but remains constant along time. In that case, it is straightforward

to estimate and classify the drifts before applying our connection procedure to each class of

drift since the tracklets with different speeds are not likely to be connected.

After recovering the whole trajectory on the surface of the cylinder, we can have a better

understanding of the average duration of a particle, and more accurate statistics about the

spatio-temporal organization of particles. The simulation study can also serve as a guideline

for the design of experiments.

The connection procedure is tested with a real TIRFM dataset. The experimental results

are illustrated in Appendix A. For future works, we plan to investigate more on real TIRFM

datasets. Experiments on real data show that the observed region corresponds approximately

to one-third of the total surface, which is rather small. However, we have shown that we are

able to cope with the hidden region of such size. Nevertheless, several assumptions and ap-

proximations need to be further investigated. For instance, we assumed spatial homogeneity,

suggesting that the particles are born or die uniformly on the membrane surface. Moreover,

we assumed a memoryless lifetime while dependency with respect to particle “age” could be

more realistic.

A AN ILLUSTRATION OF THE CONNECTION ALGORITHM APPLIED

TO REAL MREB DYNAMICS

Data obtained using TIRF microscopy of MreB aggregates in Bacillus subtilis ([2]) are

considered. A typical movie from this dataset shows several MreB aggregates moving inside

one or several cells (see Fig. 1 and Supplementary Materials 3). The pixel size, frame rate

and duration are respectively ∆x = ∆y = 64nm, ∆t = 1s, T = 2mn. Hereafter, we selected

one cell to illustrate the application of our algorithm. First, tracklets exhibiting directed

motion should be extracted from the movie data, then tracklets should be projected back

on the cylinder shape of the cell and unwrapped, eventually the connection algorithm is

applied and a list of likelihood decreasing ordered configurations of trajectories connections

is presented to the user.
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A.1 Construction of the local cell referential

Once MreB aggregates pixels are separated from the background inside each image of the

movie, a bounding box is drawn around a given cell and a local x-y referential is estimated

using Principal Component Analysis (PCA) on the coordinates of pixels belonging to aggre-

gates (Fig. 16). The z coordinate of an aggregate is inferred using as a prior the cylinder

shape of the bacteria and its radius, R, so z(x, y) = R−
√
R2 − x2.
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Principle axis

Second axis

Figure 16: The estimation of the local x− y referential for a cell.

A.2 Tracking and selection of aggregates in the observed region

Using U-Track [14], MreB aggregates are tracked and constitute a set of tracklets. The

automatic classification of these tracklets in three classes, respectively Brownian, subdiffusive

and, directed motion is done using two algorithms: the classical MSD algorithm and a recent

algorithm ([7]). The tracklets classified as directed motion by either one of the two algorithms

are selected for the application of our connection algorithm (Fig. 17). The tracklets were

projected back on the cylinder and unwrapped, as explained in the technical part of the

paper. As we can see, only a few aggregates crossed the borders of the visible region.

Others aggregates, according to our definitions are born or die in the visible region, which

is not true. When an aggregate approaches the borders, its intensity becomes weak as it

is farther from the support plane, and less excitation light penetrates higher z-position in

TIRF microscopy settings. As a result, the detection algorithm fails to detect the aggregates

when they approach the borders.

A.3 The connection of tracklets

All the selected tracklets crossing the magenta lines in Fig. 17 are considered.

First, the speed and diffusion are estimated (Fig. 18) for each tracklet, respectively. Two

populations of tracklets evolving in opposite x directions are identified. These two popula-

tions are considered one after the other in the connection procedure. Tracklets corresponding

to speed lower than 0.4 are filtered out.
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Figure 17: The tracklets classification. (a) MSD classification. (b) STP classification. Brow-

nian tracklets (blue), Directed tracklets (red). Blue lines represent the border of the visible

region. Magenta lines represent the 0.1 quantile and the 0.9 quantile of x coordinate values.

Figure 18: The distribution of drift and variance in the selected tracklets population. (a)

without filtering. (b) after filtering.

For the population of tracklets associated with positive (resp. negative) vx, death rate

τd is estimated as 0.0691 (resp. 0.0756). The arrival rate τα is estimated as 0.0310 (resp.

0.0220).

† tracklets of positive speed vx

The first, fifth, seventh and eighth optimal configuration suggests one connection. The

second suggests that there is no connection. The third, fourth and sixth configurations

suggest two connections. Some of these configurations are shown in Fig. 19.

† tracklets of negative speed vx

The first optimal configuration suggests no connection. The second one suggests one
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connection Fig. 20.
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Figure 19: Some optimal configurations for the population of positive speed vx. From left

to right, first, third and sixth better configurations. Connected tracklets are drawn with the

same color.
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Figure 20: Second optimal configuration for the population of negative speed vx.

In Fig. 21 we show a 3D reconstruction of the aggregates and two tracks that could

correspond to aggregates doing more than one loop around the cylinder surface of the cell.

For the positive (resp. negative) speed set of tracklets, the eighth (resp. second) optimal

solution was selected.

Figure 21: The 3D reconstruction of tracks. The centroids of aggregates are represented as

blue squares.The arrows indicates the direction of motion. The full blue lines represent track-

lets crossing the observed region. The dotted red lines represent the simplified extrapolation

of aggregate motion in the invisible region.
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