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Abstract

In this article an “hyper-reduced” scheme for the Crisfield’s algorithm (Crisfield, 1981)
applied to buckling simulations and plastic instabilities is presented. The two linear systems
and the ellipse equation entering the algorithm are projected on a reduced space and solved
in a reduced integration domain, resulting in a system of “hyper-reduced” equations. Use
is made of the Gappy proper orthogonal decomposition to recover stresses outside the
reduced integration domain. Various methods are proposed to construct a reduced bases,
making use of simulation data obtained with standard finite element method and a stress-
based error criterion for the hyper reduced calculations is proposed. A “greedy” algorithm
coupled with this error criterion is used to generate intelligently full standard finite element
simulations and enrich the reduced base, demonstrating the adequacy of the error criterion.
Finally, numerical results pertaining to elastoplastic structures undergoing finite strains,
with emphasis on buckling and limit load predictions are presented. A parametric study
on the geometry of the structure is carried out in order to determine the domain of validity
of the proposed hyper-reduced modeling approach.
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1. Introduction

Micromechanical computations are often coupled with parametric studies to probe the
mechanical behavior of structures undergoing plastic instabilities, and determine the effect
of shape and geometry, material laws and mechanical loadings. The prediction of the limit
load of structures [1] is an important aim of many of these methods. However efficient the
approaches might be, the scope of a parametric study, its extent in the space of parameters,
is constrained by the numerical method it employs – and ultimately by how fast numer-
ical computations can be carried out. Parametric studies become especially challenging
when dealing with unstable elasto-plastic problems, modeled as sets of partial differential
equations, each of which must be solved numerically. The computational complexity of
the resulting method is driven by the size of the approximation space used to represent
the solution of the problem. As an example, the size of the “full-order model” (FOM),
used in the finite element method, is proportional to the number of discrete unknowns,
and is generally quite high. To overcome this limitation, methods employing reduced bases
have been developed since the 1970s [2] and have seen wide applications in a variety of
mechanical problems [3, 4]. As a principle, the reduced base defines the approximation
space on which solutions are sought for. The corresponding reduced-order model (ROM)
is obtained by projecting the full-order model on the reduced base. Techniques for deriv-
ing a model-order reduction method based on projections have been developed for a long
time [5]. Nevertheless, recent publications show interesting hybrid approaches combining
deep-learning and reduced-modeling for partial differential equations (PDEs). In [6], for
instance, a solution of PDEs obtained by neural networks is proposed. In the context of
non-parametric modeling, other authors [7, 8] make use of convolutional neural networks
to tailor hyper-reduced order models, which are useful when the number of parameters is
large, typically more than 100.

Hyper-reduction methods [9], which, commonly, make use of the Newton-Raphson
scheme, offer computational speed-up for stable elastoplastic simulations [10, 11]. The
Newton-Raphson algorithm is, however, not robust enough when dealing with unsta-
ble elastoplastic problems, where critical loads or buckling must be accounted for. The
Newton Raphson algorithm may diverge, for instance, due to snap-through or a snap-
back equilibrium states [12]. The “asymptotic numerical method” [13] or the “arc-length
method” [14, 15, 16] have been developed to treat these problems. The arc-length method
is a general technique for structural analysis originally developed by Riks [17]. Later, other
authors [18, 19] have developed refined schemes. Arc-length algorithms are especially useful
to treat highly-nonlinear problems such as delamination or fracture [20, 21].

The present work is devoted to the estimation of the critical load of ductile pipelines
undergoing rupture [22, 23]. The critical loads of structures may be estimated using charts
at virtually no cost [24]. This approach provides results instantaneously. Yet, it is valid for

2



specific geometries only, and overestimate the effect of geometry in many cases. To predict
accurately the critical load of pipelines, the size and shape of the structures should be
taken into account. In the present article, a hyper-reduction method based on Crisfield’s
algorithm is proposed as a way to limit the computational cost of solving an implicit
nonlinear balanced equations, while offering accurate mechanical predictions.

Many reduced-order models have been developed to deal with such nonlinear problems.
In interpolation methods, the nonlinear terms of interest are estimated by interpolation at
a few spatial locations [25]. In particular, in the discrete empirical interpolation method
(DEIM) [26], the set of interpolation points is obtained using a proper orthogonal decom-
position (POD) base. In cubature methods [27, 28, 29, 30], spatial integrals involved in
the weak formulation are estimated using a few unassembled elemental contributions. The
elements of interest and weight coefficients are determined using an optimization process.
The third types of methods are boundary value problems restricted to a reduced inte-
gration domain (RID) [31]. The RID usually involve elements connected to interpolation
points computed by the DEIM algorithm, and can be obtained by considering several POD
reduced bases. This last approach has been successfully applied to elastoplastic [32] and
contact problems [11] and is followed here. For simplicity, the boundary value problem
restricted to a reduced integration domain is denoted “HR” hereafter.

In the present work, the hyper-reduction method is extended to the Crisfield’s algorithm
consists in coupling the usual hyper-reduced residual to a reduced ellipse equation. With
Crisfield’s method two linear systems are solved resulting in two solutions. The global
solution is a linear combination of these two vectors, under a constraint prescribed by an
ellipse. In this paper, various reduced order bases (ROB) constructions are considered by
taking into account the contributions to the global solution. In order to choose relevant
snapshots, a greedy sampling algorithm coupled with an error indicator is proposed. This
strategy ensures the robustness of the reduced order model with respect to variations of
the model parameters. In order to undertake fast parametric studies, a reduced model is
developed by projecting the mechanical equations on a reduced order base (ROB) with a
hyper-reduced method.

Section 2 presents the notation that will be used. The Crisfield algorithm is described
in section 3 whereas section 4 is dedicated to the classical hyper-reduced method. Section
5 details the hyper-reduced arc-length algorithm. Section 6 shows various results with this
method. Finally in section 7 the speed up of this method is discussed.

2. Notations

In this article, scalar values are denoted by lowercase roman letters, vectors by bold
lowercases, and matrices by uppercase, bold letters, e.g. a, a and A respectively. The
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notation A[L1, L2] designates the submatrix of A formed by the subset L1 of the rows
of A and the subset L2 of the columns of A. We use the Python-notation A[L1, :] for
the submatrix formed by a subset L1 of the rows of A. Second-order tensors are denoted
by underlined capitals (e.g. A∼) whereas fourth-order tensors are underlined twice (C∼∼

).

Double-dots (:) designate a double contraction over the last two and first two indices of
the left and right tensors, respectively. As such A∼ : B∼ is the scalar

∑
ij Aij∼

Bij∼
whereas

C∼∼
: B∼ is the second-order tensor

∑
kl Cijkl∼∼

Bkl∼ .

The Euclidian norm (or 2-norm) is denoted by the symbols ||.||2. It is defined by

||u||2 = (uT · u)1/2 = (
∑

i u
2
i )

1/2
where the superscript T designates a matrix transpose.

The 2-norm of matrices is given by the spectral norm ||A||2 = σmax(A), where σmax(A)
denotes the largest singular value of A.

3. Crisfield’s algorithm for unstable finite element problems

The present section is devoted to Crisfield’s algorithm. This algorithm, developed to
achieve convergence in unstable problems, is described hereafter. In the context of the
finite element (FE) model [33], the shape functions of the FE base are denoted by (φj)

n
j=1

with n the number of discretization nodes. It is convenient to introduce the functions
φφφi = φjek where i = (j − 1) × d + k, n = 1, ..., n, k = 1, ..., d, d is the dimension of
the problem and ek refer to the canonical vectors of a Cartesian coordinate system. The
decomposition of the displacement with the shape functions (φφφj)

N
j=1 reads:

υυυ(x) = υυυ0(x) +
N∑
i=1

φφφi(x)ui, ∀x ∈ Ω, (1)

where N = n×d is the number of degrees of freedom (DOF) of the structure, υυυ0 is a given
displacement field that fulfills the Dirichlet boundary conditions, υυυ is the approximate
finite element solution and u = (ui)

N
i=1 the vector of the related degrees of freedom. The

Cauchy stress that fulfills the constitutive equations is denoted by σ∼(u). Denote f int ∈ RN
a vector of generalized internal forces which depends on u such that:

f inti (u) =

∫
Ω

1

2

(
∇∼φφφi +∇∼

Tφφφi

)
: σ∼(u) dΩ, i = 1, . . . N , (2)

where Ω is the current configuration. The focus of the present work is now limited to
implicit solutions of finite element balance equations, where use is made of an arc-length
algorithm [34]. Because of instabilities or plasticity, the target loading may be out of reach.
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Accordingly, the magnitude of the loading, denoted λ ∈ R, should be determined as well
as the displacement field. The residual of the FE balance equation reads:

r(u, λ) = f int(u)− λ f ext, (3)

where f ext ∈ RN denotes the vector of general external loading. The residual is assumed
to be null in the initial configuration:

f int(u0)− λ0 f ext = 0. (4)

The couple of variables (∆u, ∆λ) is determined so as to satisfy a null residual in the
current configuration:

r(u0 + ∆u, λ0 + ∆λ) = 0. (5)

As a consequence of the above (5), point (u0+∆u, λ0+∆λ) belongs to the equilibrium path.
Assume that the residual is not zero at point (u0+∆u, λ0+∆λ), i.e. r(u0+∆u, λ0+∆λ) 6=
0. A solution at a nearby point (u0 + ∆u + δu, λ0 + ∆λ + δλ) is sought for. A Taylor
expansion provides the expression:

r(u0 + ∆u + δu, λ0 + ∆λ+ δλ) ≈ r(u0 + ∆u, λ0 + ∆λ) + K · δu− δλ f ext (6)

where K = ∂f int/∂u|u=u0+∆u. The linearized balance equation accordingly reads:

K · δu− δλ f ext = −r(u0 + ∆u, λ0 + ∆λ) (7)

The variables δu and δλ being the unknowns, equation (7) does not yield a unique solution.
Indeed the problem is constrained by N scalar equations depending on N + 1 unknowns,
including δλ. The problem ought to be supplemented by an additional “arc-length equa-
tion” [15] which describes an ellipse in the space of displacement and loading parameters.
The latter reads:

(∆u + δu)T · (∆u + δu) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2, (8)

∆` represents the radius of the circle on which the solution (δu, δλ) must be found. This
is a user defined parameter relative to the size of the increment. In the above, β is also a
user defined parameter which monitors the shape of the ellipse. As an example β=1 leads
to a circle hence the name “arc-length method“. Figure1 depicts the arc-length algorithm
with the choice β = 1.
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Figure 1: Arc-length method.

Each blue point represents the solution of an iteration until it converges at the red dot
on the right. Following [18], equation (7) can be written:

K · δu = δλ f ext − r(u0 + ∆u, λ0 + ∆λ). (9)

which is solved in terms of two solutions δub and δut for the linearised balance equation:
K.δut = f ext

K.δub = −r(u0 + ∆u, λ0 + ∆λ)
δu = δub + δλ δut.

(10)

As shown by the above, the Crisfield algorithm involves two balance equations of the
finite element model. Equation (10a) relates to the target loading whereas equation (10b),
similar to the linear step involved in the Newton-Raphson algorithm, relates to the residual
stresses in the structure. The projection-based model-order reduction aimes to reduce the
computational complexity of these two balance equation related to the two primal variables
δub and δut. According to (10c), equation (8) may be rewritten as:

(∆u + δu)T · (∆u + δu) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2

⇐⇒
α1δλ

2 + α2δλ+ α3 = 0,
(11)
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where:

α1 = δuTt · δut + β2f ext T · f ext

α2 = 2(∆u + δub)
T · δut + β2∆λf ext T · f ext

α3 = (∆u + δub)
T · (∆u + δub) + β2∆λf ext T · f ext −∆`2

(12)

As expected for ellipses, equation (11) admits two solutions, denoted δλ1 and δλ2 Following
on the “dot-product rule” introduced in [35], the solution in the equilibrium path maximizes
the quantity:

D(i) = (∆u + δu(i))T ·∆u + β2∆λ(∆λ+ δλ(i))
(
f ext
)T · f ext, i = 1, 2, (13)

which ensures that the selected solution is the closest to previously-computed solutions.
This rule allows one to deform the structure while preventing elastic unloading in most of
the cases. Once δu and δλ is obtained, the incremental displacement ∆u and incremental
loading parameter ∆λ are updated until the norm of the residual is smaller than a specified
threshold. Furthermore, when convergence is found to be slow, a novel incremental solution
is sought for the same problem with a lower ∆` parameter.

It is emphasized that equation (8) mixes displacement and force, and therefore the
variables αi have no clear physical meaning. To overcome this problem, the parameter β
may be set to zero, in which case ∆` denotes the distance between the two possible values
of ∆u. In the rest of the study, the value of β is assumed to be zero.

4. Hyper-reduction method

This section is devoted to the usual hyper-reduced method using the Newton-Raphson
algorithm, in this case the balance equation takes the form of equation (9), with δλ = 0
and ∆λ being the loading increment which is a constant in this case. Therefore only the
iterative displacement vector δu is unknown.The following equation is obtained :

K · δu = −r(u0 + ∆u, λ0 + ∆λ). (14)

As previously stated, this approach belongs to projection-based reduction methods,
and aims to reduce the number of DOFs by projecting the balance equation on a smaller
approximation space. Here, hyper-reduction is applied in the framework of a posteriori
model reduction methods and unsupervised machine learning methods. In these methods,
the computational task is divided in two phases, namely an “offline” and “online phase”.
In the offline phase, simulation data are generated by the solution of the high-fidelity equa-
tions, possibly for various parameter values in a training set Dtrain. These simulation data
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are called training data and are required to train reduced bases and a reduced integration
domain (RID). In the online phase, the HR model is used to predict the displacements
and other quantities of interest resulting from parameters values which do not belong to
the training set. Offline phases are time-consuming as they require solutions of the FOM
for different sampling points in the parameter space. Nevertheless, they allow for low-
cost online simulations afterwards, provided the hyper-reduced order model (HROM) can
be used. Projection-based model order reduction methods may be combined with robust
machine-learning methods. Hybrid approaches [7, 8] have been proposed which make use
of physical equations and data science techniques. These methods are particularly effi-
cient ways to take advantage of simulation data. In this context, and in the context of
model-order reduction, it is useful to save these data in memory storage systems.

The HR method [10] uses a projection on a reduced base to reduce the number of
DOFs, but it also uses the fact that solving the equations on a RID is sufficient to find
the reduced DOFs with less computational complexity than using the full domain. This
particularity improves the computational time savings, especially for nonlinearities that
cannot be precomputed offline. Indeed, the RID, built during the offline part, reduces
the cost of the projections to get the reduced non-constant stiffness matrix from the Jaco-
bian matrix. The reduced base for displacement approximation is obtained via the singular
value decomposition (SVD). The reader is referred to [2] for a discussion of the connections
between proper orthogonal decomposition methods (POD) and SVD. The SVD is a com-
mon numerical tool in machine learning and especially useful when computing principal
components. According to the Young Eckart theorem [36], it provides, in particular, the
optimal low-rank approximation of the simulation data generated during the offline phase.
In the following details on the methodology of the hyper-reduction method are given.

Let us denote NS the number of displacement fields available at the end of the offline
phase. The nodal value of these finite element fields are stored in a snapshot matrix
Q ∈ RN×NS . For each parameter in the training set Dtrain, and at each time increment the
approximation of the balance equation is satisfied and the displacement u computed by
the parametric finite element model is saved as a column of Q, such that ∃ j ∈ {1, . . . ,NS}
with Q[:, j] = u. Then, a truncated singular value decomposition is applied in order to
extract the reduced base V according to the following optimal low-rank approximation:

Q = V ·Σ ·WT + R, VT ·V = IN , WT ·W = IN , VT ·R = 0,
‖R‖2

2

‖Q‖2
2

< εtol, (15)

where IN is the identity matrix and belongs to RN×N , R belongs to RN×NS and εtol is
an error-criterion. The matrices V ∈ RN×N and W ∈ RNS×N are orthogonal matrices and
Σ ∈ RN×N is a diagonal matrix which contains the highest singular values σj in descending
order (i.e. σj ≥ σj+1). In the present case, simulation data are related to a finite element
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model so that each column of V is the nodal values of an empirical mode ψψψk where:

ψψψk(x) =
N∑
i=1

φφφi(x) Vik, k = 1, . . . N, x ∈ Ω. (16)

The importance of an empirical mode is quantified by the corresponding value σj. The
truncation of the SVD, and the number of empirical modes stored in V, is monitored by
the error-criterion εtol. Ideally, the reduced base V contains a few vectors and allows one
to approximate the space spanned by the snapshots.

The above reduced-base construction may be applied to any finite element variables,
either defined at the nodes of the mesh, or at the Gauss points inside elements. A reduced-
base is most often generated for both displacement variables and stresses separately (details
about the stress field involved in the computation of fint will be given in Section 6.1). In
the present work, the stress-related reduced base is denoted by Vσ.

Following on the Gappy POD [37], any vector u which belongs to the column space
colspan(V) of V may be recovered by using few entries u[F ] of u, if V[F , :] is a full column
rank matrix. Such recovery procedure takes the form:

u ∈ colspan(V), u = V ·
(
V[F , :]T ·V[F , :]

)−1 ·V[F , :]T · u[F ]. (17)

In the case F = P , where P denotes the set of interpolation points for columns of V
obtained by the discrete empirical interpolation method (DEIM) [26], the matrix V[P , :]
is square invertible and the recovery procedure simplifies as:

u ∈ colspan(V) u = V ·V[P , :]−1 · u[P ]. (18)

Moreover, if P ⊂ F , then V[F , :] is full-column rank.
A heuristic rule is followed to construct the RID: the extent of the RID must enable

the recovery of the finite element displacement fields and the finite element stresses when
they both belong to colspan(V) and colspan(Vσ) respectively. Notice that the recovery of
the stress enables the estimation of fint and of the residual, without using an interpolation
scheme for fint. The set of interpolation points related to Vσ is denoted by Pσ. Hence, F is
generated such that P∪Pσ ⊂ F which allows one to recover the stress and the displacement,
making use of the Gappy POD. In many practical situations, F also includes the degrees
of freedom of a zone of interest.

The RID, denoted by ΩA ⊂ Ω, is assumed to be the support of the finite element shape
functions φφφi (i ∈ F):

ΩA = ∪i∈Fsup(φφφi). (19)
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Denote ΩB = Ω\ΩA the complementary set of ΩA and ΓI = ΩA∩ΩB the interface common
to ΩA and ΩB. The following property holds:

F =

{
i ∈ {1, ...,N} |

∫
ΩB

φφφTi . φφφi dΩ = 0

}
(20)

Let us now introduce I, the set of degrees of freedom indices related to the interface ΓI :

I =

{
i ∈ {1, ...,N} |

∫
ΓI
φφφTi . φφφi dΓ 6= 0

}
(21)

The matrix K entering equation is sparse. The assumption is made that non zero-entries
in K[F , :] are only in the submatrix K[F ,F ∪ I] and these entries can be computed by
using solely the reduced mesh that covers ΩA. This assumption is too strong in case of
contact problems as shown in [11]. For the sake of simplicity, the focus of this article is,
hereafter limited to contactless problems. The reader is refered to [11] for more details on
hyper-reduction methods associated to contact problems.

The HR method is based on the equation (17) in the case that the variable u must be
computed via a balance equation. In the following the balance equation (14) is considered.
The hyper-reduced coordinates vector δγγγ is introduced such that δu = V · δγγγ. The values
contained in this vector are weights for the modes of the reduced-base vector V. The
obtained hyper-reduced solution is a linear combination of the modes of the reduced base.
The hyper-reduced problem consists in finding δγγγ ∈ RN such that δu = V δγγγ and:

V[F , :]T ·K[F ,F ∪ I] ·V[F ∪ I, :] · δγγγ = −V[F , :]T · r(u + ∆u, λ0)[F ]. (22)

The hyper-reduced matrix and the hyper-reduced residual are given by:

KHR = V[F , :]T ·K[F ,F ∪ I] ·V[F ∪ I, :], (23a)

rHR(u0 + ∆u, λ) = V[F , :]T · r(u0 + ∆u, λ)[F ]. (23b)

Let us emphasize the following remarks:

• Formally, if r = −δu and K is the identity matrix, then I = ∅ and the HR balance
equation is equivalent to the recovery equation of the Gappy POD.

• The matrix V[F , :]T in Equation (22) is related to the test functions ψψψZk =
∑

i∈F φφφiVik
for k = 1, . . . N . When introduced as a weak form of the hyper-reduced balance
equations, it is emphasized that the test functions have a similar form that obtained
for Dirichlet boundary conditions on the interface ΓI . The reader is referred to [31]
for more details about the boundary conditions used for hyper-reduced problems.

10



5. Hyper-reduced arc-length algorithm

The extension of the HR method to the Crisfield’s algorithm is straightforward when
choosing the same reduced base and the same RID for the two balance equations involved
in the system of equations (10). This reduced base must be accurate enough for the
approximation of both δut and δub. Consider now the hyper-reduced external forces vector:

f extHR = V[F , :]T · f ext[F ]. (24)

In the hyper-reduced arc-length problem, δγγγt ∈ RN , δγγγb ∈ RN and δλ are sought for such
that δut = V · δγγγt, δub = V · δγγγb and:

KHR · δγγγt = f extHR

KHR · δγγγb = −rHR(u0 + V∆γγγ, λ0 + ∆λ)
δγγγ = δγγγb + δλ δγγγt
(∆γγγ + δγγγ)T · (∆γγγ + δγγγ) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2,

(25)

where ∆γγγ has been updated to ∆γγγ+ δγγγ, assuming the norm of rHR(u0 + V ·∆γγγ, λ0 + ∆λ)
is lower than a given tolerance. Here equation (25d) defines a reduced form of equation (8)

Property: If ∆u = V ·∆γ, δu = V · δγ and VT ·V = I, then the solutions of equation
(25d) and that of (8) are identical.

The above is a consequence of (8), which entails:

(∆γγγ + δγγγ)T ·VT ·V · (∆γγγ + δγγγ) + β2(∆λ+ δλ)2(f ext T · f ext) = ∆`2.

and reduce to the equation (25d) after replacing VT ·V by I.
Property: If δut = V · δγt, δub = V · δγb, λ are the exact solutions of equations (10)

and (8), then γt, γb and λ are the solutions of the hyper-reduced arc-length equations (25).
Proof: If δut = V · δγt, δub = V · δγb and λ are the exact solutions of the original

equations, then:

∃∆γ : ∆u = V.∆γ, (26a)

K[F ,F ∪ I].V[F ∪ I, :]δγt = f ext[F ], (26b)

K[F ,F ∪ I]V[F ∪ I, :]δγb = −r(u + ∆u, λ0 + ∆λ)[F ], (26c)

δγγγ = δγb + δλ δγt, (26d)

(∆γγγ + δγγγ)T · (∆γγγ + δγγγ) = ∆`2 − β2(∆λ+ δλ)2(f ext T · f ext). (26e)

According to the above, the hyper-reduced arc-length equations (25) are fulfilled by δγt,
δγb and δλ.
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Let us now investigate the computational complexity of the proposed method. The
later does not scale proportionally to N , as a finite element model would do. Instead,
KHR being a full matrix, the solution of hyper-reduced linear systems has a computational
complexity proportional to N3. So in order to achieve a good speed up of the method
it is necessary to have N3 � N . Moreover, for a given residual r, the computation
of rHR has a complexity proportional to N card(F), where card(F) is the number of
elements of F whereas, for a given Jacobian matrix K, that of KHR is proportional to
N2card(F)+Ncard(F) [card(F) + card(I)]. Eventually, the residual r[F ] and the Jacobian
matrix K[F ,F ∪ I] are computed over the RID. The lower the value of N and card(F),
the lower the computational complexity of the hyper-reduced arc-length equations.

Section 6 investigates the constructions of the reduced bases in the following cases:

• (i): Vector Q contains the simulation data related to u solely;

• (ii): in V two reduced bases, generated for ut and ub separately, are merged;

• (iii): in Q the simulation data related to ut and ub are merged, before computing V.

6. Numerical results and discussion

6.1. Hyper-elastic buckling

In the sequel the finite element simulation of structures subjected to post-buckling
is considered (see [38, 39] for details about post-buckling). This section demonstrates
the robustness of the hyper-reduced arc-length method through a simple example in the
framework of finite elastic strains. Focus is made on reduced-matrices KHR when it is
ill-conditioned.

Let us consider the highly-nonlinear buckling beam problem subjected to plain strain
loading. The beam is parameterized by its slenderness, i.e. the ratio of length over height.
The length is kept constant (L = 200 mm) and the slenderness is monitored by the height
µ ∈ [8, 14]. A morphing is applied to a reference mesh so as to generate a geometry
corresponding to a given slenderness. The position vector x reads, accordingly:

x =

{
x1

µx2

}
, (27)

where x1 ∈ [0, L](mm) and x2 ∈ [0, 1](mm) are coordinates in the reference mesh. The
mesh is made of 295 linear elements (720 DOFs). The beam is fully clamped on one of its
extremity while a pressure is applied on the opposite side, as shown in Figure 2.
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Figure 2: Meshed beam and boundary conditions.

The Young modulus for this simulation is E = 210000 MPa and the Poisson coefficient
ν = 0.3. The material follows the hyper-elastic Saint-Venant-Kirchhoff model:



Deformation gradient tensor: F∼ = I∼+∇∼υυυ
Green-Lagrange strain tensor: E∼ = 1

2
(F∼

T · F∼− I∼)

Constitutive law: S∼= C∼∼
: E∼

Cauchy stress: σ∼=det−1(F∼) F∼ · S∼ · F∼
T

Internal forces: f inti =
∫

Ω
1
2
(∇∼φφφi +∇∼

Tφφφi) : σ∼dΩ, i = 1, . . . N ,
(28)

where Ω denotes the current configuration. Simulation data for the training phase
are generated for four sampling points in the parameter space: µ = 8, 9, 10, 11. In the
HR method it is common to make one single SVD on one global snapshot matrix that
contains all the simulation results. Use is made of four simulations to apply separately a
singular value decomposition on each of them hence four reduced bases are created. The
resulting bases are then concatenated with each other without orthogonalization to create
the reduced base:

V = [V(1),V(2),V(3),V(4)]. (29)

Since the bases V(i) are not orthogonal to each other, V is not orthogonal. Moreover
V contains modes that are very similar to each other since the geometrical parameters
are not too far from each others, and therefore the hyper-reduced tangent matrix KHR is
nearly singular. Nevertheless, the ill-conditioned system is kept as it is, to underline the
robustness of the approach. If a linear system is ill-conditioned its response will vary a lot
with respect to a small perturbation in the data. Let us consider a linear system with a
positive-definite square matrix A, a vector b and the unknown vector u. If A · u = b and
A · u′ = b′ one obtains, with ∆u = u′ − u and ∆b = b′ − b:

||∆u||2
||u||2

≤ κ(A)
||∆b||2
||b||2

, (30)

where the condition number κ(A) is defined by:

κ(A) = ||A||2 × ||A−1||2 =
σAmax
σAmin

, (31)
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and σAmax, σ
A
min are the highest (respectively, the lowest) eigenvalue of A. The bigger the

condition number, the less precise the solution (u in this case) will be.
Herefater, the DEIM is applied on the global reduced base V in order to select the

nodes of the RID, enforcing F = P . In the following example no stress base was created.
In the online test, the height takes on the value µ = 13.2 mm. The reduced buckling beam
at the end (red) and in initial position (blue) are shown in Figure (3).

Figure 3: Hyper-reduced model at t = 0 (blue) and at t=tfinal in red, for height µ = 13.2 mm.

Here, the RID corresponds exactly to the elements attached to the selected node by
the DEIM (F = P). The vertical displacement of the node at the bottom right, denoted
M is plotted in Figure 4 as a function of the applied load. The nonlinear response due
to buckling appears for a limit load equal to 1250 N and 1200 N when the FOM and the
HROM are used, respectively. To check the accuracy of the proposed hyper-reduced arc-
length algorithm, a FOM is run with the same parameter. The FOM and HROM responses
are shown in Figure (4a). The exact error on the total displacement field is calculated by
the quantity :

η =
||uHROM − uFOM ||2

||uFOM ||2
. (32)

The later is represented in Fig. (4b).
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(a) (b)

Figure 4: (a) Load [N], as a function of the vertical displacement [mm] at point M, with µ = 13.2. (b)
Error estimate (%) as a function of the increments of the HROM simulation.

It has been observed that the condition number of KHR evolves during the simula-
tion, but remains very large (around 1016), and, accordingly, KHR is nearly singular. The
robustness of the algorithm is warranted by the additional ellipse equation (25d) which
prevents the divergence of the response since the latter must be contained within in the
circle. Furthermore, for every loading increment the error stays between 0.1% and 2.9%.
The largest error is observed when buckling occurs. Even in such strongly-nonlinear prob-
lem with ill-conditioned tangent matrix, convergence is obtained after a few iterations at
each loading increment. These numerical results emphasize the robustness of the proposed
hyper-reduced arc-length algorithm.

6.2. Limit load prediction for a simple elasto-plastic problem

To illustrate the assets of hyper-reduced arc-length algorithm one proposes a nonlinear
problem that involves finite strains and plasticity. Let’s consider a 3D thick wall pipe under
internal pressure with a pure plastic behaviour. The material constitutive equations are
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given below:

Strain gradient decomposition: F∼ = R∼.U∼
Deformation rate: L∼= Ḟ∼.F∼

−1

Stretch rate: D∼ = 1
2
(L∼+ L∼

−T )

Local strain rate: ė∼= R∼
T .D∼.R∼

Elastic/plastic partition: e∼= e∼
e + e∼

p

Constitutive law: S∼= C∼∼
: e∼

e

Relation with global Cauchy stress: σ∼=det−1(F∼) R∼.S∼.R∼
T

Second invariant of the stress tensor : J2(σ∼) =
√

3
2
dev(σ∼) : dev(σ∼)

Yield stress: R0

Yield function: f(σ∼, R) = J2(σ∼)−R0

Internal forces: fint i =
∫

Ω
1
2
(∇∼φφφi +∇∼

Tφφφi) : σ∼dΩ, i = 1, . . . N
(33)

The Young modulus used for this simulation is E = 200000 MPa, the Poisson coefficient
is ν = 0.3 and the elasticity limit is R0 = 400 MPa. As it can be seen in the material
constitutive equations give before there is no hardening in this example. The considered
pipe is fully clamped on each side and undergo internal pressure.

In the present work, a parametric study is conducted by varying the geometric param-
eters and determining the pipe’s critical pressure. The pipe length is fixed hereafter to
L = 300mm whereas the thickness and external radius vary. The full-order model is made
up of 9, 180 linear hexahedra (N = 37, 536 DOF, see Fig. 5) and an updated Lagrangian
formulation is used.
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Figure 5: Meshed pipe with boundary conditions.

As announced in section (5), two linear systems are solved for a given linearized residual.
Many choices for the reduced base are possible. The snapshot matrices Q, Qt and Qb

contain, respectively, the solution u, ut and ub for each point in Dtrain, and at any time
the equilibrium path is reached. Hereafter, results obtained for three different reduced
bases VA, VB and VC are compared. The later are constructed as follow:

reduced base VA:
{
Q = VA.ΣA.W

T
A + RA, ‖RA‖2

2/‖Q‖2
2 < εtol, (34a)

reduced base VB:


Qt = Vt.Σt.W

T
t + Rt, ‖Rt‖2

2/‖Qt‖2
2 < εtol,

Qb = Vb.Σb.W
T
b + Rb, ‖Rb‖2

2/‖Qb‖2
2 < εtol,

VB = [Vt, Vb],
(34b)

reduced base VC :

{
Qtb = [Qt, Qb],
Qtb = VC .ΣC .W

T
C + RC , ‖RC‖2

2/‖Qtb‖2
2 < εtol.

(34c)

Four offline classical finite element simulations are carried out with different values of
thickness and external radius. An online target simulation is defined with another couple
(thickness, external radius). This online simulation is performed three times with the three
different reduced bases VA, VB and VC . Table (1) gives the parameter values used in the
simulations. The later follow the thickest pipes for deep offshore. It is emphasized that
the online simulation lies beyond the parametric-training region.

A criterion is now introduced in order to stop the numerical simulations and to esti-
mate the critical pressure. As a rule, the computation of the equilibrium path is stopped
whenever the pressure has decreased by more than 4% from its maximum value. Figure (6)
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External radius (mm) Thickness(mm)

Offline 75 15
Offline 80 20
Offline 80 15
Offline 75 20
Online 70 10

Table 1: Parameters for offline (Dtrain) and online simulations

shows the local pressure as a function of the norm of the displacement along an arbitrary
node in the middle of the plane.

The red and blue arrows spot the values of the critical pressure and the corresponding
displacement for a point on the external skin of the pipe in the mid-plane. The values
are respectively for the FOM simulation : (0.9 mm ; 115,4 MPa) and HROM simulation :
(1,3 mm ; 114,94 MPa). The error is estimated after the simulation has been completed.
In order to have the exact error, a FOM simulation with the same parameters as used in
the HROM simulation is carried out. Maps of the displacement component U1 is shown in
Figure 7 as computed in the RID and along the full mesh. The small part of the reduced
mesh on the left of the image contains the point used to plot the loading curve in Figure 6.
Details about the construction of the RID are given in appendix 9. It is emphasized that
the construction of the RID is empirical and depends on the considered problem.
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Figure 6: Internal pressure (MPa) as a function of the norm of the displacement (mm) of a node in the
middle plane (offline in blue and online in red). Computation carried out using the reduced base matrix
VB . The limit load is indicated by the arrow.

(a) (b)

Figure 7: Displacement component U1 (mm) computed on the full mesh (a) and on the RID (b) using the
reduced base matrix VB .
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In the following, the absolute error relative to the displacement U1 is defined by:

εU1 = max
{
|U1

HROM−U1
FOM |

max|U1
FOM |

}
, (35)

where the max operator in the denominator has been introduced to take into account the
fact that U1 might be zero. Similar error criteria are considered for the other displacement
and stress components. Table 2 reports the errors for the 3 displacement components and
the six stress components, for each of the three reduced bases, i.e. VA, VB and VC .
The values in bold, corresponding to the most accurate computations, indicate that base
VA gives the best results as compared to the two other bases, while also using standard
simulation outputs. Therefore, the construction method for this base is used in the rest of
this work.

VA VB VC

N 8 11 9
card(F) 1 830 2 985 3 009
εU1 = εU2 3.80% 1.91% 0.45%

εU3 3.84% 4.17% 4.81%

εσ
11

= εσ
22

3.46% 7.63% 10.64%

εσ
33

2.75% 6.61% 6.69%

εσ
31

= εσ
32

5.63% 9.94% 9.97%

εσ
12

5.63% 16.44% 19.05%

Table 2: Error relative to the displacement and stress components, for different constructions of the reduced
base.

6.3. Greedy sampling and validity domain for a realistic problem

In this subsection, a parametric study is carried out on an elbowed pipe. Many studies
have been carried out on elbow pipes [22, 23, 40]. The geometric parameters are chosen
according to the work of [22]. This study focuses on determining the critical internal
pressure this structure can sustain. Compare to the previous problem, the geometry as
well as the mesh and boundary conditions are modified. Four geometric parameters are
considered: the thickness e, the external radius Rext, the curvature radius rcurv and the
angle of elbow α. As in the previous section a morphing method is used to modify the
mesh. A sensitivity-analysis of each parameter is carried out by varying each value of ±5%
(see Table 3). The mesh used in this study has 16, 000 linear 8-nodes elements resulting in
24, 633 nodes and N = 73, 899 DOFs. Both symmetries of the problem have been taken
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into account hence only one quarter of the pipe is considered. The mesh is represented in
Figure 8. Additionally, an error indicator developped in the context of small strain [41]
is coupled with a greedy algorithm in order to reduce the amount of training data. In
small strain setting, the equilibrium equation is a linear equation and is fulfilled, in its
weak form, by the stress computed during the offline phase. It turns out that the related
reduced bases Vσ is a convenient subspace for stresses. For problems in the more general
context of finite strain, the equilibrium equation strongly depends on the displacement in
the domain Ω and is a nonlinear equation. Nevertheless, it is assumed in the following
that the training set Dtrain is large enough, and is able to represent accurately both the
displacement fields and the stress field via their respective reduced bases V and Vσ.

Rext (mm) rcurv (mm) e (mm) α (◦)

39.9 114 4.75 42.75
44.1 126 5.25 47.25

Table 3: Range of geometrical parameters, for the training set of simulation data.

In the following, consistency criteria are introduced and used as error indicator for the
sampling of the parameter space by a greedy algorithm. Each time a hyper-reduced arc
length simulation predicts a displacement by using V, the projection on Vσ of the related
stresses is expected to yield an accurate solution. The error indicator is accordingly defined
by:

ε∗ = minγγγ∗
||σHR −Vσ[F , :] · γγγ∗||2

||σHR||2
, (36)

achieved with: γγγ∗ =
(
Vσ[F , :]T ·Vσ[F , :]

)−1 ·Vσ[F , :]T · σHR, (37)

where γγγ∗ is the reduced coordinate vector related to the Gappy POD applied to the stress.
This vector minimizes the gap between the stress field obtained with the hyper-reduced arc
length simulation, σHR, and the its projection on Vσ over the RID. The product Vσ · γγγ∗
is the recovered stress over Ω related to the Gappy POD. Because of the finite strains
involved in the equilibrium path, we have not established a formal relationship between
the error indicator and the true error on the displacements. But this relationship exists for
standard materials undergoing small deformations [41]. A greedy algorithm is accordingly
applied to construct the global reduced base (see [11]):

(i) the sampling point in the parameter space for which the error is maximal is first
obtained, according to the error estimator based on the HR simulation;
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(ii) second, the FOM simulation data relative to this point is included in the training set
for the global reduced base, and the reduced base is computed again;

(iii) hyper-reduced predictions and error predictions are then performed for all sampling
points.

Note that the first sampling point in the parameter space is the center of the hyper-cube.

Figure 8: Elbowed pipes meshed.

The parametric space is regularly sampled on a m ×m ×m ×m grid where m is the
number of values each parameter can take. In the present case, m = 2 generating 16
simulations to which is added the first sampling point at the center of the hyper-cube
resulting in 17 simulations. After applying five times the greedy algorithm, five FOM
simulations are added to the training set. The 12 other hyper-reduced simulations where
thus required to certify the model. The 12 related simulation data are denoted validation
data in the following. Figure (9) shows the evolution of the error indicator during the
iterations of the greedy algorithm. The training set that is selected with this method is
indicated by the black numbers.
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Figure 9: Error indicator for the different hyper-reduced arc length simulations over the sampling point
of the parameter space, where the ROB number i + 1 is obtained after the ith iteration of the greedy
algorithm. The brown squares with numbers inside indicate the sampling point inserted in the training
set Dtrain and their iteration index.

.

The greedy algorithm is found to be very efficient. No more than five iterations of
the algorithm are needed in the present study, resulting in a global error of less than 5%.
The resulting RID is composed of 8, 511 nodes. The last reduced base V contains N = 27
empirical modes, with εtol = 1e−8 and N3 < N . The reduced base Vσ contains 50 empirical
modes. The RID construction, shown in Figure 10, follows the procedure in Appendix 9.
The resulting HROM is denoted HROM5-27-50 in the the following. As expected, plasticity
localizes at the curvature where stress concentration occurs. Note that the obtained RID
is rather large compared to the one that is usually seen with standard hyper-reduction
methods. This should be explained by the loss of ellipticity in the equations, encountered
in limit load problems.
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Figure 10: Cumulated plasticity on the RID of the elbowed pipe.

The error indicator is now compared with one based on the full-order model prediction,
in order to investigate its reliability. This time, the simulation of the loading path stops
when a decrease of 1% of the pressure is observed, compared its maximal value. Note
however that a small error on the limit load estimate may induce a much larger error on
the displacement. Therefore, displacement fields are compared according to their angle
with the solution obtained with the FOM. The later reads:

Θ = cos−1

{ (
uHR[F ]

)T · uFOM [F ]

||uHR[F ]||2||uFOM [F ]||2

}
∈ [0,

Π

2
]. (38)

The angle Θ is computed for each of the 17 simulations as it is necessary to evaluate the
error estimator. The correlation between Θ and ε∗, show a linear relation between Θ and
ε∗, except for two points are far from the zone of interest delimited by an error of 25% (see
Figure 11). The computation of the error angle Θ requires all FOM simulations, contrary
to the error estimator ε∗. For the later, a reduced base on the stress field is sufficient.
Therefore, this error estimator will be used in the rest of this work. Using HROM5-27-50,
one may now carry out HROM calculations on a finer grid of the parameter space. The
parametric space is re-sampled along a 3×3×3×3 grid, resulting in 81 HROM simulations
and to the error map represented in Figure (12).
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Figure 11: Error indicator Θ (rad) versus error estimator ε∗(%) on the 17 HROM simulations.

Figure 12: Error estimate ε∗ for the 81 HROM simulations. The red dots represent the training data set
used to created the reduced base, the orange dots are the validation data set used to certify our model
and the blue dots are the test data set.

The global minimum of the error estimate is a simulation from the training set and
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the global maximum is a simulation from the validation data set. The values of the
parameters for the test data set lie between the minimum and maximum values of the
parameters in the validation data set. The error indicator is inferior to 5%, highlighting
how accurate is the hyper-reduced model for the interpolation. Then one can continue the
stability analysis with the so developped hyper reduced model (HROM5-27-50). The most
sensitive parameter is determined using the parallel coordinate plot method [42]. A parallel
coordinate plot is introduced (Figure 13). The four first coordinates are relative to the
parameters (thickness, external radius etc.) whereas the last one is the simulation output
of interest (i.e. the critical pressure). The red lines in Figure (13a) are related to sampling
points in the parameter space which lead to a high critical pressure, in the present case
Pmax
c + 0% − 2.5%. If all red lines intersect at the same parameter value, for a specific set

of parameters, that parameter is strongly sensitive with respect to the simulation output.
According to graph (13a), the external radius as well as the thickness are the parameters
most sensitive to the highest critical pressure. Obviously, a small external radius and a
big thickness. results in a high critical pressure, as shown by the red lines in Fig. (13a)).
To estimate how robust the proposed model is, a coordinate plot is represented, again,
in Fig. (13b) to determine which parameter influence the error indicator the most. The
map is defined by relative variations of +0% − 25% on the outputs. The external radius,
the thickness and the radius of curvature influence most the error indicator. The external
radius and the radius of curvature are not independent in the chosen parametrization.
Indeed the curvature radius is defined according to the middle line of the pipe. Therefore
the larger the external radius, the smaller the radius of curvature of the upper skin of the
pipe.

(a) (b)

Figure 13: Parallel coordinates plots. Each axis represents a parameter except for the output, indicated
last one on the right along the x-axis. (a) Critical pressure. (b) Error estimate.
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The training set is made of five FOM simulations. Denoting CPUFOM = 5672s the
computational time of the FOM simulations, and CPUHR = 1035s that of the HROM
simulations, the speed-up, defined by:

speed-up =
CPUFOM × 81

CPUHR × 81 + CPUFOM × 5
, (39)

is about 4.1, slightly lower than the direct speed up : CPUFOM/CPUHROM = 5.48.
By varying the thickness and the radius of curvature and fixing the others parameters

to Rext = 42mm and α = 45 ◦, a domain of validity is defined, where the error indicator
is inferior to 10%. In that case, the hyper-reduced model HROM5-27-50 does not only
interpolate but also extrapolate training data. A variation of ±25% of the thickness and
of the curvature radius is applied and the parametric space is divided in a grid of 10× 10
points, resulting in 100 HROM simulations. Figure (14) shows that the HROM model has
a quite a large validity domain in spite of its construction, which uses only 5 high fidelity
simulations.

(a) (b)

Figure 14: Map of the error estimate for the hyper-reduced model with isocontour equal to 10%, for varying
curvature radius and thickness. Each black point in the background represents a HROM simulation and
the green square represents the domain of the validation dataset (on the left). Representation of the pipe
with minimum and maximum values of both parameters simultaneously (on the right).

The parameters for three test points in the parameter space, indicated on Figure 14.a,
are given in table 4. The error on the von Mises stress corresponding to the three test
points indicated by the black numbers in Figure 14.a may be calculated on each Gauss
point of the RID and of the full mesh, once the gappy POD has been applied to stresses. A
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Number rcurv (mm) e mm)

1 90 6.25
2 96.66 4.86
3 130 5.13

Table 4: Set of parameters of the three simulations indicated in Figure 14

reference computation has been carried out with the FOM for these three configurations.
The correlation curves for stress predictions are shown in Figure (15).

Figure 15: Error for the von Mises stress, for test points 1, 2, 3 in the parameter space (table 4). Each
marker represents a gauss point, the x-axis is the reference value and the y-axis the value computed with
the hyper-reduced method. Red points are related to the prediction in the RID. Blue points are related
to the gappy POD for the stress recovery over Ω.

As shown in Figure (15), the prediction of the equivalent stress on the RID is more
accurate than on the full mesh. Outside the RID, the gappy POD gives stresses that
violate the limit R0 enforced by perfect plasticity. In the RID, the stresses are obtained
by integrating the constitutive relations. Therefore they are plastically admissible. These
results confirm that the proposed error indicator is relevant in this example. In order to
show the robustness of the HROM5-27-50 model, variations of the two other parameters
(external radius and angle) have also been considered. Constant values have been given to
the curvature radius (120mm) and the thickness (5mm). As previsously, the parameters
vary within ±25% and the parametric space is divided in a grid of 10 × 10 points. The
assumed validity domain given by an error indicator less than 10% is once again quite
large, which shows the robustness of the hyper-reduced arc length method (Fig. 16).
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(a) (b)

Figure 16: Map of the error estimate for the hyper-reduced model with isocontour equal to 10% for
varying external radii and angles (a). Each black point in the background represents a HROM simulation
and the green square represents the domain of the validation dataset. (b) Representation of the pipe with
minimum and maximum values of both parameters simultaneously.

7. Speed-up

The previous simulations have been carried out on 24 processors. In the HR simulations,
most of the CPU time is spent for the integration of the material constitutive law and the
computation of the internal reactions. The later represents 77% of the computational
time while the construction of the hyper-reduced matrix represents 2% and the solving
time of the linear system represents 3%. The rest of the time is used for other tasks.
Accordingly, the size of the RID plays an important role on the speed-up. This shows the
robustness of the method despite the moderate speed-up, equal to 5.5. In order to increase
the speed-up less modes in the HR model have been used, as well as less RID elements.
In the present section, a hyper-reduced model, denoted HROM5-9-73 created with the 5
FOM simulations and made of 9 displacement modes, 73 stress modes modes and a RID
of 8,694 DOFs is considered. This model is used to simulate the problem represented by
point 2 in Figure (14). Figure (17) shows the RID now used, to be compared with that of
HROM5-27-50 (Figure 10). The much-reduced RID contains 2, 898 nodes instead of 8, 511
nodes as in HROM5-27-50. Numerical investigations show that the speed-up now equals
14.5. Enhancing the speed-up, however, leads to a larger error. With model HROM5-9-73
is around 30% instead 15% for model HROM5-27-50. Although the error of the stress field
is twice larger, the error on the estimate for the limit load (about 47.1MPa with the FOM
model) is less than 1%.
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Figure 17: RID of HROM5-9-73.

(a) (b)

Figure 18: Error on the von Mises stress, for test points 2 in the parameter space. Each marker of the
following graph represents a gauss point, the x-axis represents the reference value and the y-axis the value
computed with the proposed method. Red point are related to the prediction in the RID. Blue points are
related to the gappy POD for the stress recovery over Ω. (a) HROM5-27-50. (b) HROM5-9-73.

8. Conclusion

An extension to the hyper-reduced method based on a reduced integration domain
has been introduced. It should be emphasized that “snap-back” phenomena [34], which go
beyond the scope of this paper, are not addressed in the present work. It accurately predicts
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buckling and yields accurate limit-loads, in the context of finite strain and elastoplastic
behaviour. The method has been tested on an academic problem, that of a 2D hyper elastic
buckling beam. In spite of a ill-conditioned tangent matrix, the algorithm shows good
convergence properties, making use of the hyper reduced arc-length algorithm. Various
constructions of the reduced base have been considered through the example of a straight
pipe under internal pressure. The different contributions of each linear system to be solved
have been taken into account to determined the best construction method of the reduced
base. It has been found that the best ones uses standard simulation outputs to train
reduced bases. Moreover, an error indicator based on the stress field has been proposed,
and coupled with a greedy algorithm in order to choose snapshots that are simulated via
finite element model. Using this estimator the domain of validity of the model has been
determined for an elbowed pipe in a four dimensions-parametric space. The hyper-reduced
model shows excellent results not only when interpolating data but also, for extrapolating
(at least in a limited range beyond the training set). Our results show the efficiency and
robusteness of the proposed strategy in terms of accuracy of the solution and of stability
of the hyper-reduced algorithm. A promising result as well is the speed-up, between 4 and
14 in the examples studied.

9. Appendix: RID construction

To detail the construction of the RID, it is convenient to introduce two mathematical
operators. The first one collects the degrees of freedom over a sub-domain Ωα and is defined
by:

C(Ωα) = {i ∈ {1, . . .N},
∫

Ωα

φφφ2
i dΩ > 0}

The second one aggregates the support of the FE shape functions having their index in a
set L:

V(L) = ∪i∈Lsupp(φφφi), V(L) ⊂ Ω

The extension of this subdomain by adding n layers of connected elements reads:

(V ◦ C)n ◦ V(L).

The operator V is adapted to displacement fields, which are approximated by FE shape
functions. A similar operator may be introduced for stresses. When collecting simulation
data related to stresses, in the matrix Qσ, all stress components at all Gauss points are
stored for all elements. Each row of Qσ is related to one component of the stress tensor,
at a Gauss point in an element. Then, the DEIM algorithm applied to Vσ gives a set
of indices of components of the stress tensor, at some Gauss points, in some elements.
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Denoted this set Pσ and denote Vσ(Pσ) the support of the elements related to set Pσ.
Then, Vσ(Pσ) is a subdomain of Ω.

In the second example, the RID construction is:

ΩA = (V ◦ C)2 ◦ (V(P) ∪ Vσ(Pσ)) ∪ V ◦ C ◦ V({io})

where io is the degree of freedom used to plot the load-displacement curve in Figure 7.
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