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ABSTRACT
This paper introduces, analyzes and validates isogeometric mortar methods for the solution of
thick shells problems which are set on a multipatch geometry. A particular attention will be
devoted to the introduction of a proper formulation of the coupling conditions, with a particular
interest on augmented lagrangian formulations, to the choice and validation of mortar spaces,
and to the derivation of adequate integration rules. The relevance of the proposed approach is
assessed numerically on various significative examples.

1. Introduction
The concept of isogeometric analysis (IGA) was first proposed by Hughes et al. in [1]. A considerable advantage

of the method is to keep the same geometry, constructed in a computer-aided design (CAD) software, for the analysis
step. This is possible by the use of the same shape functions for design and for analysis. Consequently, the kinematic
quantities can be precisely evaluated without introducing an error due to the spatial discretization of the underlying
geometry. More details on isogeometric methods can be found in [2].

Geometries constructed in a CAD software are generally comprised of several domains, which are also called
patches, defined with B-splines or non-uniform rational B-splines (NURBS) shape functions. A comprehensive study
of the numerical implementation of NURBS functions is given in [3]. The patches can be trimmed, if they cannot be
constructed by a tensor product of basis functions, or untrimmed if they can be meshed exclusively with quadrangular
elements. Analysis of trimmed structures [4–7] is recent and can lead to various difficulties such as element integration
or weak condition enforcement. In this study, we will only focus on complex multipatch untrimmed geometries which
require a robust treatment of continuity conditions between domains. This work then concerns industrial parts that can
be represented by structures such as plates or shells for which the effects of transverse shear cannot be neglected. For
this purpose, Reissner-Mindlin model was retained and rotationnal degrees of freedom (DOF) of the normal will be
taken into account.

Literature is particularly rich concerning domain coupling in IGA for thin plate or shell structures. For conforming
meshes, Kiendl et al. [8] proposed to add a fictitious bending strip to transfer the bending moment and keep a C0
continuity between patches. Another method for a C0∕G1 continuity consists in a virtual projection of control points
for each interface (Oslo algorithm [9]) associated with a static condensation method or penalty method, see [10]. A
Nitsche-based formulation was proposed in [11], for plane problems or for 3D problems [12], which can preserve
uniqueness of the solution at the cost of an additional eigenvalues problem to solve.

It is well-known that mortar method is an interesting alternative to enforce contact or continuity conditions in
coupling problems [13–17]. In this case, the choice of the dual space is essential. From a theoretical point of view,
the space of the Lagrange multipliers has to satisfy two conditions. The first is the inf-sup stability and the other one
is to achieve a good approximation of the dual space. Noting by p the order of the primal space splines functions, a
dual space of order p∕p − 1∕p − 2 was proposed by Brivadis et al. [18]. Here we will present a mortar method with a
simplified dual space of order p which can be easily applied to industrial parts at a low computational cost.

Therefore, the purpose of the present paper is to introduce, analyze and validate isogeometric mortar methods for
solving thick shells problems which are set on a multipatch defined geometry. A particular attention will be devoted to
the introduction of a proper formulation of the coupling conditions, with a particular interest on augmented lagrangian
formulations, to the choice of mortar spaces, and to the derivation of adequate integration rules.

This article is structured in six main sections. Section 2 presents a brief review of the shape functions used in
isogeometric methods. Section 3 introduces the Reissner-Mindlin shell model to be used herein. In Section 4 the
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multipatch problem and a functional and discretization framework will be given. Convergence results will be reviewed
and adapted in Section 5 and integration rules will be discussed in 6. Finally, some numerical results are proposed on
academic and industrial parts in Section 7.

2. Shape functions in isogeometric analysis
Let us recall that a knot vector is a non-decreasing set of real numbers Ξ = {

�1,… , �n+p+1
} which represent coor-

dinates in the parameter space. The first and last entries in Ξ are repeated p+ 1 times which means that we use herein
an open knot vector. Open knot vectors are widely used in CAD software and guarantee that basis functions are inter-
polatory at the ends of the parameter segment. We also define the breakpoint vector, i.e., the vector Ξ∗ corresponding
to Ξ without any repetitions, which splits the parameter space into elements and so define a mesh. B-splines are then
piecewise polynomial functions Np

i which are recursively built on Ξ [3] . These functions generate the spline space
Sp(Ξ) = span

{

Np
i (�), i = 1,… , n

} of order p known to have excellent approximation properties. Moreover, each
function Np

i is a piecewise positive polynomial of order p and has a compact support such that Np
i ≥ 0 within the

knot interval [�i,… , �i+p+1[. The regularity between each element is Cp−mj and so depends on the corresponding knot
multiplicity mj .Given a set of n control points Xi, where all of the DOF are defined, and a knot vector Ξ, a B-spline curve can be
defined as

C(�) =
n
∑

i=1
Np
i (�)Xi.

In the same way, multivariate B-spline objects are based on a tensor product of univariate B-splines. Therefore, a
B-spline surface can be described with two knot vectors Ξ and  and a set of n ⋅ m control points Xij such that

F(�, �) =
n
∑

i=1

m
∑

i=1
Np
i (�)M

q
j (�)Xij =

n⋅m
∑

A=1
NA(�, �)XA.

Rational B-splines such as NURBS functions are increasingly used in CAD software since they are capable of
exactly representing conic sections. They are not only characterized by control points but also by positive scalar
weights wA and are defined as follows

RA(�, �) =
NA(�, �)wA

∑n⋅m
A=1NA(�, �)wA

=
NA(�, �)wA
W (�, �)

.

A NURBS surface is now given by

F(�, �) =
∑n⋅m
A=1NA(�, �)wAXA

W (�, �)
=

n⋅m
∑

A=1
RA(�, �)XA.

3. Reissner-Mindlin plates and shells
3.1. Kinematics

We consider a shell occupying a volume V with mid-surface Ω and thickness t. Let xq be the position vector of
a material point q of the shell in the physical space and �q = (�, �, � )T its counterpart in the parameter space. The
coordinate � (resp. �) is associated a knot vector Ξ (resp. ) and � ∈ [−1, 1] defines the transverse position of the
point in the parameter space. In other words, the point p corresponding to �p = (�, �, 0)T in the parameter space will
belong to the mid-surface Ω. Locally, namely on a given patch, the shell volume is the image of the parameter space
by the map

xq(�q) = xp(�p) + zn(�p) =
n⋅m
∑

A=1
RA(�, �)XA +

t
2
�n(�, �)
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Figure 1: Reissner-Mindlin shell obtained from a degenerated three-dimensional model.

with n(�, �) the normal vector to the shell mid-surface at point xp(�, �). The displacement field inside the shell is
decomposed locally into a displacement up(xp) of the mid-surface and into a rotation of angle �(xp) of its normal

uq(�q) = up(xp) + z� × n(xp). (1)
The expression (1) is obtained supposing small normal rotations in such a way that (R(�) − I3)n ≃ � × n with R

the usual rotation matrix. Extension to large rotations involve a non-linear parametrization R(�) of the set of spatial
rotations.
3.2. Weak formulation for the shell problem

We wish to take into account transverse shear. Such shell models can be derived from a three-dimensional (3D)
one by assuming as done in (1) that the kinematics is linear along the transverse direction, to be possibly characterized
by two control points across the thickness, see Figure 1. A plane stress state is also supposed such that �33 = 0 in the
element local basis. The actual model, presented in [19], follows the work of Benson et al. [20, 21].

The variational formulation of this shell model was studied in depth in [22], in which it is mentioned as the basic
shell model. We herein take the same notation to present the corresponding variational formulation. In the following,
greek letters will refer to mid-surface quantities with (�, �, �, �) ∈ {1, 2} whereas latin letters will refer to quantities
in the volume with (i, j, k, l) ∈ {1, 2, 3}. A subscript is used for quantities expressed in the covariant basis and a
superscript for those in the contravariant one. The mid-surface covariant basis a� corresponds to the local derivatives
x,� or x,� of the in-plane position. Noting g� = a� + za3,� and g3 = a3 = n , the 3D covariant vectors, the local
covariant coordinates of the metric tensor are g�� = g� ⋅ g� with inverse g�� .

For a linear analysis, we write the covariant components of the strain tensor for the general displacement (1) as

"ij =
1
2
(

gi ⋅ uq,j + gj ⋅ uq,i
)

.

For a linear elastic material, the classical Hooke’s law written in the local basis is
�ij = C ijkl"kl,

with C the elastic stiffness tensor defined from Young’s modulus E and Poisson’s ratio �. A plane stress state assump-
tion allows us to eliminate the transverse deformation "33 and to simplify the previous equation into

⎧

⎪

⎨

⎪

⎩

��� = H����"��,

��3 = 1
2
G��"�3,

with

⎧

⎪

⎨

⎪

⎩

H���� = E
2(1 + �)

(g��g�� + g��g�� + 2�
1 − �

g��g��),

G�� = 2E
1 + �

g��.
(2)

Using the elastic constitutive relation (2), the action of the stress field associated to the displacement u in the strain
field associated to the virtual displacement v takes the form

∫Vol
�(u) ∶ �(v)dVol = ∫Vol

(

H����"��(u)"��(v) + G��"�3(u)"�3(v)
)

dVol.
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Figure 2: Example of a multipatch shell problem with two domains to glue along the mid interface Γs.

The shell mid surface Ω is supposed to be fixed on the part Γud of its boundary, and no normal rotation is allowed
on a possibly different part Γ�d . We then define the Sobolev spaceH1

d (Ω) of admissible test functions by
H1
d (Ω) =

{

v = (vp,#) ∈ H1(Ω) ×H1(Ω), vp = 0 on Γud , # = 0 on Γ�d
}

.

Then, the Reissner-Mindlin elastic shell problem submitted to an external load reduces to the variational equation

∫Vol
�(u) ∶ �(v)dVol = ∫V

fv ⋅ v dV + ∫Ω
fs ⋅ v dΩ + ∫)Ω

(

vp ⋅ gp + # ⋅mp
)

dΓ, (3)

with unknown displacement field u ∈ H1
d (Ω) and arbitrary test functions v ∈ H1

d (Ω). Above fv and fs respectivelydenote the imposed volumic and surface forces which are applied respectively on V andΩ and gp andmp are the lateral
tension and moment applied on Γ which have to be specified repectively on the complementary parts of Γud and Γ�d in
)Ω. The proof of continuity and coercivity of the bilinear form corresponding to the left-hand side of (3) can be found
in [22], from which one can deduce existence and uniqueness of the solution of (3).
Remark 1. It can be shown that the coercivity constant has terms in (t) for shear and membrane strain components
(those who do not vary across the thickness) and in (t3) for bending strain components (those who vary linearly in
z). This difference of order in thickness is leading to potential numerical locking that we will address later by using an
adequate reduced integration rule. ■

4. Description of a multipatch problem
4.1. Definition of the global domain

We aim at finding displacements of a shell made of different patches with different parametrizations. Let us consider
an example with two domains (Figure 2). The two patches, defined from their mid-surfacesΩ1 andΩ2, have a common
boundary Γs. The other boundaries Γd and Γn correspond to Dirichlet and Neumann boundary conditions, respectively.
Edges )Ωk, with k = {1, 2}, are at least piecewise C1 such that the outward normal �k for each patch can be uniquelydefined almost everywhere.

More generally, let Ω ⊂ ℝ3 be a bounded surface divided into K non-overlapping patches Ωk which constitute a
partition of Ω in such a way that

Ω =
K
⋃

k=1
Ωk and Ωk1 ∩ Ωk2 = ∅ with k1 ≠ k2.
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Figure 3: Spaces in IGA and quadratic shape functions for the element Ω̂e
k. The center figure describes the mesh and the

different elements in the parameter space Ω̂k defining the patch k. The figure on the right represents the physical image
of the elements and of the associated control points by the mapping Fk in the case of quadratic B-splines.

We define the NURBS surface of patch Ωk by

Fk (�, �) =
n⋅m
∑

A=1
RA (�, �)XkA,

recalling that XA ∈ ℝ3 are the control points coordinates. We denote byk the mesh in the physical space, which is
the image of ̂k in the parameter space by Fk. Let O and Q be elements respectively in the physical and parameter
space (Figure 3). Consequently, we can write

k =
{

O ⊂ Ωk ∶ O = Fk(Q),Q ∈ ̂k

}

.

An interface kl is defined as the closure of the intersection between two domain boundaries
kl = )Ωk ∩ )Ωl with 1 ≤ l < k ≤ K.

All of theses interfaces are defining the skeleton Γs = ⋃

k>l kl. The master-slave approach is retained in order to
define a hierarchy between domains constituting an interface. The slave side s(kl) ∈ {k, l}, is a priori arbitrary . We
can point out that a patch can be defined as a slave for an interface and as a master for another one.

With the previous notation, each interface kl is defined from the intersection of a slave side )Ωs(kl) and amaster one
)Ωm(kl). Knowing that, we distinguish three types of geometrical conformities. A geometrical conforming situation is
when kl is an entire edge on both sides kl = )Ωs(kl) = )Ωm(kl), Figure 4 (a). A slave conforming case, as detailed in
[18], corresponds to a situation where kl is an entire edge of the slave side Ωs(kl) = Fs(kl)(Ω̂s(kl)), i.e., kl = )Ωs(kl)as shown in Figure 4 (b). All of the other situations are presented in Figure 4 (c).
4.2. Weak formulation for the multipatch problem

We begin by setting the abstract framework as introduced in [18, 23]. The initial weak formulation (3) is set on
H1
d (Ω). We split it into local spaces

Vk
(

Ωk
)

= H1
d (Ωk) =

{

vk = ((vp)k,#k) ∈ H1(Ωk) ×H1(Ωk), (vp)k
|

|

|Γud
= 0, #k||Γ�d = 0

}

and define the local bilinear and linear forms ak and Lk by
ak(uk, vk) = ∫Volk

�(uk) ∶ �(vk)dVolk,

N. Adam et al.: Preprint submitted to Elsevier Page 5 of 37
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(a) kl = )Ωs(kl) = )Ωm(kl) (b) kl = )Ωs(kl) (c) kl = )Ωs(kl) ∩ )Ωm(kl) ≠ )Ωs(kl)

Figure 4: Three different cases of patch interface geometry: geometrical conforming (a), slave conforming (b) and totally
non-conforming (c).

Lk(vk) = ∫Volk
(fv)k ⋅ vkdVolk + ∫Ωk

(fs)k ⋅ vkdΩk + ∫Γn∩Ω̄k
(vp)k ⋅ (gp)k + #k ⋅ (mp)kdΓn,

with Volk the volume of the shell associated with the mid-surface Ωk.We are now interested in the coupling term that will link each patch of Ω. In order to give a functional framework,
we define the broken Sobolev space V =

∏

k Vk associated with the broken norm
||v||2V =

∑

k
||

(

vp
)

k ||
2
H1(Ωk)

+ ||#k||2H1(Ωk)
.

By a standard integration by part, we classically prove that
H1
d (Ω) =

{

{

vk
}

∈ V ,
{Trklvk − Trklvl

}

kl
= 0, ∀kl

}

, (4)
with Trklvm the trace of vm on kl . Inside this space we have a(u, v) = ∑

k ak(uk, vk), with vk the standard restrictionof v on Ωk, expression to be used in the variational problem (3).
4.3. Local discretization

We recall that each patch is defined by the NURBS parametrization Fk which needed two knots vectors �k =
{

Ξk,k
} such that the physical space Ωk is the image of Ω̂k by Fk (Figure 3). We use the same shape functions RAto represent the admissible displacements of the shell,

uq(�q) = up(xp) + z� × n(xp) =
n⋅m
∑

A=1
RA(�, �)

(

UA +
t
2
��A × n(�, �)

)

, (5)

with UA (resp. �A) the displacements (resp. rotations) vector at control point of coordinates XA. Consequently, wecan define the discrete space of displacements Vk,ℎ ⊂ Vk by
Vk,ℎ =

{

vk = v̂k◦F−1k , v̂k ∈ R
pk (�k)2

}

,

with Rpk (�k) = Rpk (Ξk) ⊗ Rpk (k) the space generated by tensorial product of the space of NURBS functions of
order pk defined on Ξk and k respectively.We also introduce a finite dimensional approximation Mkl,ℎ = Mlk,ℎ of the space of interface forces acting on
kl = lk

Mkl,ℎ ⊂ L
2(kl)2.

In order to apply the continuity constraint at a discrete level, we define the continuous bilinear form ckl by

ckl ∶ L2(kl)2 × L2(kl)2 → ℝ, (�kl,ukl)↦ ∫kl
�kl ⋅ ukl dkl, (6)
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and approximate the displacement space (4) by the kernel

Ker(Cℎ) =
{

vk =
(

(vp)k,#k
)

∈ Vℎ =
∏

k
Vk,ℎ, ckl

(

�kl,Trklvk − Trklvl
)

= 0,∀�kl ∈Mkl,ℎ,∀kl

}

.

4.4. Dualised discrete problem
With the previous notation, the discrete abstract problem consists in finding {uk

}

∈ Ker(Cℎ) such that we have
∑

k
ak(uk, vk) =

∑

k
Lk(vk),∀

{

vk
}

∈ Ker(Cℎ). (7)

We can remark that Ker(Cℎ) is the kernel of the linear application Cℎ ∶ ∏

k Vk,ℎ →
(
∏

k>lMkl,ℎ
)′ defined by

(6). It will be handled by Lagrange multipliers [24, 25] as already applied for plane elasticity in the context of IGA
in [11, 18]. From the closed range theorem applied in a finite dimensional setting, Im(CTℎ ) = Ker(Cℎ)⟂ and thus
there exists a multiplier field � = {�kl} = {(�ukl,�

�
kl)} ∈

(
∏

k>lMkl,ℎ
) such that (7) can be rewritten as finding

{

uk
}

∈ Vℎ =
∏

k Vk,ℎ and
{

�kl
}

∈Mℎ =
∏

k>lMkl,ℎ such that
∑

k
ak(uk, vk) +

∑

k>l
ckl

(

�kl,Trklvk − Trklvl
)

=
∑

k
Lk(vk), ∀

{

vk
}

∈ Vℎ,

∑

k>l
ckl

(

�kl,Trkluk − Trklul
)

= 0, ∀
{

�kl
}

∈Mℎ.
(8)

When we have non-conforming meshes at an interface, this formulation is often called mortar method [26]. The
dualised formulation (8) is a saddle-point problem. The coercivity of the corresponding bilinear form is no longer
insured. Consequently, the choice of a suitable dual space is essential to preserve the uniqueness of the solution
[18, 23, 27]. Classical mortar theory requires the satisfaction of two main assumptions to be detailed later. The first
one is the classical inf-sup condition, often called L.B.B. (Ladyženskaja-Babuška-Brezzi [28, 29]) whereas the second
one corresponds to the approximation order for the chosen dual space.
4.5. Augmented discrete problem

An augmented lagrangian formulation, sometimes called hybrid or mixed method, introduces an additional primal
term in (8) which locally reinforces the continuity constraint, see [30, 31], yielding additional robustness both from an
approximation and an algorithmic point of view. This method is a combination of a penalty approach [32, 33] and of
the previous dualised problem. The penalty term uses the following continuous bilinear form

bkl ∶
∏

k
Vk ×

∏

k
Vk → ℝ, (uk, vk)↦ ∫kl

(Trkluk − Trklul,Trklvk − Trklvl
)

dkl.

Noting by �kl the penalty factor associated to the interface kl, we are now able to write the penalised dualised
discrete problem as finding {uk

}

∈ Vℎ =
∏

k Vk,ℎ and
{

�kl
}

∈Mℎ =
∏

k>lMkl,ℎ such that
∑

k
ak(uk, vk) +

∑

k>l
�kl bkl(uk, vk) +

∑

k>l
ckl

(

�kl,Trklvk − Trklvl
)

=
∑

k
Lk(vk), ∀

{

vk
}

∈ Vℎ,

∑

k>l
ckl

(

�kl,Trkluk − Trklul
)

= 0, ∀
{

�kl
}

∈Mℎ.

For this augmented form, the choice of the penalty factor is not as essential as in a pure penalty method written
without Lagrange multipliers.

5. Convergence analysis
5.1. Geometric assumptions

For the analysis to come, we make the same assumptions as [18] for the regularity of the physical mapping Fk. We
will consider that we have the same order pk for the shape functions in the two parametric directions and assume that
N. Adam et al.: Preprint submitted to Elsevier Page 7 of 37
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Assumption 1 (Physical mapping Fk). The mapping Fk on each patch k is regular, with its inverse F−1k well-defined,
and piecewise differentiable at any order with bounded derivatives. ■

With the notation ℎQ = diam(Q) and ℎO = diam(O) standing for, respectively, the characteristic length of the
mesh in the parameter and physical space, Assumption 1 claims that on each patch ℎQ ≃ ℎO. We denote by ℎk the
characteristic mesh size on the patch

ℎk = max
{

ℎQ,Q ∈ ̂k

}

≃ max
{

ℎO,O ∈k
}

.

We further restrict our analysis to quasi-uniform meshes.
Assumption 2 (Globally quasi-uniform mesh, Assumption 2 in [18]). We consider the partition formed from the
breakpoints of Ξ = {

�1,… , �n+p+1
} and  =

{

�1,… , �m+p+1
}. Then there exists a constant C�,k ≥ 1 such that all

elements ℎ1i = �∗i+1 − �∗i and ℎ2j = �∗j+1 − �∗j in the patch satisfy

C−1�,k ≤
ℎ�i
ℎ�′j

≤ C�,k, ∀i,∀j,∀(�, �′) ∈ {1, 2} . ■

The simplifying Assumption 2, which forbids graded meshes, considers the characteristic size ℎk to be quasi-uniformalong elements and along the two parametric directions � and �. Under Assumption 2, which involves a globally
quasi-uniform mesh, it is well-known that NURBS have optimal approximation properties as proved in [34].
Lemma 1 (NURBS optimal approximation). We consider a quasi-uniform mesh and integers r and s such that 0 ≤
r ≤ s ≤ pk + 1. We denote by Cshape a constant depending on pk, C�,k, Fk and on the weights wA used to construct
the NURBS functions. Then, ∀vk = ((vp)k,#k) ∈ Hs(Ωk)2, there exists a locally defined approximation vk,ℎ ∈ Vk,ℎ
such that

||vk − vk,ℎ||Hr(Ωk)2 ≤ Cshapeℎ
s−r
k ||vk||Hs(Ωk)2 ,

with ||vk||2Hs(Ωk)2
= ||(vp)k||2Hs(Ωk)

+ ||#k||2Hs(Ωk)
. □

5.2. Assumptions on the dual space
The purpose of this section is to briefly review the convergence analysis which justifies specific choices of mortar

spaces, and possibly adapt it to our multipatch isogeometric thick shell framework. Convergence results on the mortar
method have been presented in [23, 26, 35–38]. This approximation strategy is non-conforming and thus, the error
in the discrete solution (8) is to be decomposed into an approximation error and a consistency error. A technical
difficulty arises because traces of solutions on adjacent interfaces are not independent from one face to another, while
our discretisation strategy splits the continuity constraint in independent local weak continuity conditions. To overcome
this difficulty, one introduces the reduced spaceWkl,ℎ of traces of the slave space Vs(kl),ℎ on kl having zero values at
interface ends

Wkl,ℎ = TrklVs(kl),ℎ ∩H1∕2
0,0 (kl)

2

on which to check the local inf-sup condition [39], [18, Assumption 4]. In this framework, the multipatch isogeometric
analysis of shell introduces two additional technicalities : the complexity of the underlying variational form with
rotational degrees of freedom, and the non interpolatory character of the NURBS shape function at cross points. This
last difficulty was already faced by [18] and imposes to use weighted L2 norms on the interfaces as in [36].

Denoting by C a constant independent of the mesh size, but possibly dependent on the approximation order pk,we introduce our three main assumptions to be checked later for specific choices of trace spaces. The first one is the
standard inf-sup stability condition
Assumption 3 (Local Inf-sup stability). For any l < k ∈ {1,… , K} and ∀�kl ∈Mkl,ℎ we have

sup
wk∈Wkl,ℎ

∫kl
wk�kl dkl

||wk||L2(kl)2
≥ C||�kl||L2(kl)2 . ■
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This condition ensures the L2 continuity of theMkl,ℎ orthogonal projection operator �kl,ℎ ontoWkl,ℎ defined as
the closest point �kl,ℎ(v) ∈ Wkl,ℎ such that

∫kl
�kl,ℎ�kl,ℎ(v) dkl = ∫kl

�kl,ℎv dkl,∀�kl,ℎ ∈Mkl,ℎ,�kl,ℎ(v) ∈ Wkl,ℎ.

Lemma 2 (L2 stability of interface projection [36]). Under Assumption 3, we have

||�kl,ℎ(v)||L2(kl)2 ≤
1
C
||v||L2(kl)2 ,∀v ∈ L

2(kl)2. □

The next assumption ensures that interface forces can be optimally approximated by our space of interface Lagrange
multipliers [18, Assumption 5].
Assumption 4 (Optimal interface approximation). For any l < k ∈ {1,… , K}, there exists an approximation order
�(kl) such that ∀� = (�u,��) ∈ H�(kl)(kl)2 we have

inf
�kl∈Mkl,ℎ

||� − �kl||L2(kl)2 ≤ Cℎ�(kl)kl ||�||H�(kl)(kl)2 ,

with ||�||2
H�(kl)(kl)2

= ||�u||2
H�(kl)(kl)

+ ||��||2
H�(kl)(kl)

. ■

The last assumption guarantees that the weak continuity condition implies strong continuity of the rigid body
motions. It is satisfied for example as soon asMkl,ℎ contains linear functions or smooth positive bubble functions.
Assumption 5 (Coarse dual space for rigid body motions). For any interface kl, l < k ∈ {1,… , K}, there exists
a small subsetMkl,0 ⊂ Mkl,ℎ independent of ℎk such that if vk and vl are rigid body motions respectively on Ωk and
Ωl satisfying

∫kl
�kl(vk − vl) dkl = 0, ∀�kl ∈Mkl,0,

then vk = vl on kl. ■

5.3. Convergence results
5.3.1. Equivalence of norms

Our goal here is to prove the equivalence between the energy norm and the brokenH1 norm on
Ker(C0) =

{

vk =
(

(vp)k,#k
)

∈ V , ckl
(

�kl,Trklvk − Trklvl
)

= 0,∀�kl ∈Mkl,0,∀kl
}

.

Proposition 3. Under Assumption 5 and if the global boundary conditions are such that there are no non zero global
rigid body motions inH1

d (Ω), the energy norm is equivalent to theH1 broken norm on Ker(C0)

a(v, v) =
∑

k
ak(vk, vk) ≃ ||v||2V =

∑

k
||vk||2H1(Ωk)2

,∀v ∈ Ker(C0),

the constant of equivalence being thickness dependent. □

Proof. The proof adapts the proof by contradiction of [22]. We give it for completeness since it illustrates the role of
the coarse dual space. If the equivalence did not hold, there would exist a sequence (vn) in Ker(C0) such that

⎧

⎪

⎨

⎪

⎩

∑

k
ak(vnk, v

n
k) →

n→∞
0,

∑

k
||vnk||

2
H1(Ωk)2

= 1.
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From the second condition, there would exist a subsequence still denoted (vnk) weakly converging in H1(Ωk)2 and
hence strongly converging in L2(Ωk)2. From the convergence towards zero in energy norm and the localH1 ellipticity

ak(vk, vk) + ||vk||2L2(Ωk)2 ≥ c‖vk‖2H1(Ωk)2

proved in [22], Proposition 4.3.2, the subsequence is also a Cauchy sequence for the broken H1 norm. Hence, this
subsequence (vnk) converge to v∞ in Ker(C0) and by construction, we have

⎧

⎪

⎨

⎪

⎩

∑

k
ak(v∞, v∞) = 0,

∑

k
||v∞k ||

2
H1(Ωk)2

= 1.

The limit v∞ is therefore a local rigid motion, which is continuous at the interfaces from Assumption 5. It is thus a
global rigid motion inH1

d (Ω), hence it must be equal to zero, which is in contradiction with above. Observe that this
proof does not provide any hint on how the constant of equivalence will vary with respect to the number of subdomains
or with their size or shape. ■

5.3.2. Consistency Error
Proposition 4 (Consistency). Under Assumption 4, any solution u of (3) which belongs toHr+1(Ω)2 with 1∕2 < r ≤
minkl(�(kl) + 1∕2) satisfies

sup
vℎ∈Ker(Cℎ)

|a(u, vℎ) − L(vℎ)|
||vℎ||V

≤ C
√

∑

k
ℎ2rk ||uk||

2
Hr+1(Ωk)2

. □

Proof. This is an easy extension of [23] adapted to the variational formulation of a thick shell problem. Let �k denotethe outgoing normal to the surface contour )Ωk, not to be confused with the shell normal. Let P be the projection onto
the mid-surface Ω, |dS|

|da| denote the ratio between the area of an element dS of the tangent space at distance z from the
mid-surface and the area of its projection da on the mid-surface, N and M be the generalized tension and moment
tensors defined by

N = ∫

t∕2

−t∕2
P ⋅ � ⋅ P t |dS|

|da|
dz, M = ∫

t∕2

−t∕2
zP ⋅ � ⋅ P t |dS|

|da|
dz

and q and r denote the first and second order shear force vectors defined by

q = ∫

t∕2

−t∕2
� ⋅ n |dS|

|da|
dz, r = ∫

t∕2

−t∕2
z� ⋅ n |dS|

|da|
dz.

From the plane stress assumptions, these vectors have no components along g3 = n. We therefore have

∫

t∕2

−t∕2
� |dS|
|da|

dz = N + n⊗ q + q⊗ n

and
∫

t∕2

−t∕2
z� ⋅ |dS|

|da|
dz =M + n⊗ r + r ⊗ n.

By construction of the displacement field (vq)k = ((vp)k + z#k × n)(xp) whose gradient is

((vq)k =
)
)xp

((vp)k + z#k × n) ⋅ P + #k × n⊗ n

the local variational form writes
ak(u, vk) = ∫Volk

�(u) ∶ �(vk) dVolk
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= ∫Ωk ∫

t∕2

−t∕2
� ∶ ((vq)k

|dS|
|da|

dz dΩk

= ∫Ωk

(

(N + n⊗ q) ∶
)(vp)k
)xp

+ (M + n⊗ r) ∶
)(#k × n)
)xp

+ q ⋅ (#k × n)
)

dΩk

= −∫Ωk

(

(divΩ(N + n⊗ q) −N ∶ )n
)xp

)

⋅ (vp)k + n ×
(divΩ(M + n⊗ r) − q

)

⋅ #k
)

dΩk

+∫)Ωk

(

(N ⋅ �k + n q ⋅ �k) ⋅ (vp)k + (n ×M ⋅ �k) ⋅ #k
)

d)Ωk.

The presence of the surface second form )n
)xp

after the divergence in the above expression corresponds to the contribution
of the spatial variation of the test function occuring at frozen normal component (vp)k ⋅ n.

Since the solution uk ∈ Hr+1(Ωk)2 satisfies the local equation of equilibrium, the first integral cancels for any test
functions (vp,#) inH1(Ωk) ×H1(Ωk), and thus we have

ak(u, vℎ) − Lk(vℎ) =
∑

l
∫kl

�k ⋅ vk,ℎdkl

under the notation �k = {N ⋅ �k + n q ⋅ �k,n ×M ⋅ �k}. Hence, after summation on the different patches, we get

a(u, vℎ) − L(vℎ) =
∑

k>l
∫kl

�k ⋅ (vk,ℎ − vl,ℎ)dkl.

By construction of vℎ =
{

(vp)ℎ,#ℎ
}

∈ Ker(Cℎ), their interface jumps are orthogonal to the dual interface spaces,
and hence, by introducing successively the L2 projections �kl,ℎ of �k ontoMkl,ℎ and any arbritrary elements �̂kl,ℎ in
Mkl,ℎ, we get

a(u, vℎ) − L(vℎ) =
∑

k>l
∫kl

(�k − �kl,ℎ) ⋅ (vk,ℎ − vl,ℎ − �̂kl,ℎ)dkl

from which we conclude from a direct application of Assumption 4 on each factor inside the integral and the use of
the Cauchy Schwarz inequality. ■

5.3.3. Approximation error
Let Iℎ =

{

Ik,ℎ
} be the optimal approximation used in Lemma 1. Let Ekl,ℎ ∶ Wkl,ℎ → Vs(kl),ℎ be the extension

obtained by taking a zero value on each control point of the slave patch which is not on kl. Inspired from [23] and
using the notation of [40], we introduce the local projector Pℎ defined by

Pℎ ∶ Hr+1(Ω)2 → Ker(Cℎ),
v ↦ Iℎ(v) −

∑

k>l
Ekl,ℎ◦�kl,ℎ

[

Iℎ(v))
]

.

The local projection �kl,ℎ enables to move any interface jumps away from the cross points and hence to correct
it locally on each interface. Since �kl,ℎ is orthogonal toMkl,ℎ, we observe that this projection is indeed in Ker(Cℎ)since we have

∫kl
�kl,ℎ

[

Pℎ(v)
]

dkl = ∫kl
�kl,ℎ

[

Iℎ(v)
]

− �kl,ℎ�kl,ℎ
[

Iℎ(v)
]

dkl

= ∫kl
�kl,ℎ

([

Iℎ(v)
]

−
[

Iℎ(v)
])

dkl = 0.

We then have the following approximation result.
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Proposition 5 (Approximation result). Under Assumptions 3 to 4 and if the mesh size is uniform between neighboring
patches, any solution u of (3) which belongs toHr+1(Ω)2 with 1∕2 < r ≤ mink,kl(pk, �(kl) + 1∕2) satisfies

inf
vℎ∈Ker(Cℎ)

||u − vℎ||V ≤ C
√

∑

k
ℎ2rk ||u||

2
Hr+1(Ωk)2

. □

Proof. By construction of Pℎ(u) ∈ Ker(Cℎ), we have
inf

vℎ∈Ker(Cℎ)
||u − vℎ||V ≤ ||u − Pℎ(u)||V ,

≤ ||u − Iℎ(u)||V +
∑

k>l
||Ekl,ℎ◦�kl,ℎ

[

Iℎ(u)
]

||V .

The last term in the above inequality is estimated as in [36, 40]. The result follows by sommation and by using Lemma
1 on ||u − Iℎ(u)||V . ■

5.3.4. Convergence result
We can now bound the error between the continuous and the discrete multipatch solution using the approach of

[18, Theorem 6].
Theorem 6 (Convergence result). Under Assumptions 1 to 5 and if the mesh size is uniform between neighboring
patches , the error between the solution u of (3) and the discrete solution uℎ ∈ Ker(Cℎ) of (8) is bounded by

||u − uℎ||2V ≤ C
∑

k
ℎ2rk ||u||

2
Hr+1(Ωk)2

,

with ||u||2
Hr+1(Ωk)2

= ||up||2Hr+1(Ωk)
+ ||�||2

Hr+1(Ωk)
. □

Proof. The proof follows by a direct application of the Strang’s second lemma. From the equivalence between the
energy norm and the broken V norm, we have indeed

||u − uℎ||V ≤ C1
⎛

⎜

⎜

⎝

inf
vℎ∈Ker(Cℎ)

||u − vℎ||V + sup
wℎ∈Ker(Cℎ)

|a(u,wℎ) − L(wℎ)|
||wℎ||V

⎞

⎟

⎟

⎠

,

and the result follows then from the consistency result in Proposition 4 and approximation result in Proposition 5. ■

5.4. Construction of the dual space
The simplest and natural choice is to use the same basis functions on each interface kl for the primal (slave)

and dual variables (p∕p coupling). But due to cross points, the stability condition 3 is violated because of a local
excess of dual variables at these points (see Figure 5). Moreover, the problem of cross points is particularly difficult
in isogeometric analysis for geometrically non-conforming situations, since IGA is not interpolating at internal points,
and therefore the displacement value at cross points may not be uniquely defined.

Two solutions can be proposed to overcome this difficulty [26]. The first one is to coarsen the mesh of the dual
space next to the cross points. The alternative, valid for slave conforming situations, is to locally reduce the order of
approximation of the dual finite elements which are adjacent to the cross points as done in [18] for 3D problems. This
local dimension reduction results in a modified B-spline basis Ñp

i given by [18]

Ñp
i (�) =

⎧

⎪

⎨

⎪

⎩

Np
i (�) + �iN

p
1 (�), ∀i ∈ {2,… , p + 1} ,

Np
i (�), ∀i ∈ {p + 2,… , n − p − 1} ,

Np
i (�) + �iN

p
n (�), ∀i ∈ {n − p,… , n − 1} ,

where the coefficients �i and �i are constructed in order to achieve an approximation of order p − 1 and partition of
unity next to the cross points. For quasi-uniform meshes (Assumption 2), these coefficients are bounded and one can
prove that the inf-sup Assumption 3 and the approximation condition 4 hold in this case [18].
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Figure 5: Quadratic dual space for the clamped four patches problem. The dual nodes are built on the slave sides (Ω1 for
21, Ω2 for 42, Ω3 for 31 and Ω4 for 43). Before correction, there are four dual nodes at center.

The identification of the elements adjacent to cross points and the construction of the coefficients � and � can
nevertheless be cumbersome in practice as illustrated in Section 7.6 on a typical example. Therefore, we will also
propose herein a simpler variant well adapted to the complex geometries encountered in industry, where we simply
suppress all dual degrees of freedom which are located at corners of the slave domain (Figure 6)

M ind
kl = {w ∈ TrklVs(kl),ℎ,wA = 0, at all corners A ∈ Ωs(kl)}. (9)

For the slave conforming situation where we haveM ind
kl,ℎ = Wkl,ℎ, this choice trivially satisfies the inf-sup Assump-

tion 3 at the cost of a loss of optimality in the approximation of the Lagrange multipliers, as indicated below.
Proposition 7. For slave conforming partitions, the simple choiceM ind

kl,ℎ = Wkl,ℎ satisfies

inf
�kl∈M ind

kl

sup
wk∈Wkl,ℎ

∫kl
wk�kl dkl

||wk||L2(kl)2 ||�kl||L2(kl)2
= 1, (10)

inf
�kl∈M ind

kl,ℎ

||� − �kl||L2(kl)2 ≤ Cℎk||�||H1(kl)2 + Cℎ
1∕2
k ||�||H1(kl)2 . □

Proof. By construction, we have Wkl,ℎ ≡ M ind
kl,ℎ. Hence, taking Trklwk = �kl, we get (10) with C2 = 1. For the

second line, without loss of generality, we take kl = (0, 1) and introduce
�kl = rℎ(�) − �(0)N

p
1 − �(1)N

p
n

where rℎ(�) denotes the interpolation operator from H1(0, 1)2 intoM ind
(0,1),ℎ = spani∈J1,nK

{

Np
i
}. From the triangular

inequality, we have
||� − �kl||L2(0,1)2 ≤ ||� − rℎ(�)||L2(0,1)2 + |�(0)| ⋅ ||Np

1 ||L2(0,ℎ)2 + |�(1)| ⋅ ||Np
n ||L2(1−ℎ,1)2 .

For one dimensional domain, we have classically
||� − rℎ(�)||L2(0,1)2 ≤ Cℎ||∇�||L2(0,1)2 ,
max
x∈[0,1]

|�(x)| ≤ C||�||H1(0,1)2 ,

||Np
i ||

2
L2((i−1)ℎ,iℎ) = ℎ||N̂

p
i ||

2
L2(0,1),

which yields the desired result. ■
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Figure 6: Comparison of basis for the dual space. Left: original. Center: simplified M ind = spani∈J2,n−1K
{

Np
i (�)

}

. Right:
optimal Mopt = spani∈J2,n−1K

{

Ñp
i (�)

}

. Quadratic elements p = 2 with seven basis functions n = 7. One can observe that
for the simplified choice, the multipliers are zero at cross points, which simplifies the inf-sup verification, but leads to a
degradation of accuracy for the interface multipliers. The degradation will be attenuated for the augmented lagrangian
choice.

6. Reduced integration and stability
6.1. Normals reconstruction

The displacements in (1) are represented using an exact normal n given by

n(�, �) =
x,� × x,�

||x,� × x,�||2
,

with x,� and x,� the local covariant vectors. The derivatives (�n =
[

n,� n,� 0
] will then involve involve the second

order derivatives of the geometry, that is second order derivatives of NURBSRA(�, �)which can be incompatible with
the use of a reduced quadrature rule. This is why we propose to use in (1) an interpolation based construction, namely

n(�, �) ≈ nℎ(�, �) =
n⋅m
∑

A=1
RA(�, �)nA, (11)

using normals nA constructed at given collocation points. An inherent difficulty from IGA is that control points are
not necessary interpolant, and thus may not be on the shell surface. Consequently, we have to carefully define the
collocation points in this construction. As detailed in [19], an orthogonal projection of control points on mid-surface
or defining equally spaced normals in the parameter space respectively present a high computational cost and a lack
of precision. Based on the analysis performed in [19, Section 3.4] our choice herein uses the relation (11) defining the
control normals nA at Greville abscissae [41]

�k =
1
p

p
∑

i=1
�k+i, ∀k ∈ J1, nK.

These abscissae will correspond to the maxima of the basis functions as shown in Figure 7. With this construction,
the normals in (11) are constructed by

nℎ(�) =
n⋅m
∑

A=1
RA(�)

x,�(�A) × x,�(�A)

||x,�(�A) × x,�(�A)||2
=

n⋅m
∑

A=1
RA(�)n(�A) =

n⋅m
∑

A=1
RA(�)nA. (12)

With this last relation, the derivatives (�nℎ =
[

nℎ,� nℎ,� 0
]

only require the first derivatives of RA(�, �), which
means a lower computational cost and a compatibility with a reduced integration [19].
6.2. Reduced integration

An advantage of IGA is that the exact representation of a smooth geometry gives us the possibility to define an
accurate normal all over the shell (excluding points where the continuity is reduced). But it is also now well-known
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Figure 7: Greville abscissae denoted by bullet points. Left: linear functions. Right: quadratic functions.

Figure 8: Creation of common knots vectors for each interface. After knot-to-segment projection, we get a subdivided
parent grid built on this extended set of common knot vectors, with four elements for 21 and 31 and six elements for 42
and 43 .

that thick shell elements are suffering from numerical locking and some examples are given in [42, 43] for low order
Lagrange polynomials. This membrane and shear locking are due to a conflict of order between the different terms
composing the strain energy and despite of the high regularity allowed by NURBS functions, IGA is also suffering
from locking [44]. An elevation of order (p-refinement) can reduce this locking at the cost of an higher computational
time [45]. Here we overcome this difficulty by extending the reduced quadrature rule, given in [19], to multipatch
geometries. This rule lowers the number of integration points by one in each direction in corners elements and by
rk+1 in inner elements by taking advantage of the higher rk regularity between elements brought by IGA. Then, using
exact normals is incompatible with the proposed reduced integration because as seen earlier introducing exact normals
require to calculate first and second derivatives of the position vector. Therefore, we will use the reconstructed normals
introduced in (11). Last, we will use a similar reduced integration for the interface coupling terms. The integration
of the coupling terms is to be performed on a common parent space. In order to do that, we perform a symmetric
knot-to-segment (KTS) projection for all knots vectors on both sides of the interfaces kl building a subdivision of theparent space. An example of KTS projections, represented in the physical space, is given on Figure 8 for a plate made
of four patches.

The mortar integrals and penalty terms can then be evaluated on each element joining two successive knots of the
common parent space, i.e., on four elements for ̃21 and ̃31 and six elements for ̃42 and ̃43. Noting by pk and plthe order of the basis functions for the patches Ωk and Ωl, a complete quadrature rule for each element of ̃kl would
require nGPC = Esup

[

(pk+pl)+1
2

]

integration points. To reduce the computational cost, we will proceed as for the patch
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Figure 9: Quadrature rules for four interfaces using the common knots of Figure 8. Left: quadratic functions. Right:
cubic functions. Top: complete integration. Bottom: reduced integration.The reduced integration is used both for the
dual and for the penalty terms.

integration, by taking nGPC − 1 points at each end of the common knots vector and one point otherwise (Figure 9).
6.3. Numerical evaluation of the stability

In order to validate numerically the relevance of the above discretization choices, we begin by looking at the
stability of our discrete problem (8). In a matrix form, this problem writes [39]

[

Kstruc C�
(C�)T 0

] [

u
�

]

=
[

F
0

]

.

Let Q be the matrix associated to the interface L2 scalar product

�TQ� = ∫Γs
�ℎ�ℎ dΓs, ∀(�ℎ,�ℎ) ∈Mℎ,

and introduce the product norm

N = Kstruc
⨁

Q =
[

Kstruc 0
0 Q

]

.

Following [39], the numerical stability of (8) is characterized by the lowest norm negative eigenvalue �min of the
discrete problem

KU = �NU.
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Figure 10: Clamped shell model problem used for numerical stability analysis. The four patches are geometrically com-
patible, but their discretisation are not.

In more details, after elimination of � from this eigenvalue problem, one can check that |�2min − �min| is equal to the
lowest positive eigenvalue smin of the reduced eigenproblem [39, Theorem 4]

C�Q−1(C�)T u = sKstrucu,

which also writes after division by �(ℎ)
C�Q−1ℎ (C

�)T u = s
�(ℎ)

Kstrucu, (13)

where we have introduced the matrixQℎ = �ℎQ of the �(ℎ) weighted L2 product. In particular the choice of �(ℎ) = ℎ
leads to the discrete norm ||⋅||−1∕2,ℎ introduced by [36] in their analysis of the mortar elements. From [39, Theorem 2],
we then obtain the global inf-sup estimate

inf
�∈Mℎ

sup
v∈Vℎ

vTC��
||v||struc||�||ℎ

=
√

smin
�(ℎ)

=

√

|�2min − �min|
�(ℎ)

, (14)

after endowing Vℎ andMℎ with the structural energy norm || ⋅ ||struc and �(ℎ) weighted L2 norm || ⋅ ||ℎ respectively.We check this stability of a four patches clamped shell model problem (Figure 10). Four values of the thickness t
are considered t ∈ {

10−4, 10−3, 10−2, 10−1
} (m). The global inf-sup estimate using the discrete norm || ⋅ ||−1∕2,ℎ is

evaluated according to its h-dependency (Figure 11) and p-dependency (Figure 12).
We remark that when the shear contribution is taken into account (which correspond to the two plots on the top for

the h-dependency and p-dependency cases), there is a clear sensitivity to the thickness at order (t2). This sensitivity
is due to the underlying treatment of the shear coefficients in a thick shell model which introduces very large shear
stiffness in the structural stiffness Kstruc, hence modifying the right hand side of the eigenvalue problem (13). If we
now approach the space corresponding to the zero shear energy (i.e. multiplying by t2 the shear contribution), we
are able to suppress these shear spurious modes and we obtain a global inf-sup estimate totally independent of the
thickness t, also observing the overall stability of our discretisation strategy with inf-sup values bounded away from
zero and quasi independent of the discretisation parameters.

7. Numerical results
We herein propose to validate both the multipatch formulations and the quadrature rules on academic and industrial

examples. The numerical implementation was performed in Python with a LLVM-based just-in-time compiler Numba
[46]. Matrix are stored in a sparse CSR format thanks to the SciPy package [47]. This choice allows us to use efficient
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Figure 11: Evolution of the global stability constant as function of the thickness and the mesh size with an approximation
order p = 2. Four values of the thickness t are considered t ∈

{

10−4, 10−3, 10−2, 10−1
}

(m). Left: complete integration.
Right: reduced integration. Top: shear contribution is taken into account. Bottom: the shear contribution is corrected by
multipliying the shear terms by t2.

linear solvers such as Pardiso [48] for the structural analysis or Lanczos, included in the ARPACK package [49], for
the eigenvalue analysis. We use the following notation to describe the considered element and quadrature rule

RM (1) (2) C (3) (4)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1) ∶ P or S for plate or shell element,
(2) ∶ order of the basis functions,
(3) ∶ regularity of the basis functions,
(4) ∶ … or R for complete or reduced integration.

As an example, the element RMP3C1 corresponds to a Reissner-Mindlin plate with cubic shape functions and C1
inter-element continuity associated to a complete quadrature rule. Moreover, a plate element will have five DOF that
is three displacements and two rotations, and a shell element will have six DOF including three rotations.
7.1. Simply supported plate
7.1.1. Validation

The first study concerns a plate of edge length L and width l which is simply supported on its external borders Γdand submitted to a concentrated load F at its center, see Figure 13. The structure is built with four patches having a
cross point at the center due to the intersection of the four interfaces. We use a first order approximation of the problem
by separating the strain in membrane, bending and transverse shear parts as follows

em =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u,x
v,y
0

u,y + v,x
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, �b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

z�y,x
−z�x,y
0

z(�y,y − �x,x)
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, s =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0

w,y − �x
w,x + �y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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Figure 12: Evolution of the global stability constant as function of the thickness and the approximation order with a mesh
size ℎ = 0.25. Four values of the thickness t are considered t ∈

{

10−4, 10−3, 10−2, 10−1
}

(m). Left: complete integration.
Right: reduced integration. Top: shear contribution is taken into account. Bottom: shear contribution is neglected by
multipliying the shear part by t2.

Figure 13: Geometry description and physical properties for a simply supported plate. Four geometrically conforming
patches with incompatible discretisation ranging from four to sixteen elements are used.

by neglecting the membrane part and only considering the out-of-plane displacementw and the two rotations �x and �y.Consequently, we have a pure bending problem which can only be affected by transverse shear locking. The analytical
solution for an equivalent Kirchhoff-Love problem was obtained introducing decomposition solution series in [50, 51].
The maximum displacement at the center of the plate is thus

wC = w
(L
2
, l
2

)

=
48F (1 − �2)
�4Et3Ll

∞
∑

m=0

∞
∑

n=0

1
(

(

2m+1
L

)2
+
(

2n+1
l

)2
)2
.
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Figure 14: Displacement for the simply supported plate with quadratic NURBS. Left: multipatch methods and complete
integration. Right: quadrature rules and augmented method. Top: ratio wℎ

C∕wC . Bottom: error |wC − wℎ
C |. It can be

highlighted from the two right figures, using the augmented approach, that no difference is observed between a complete
and reduced quadrature rule on the interfaces kl, only the computational cost is affected. However, choosing the reduced
integration in each patch k leads to a significantly reduced transverse shear locking.

The first results, using quadratic NURBS and the simplified mortar approach, are shown on Figure 14. The ratio
wℎC∕wC , between the discrete solution and the analytical one, is plotted according to the number of elements per
direction for different multipatch formulations and quadrature rules. The discrete solution wℎC is obtained by taking
the mean value of the four control points located at the center C . The error |wC − wℎC | is shown, depending on the
mesh parameter ℎ, again for different multipatch methods and integrations. For the primal and augmented methods,
the penalty factor is set to �kl = 103 ⋅ E. An example of out-of-plane displacement can be visualized for conforming
meshes (top-left) or non-conforming meshes (top-right). We can see from the left figures that the three multipatch
methods, with a complete integration, are showing similar results except for the penalty formulation. This last point
was expected because this method is variationally inconsistent on �kl. In fact, fixing the penalty factor to a constant
value does not provide an exact enforcement of the continuity constraint. The augmented lagrangian method using the
simplified mortar space is the most efficient.

It can be highlighted from the two right figures, using the augmented approach, that no difference is observed
between a complete and reduced quadrature rule on the interfaces kl, only the computational cost is affected. However,
choosing the reduced integration in each patch Ωk leads to a significantly reduced transverse shear locking.
7.1.2. Simplified and optimal approaches

We now want to compare the simplified mortar space to the optimal one proposed in [18]. The solutions for a dual
and augmented approaches are given on Figure 15 for a complete and reduced integration with shape functions of order
p = 2 to p = 4. We recall that for the simplified approach the dual space is not of optimal order with an additional
term in√ℎ appearing in the convergence estimate . This is a consequence for the non respect of the partition of unity
on the elements that support the interpolant shape functions at singular points. Consequently, we can see differences
between the simplified and optimal approaches when using the dual formulation. However, this difference gets very
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Figure 15: Simplified and optimal mortar methods for the simply supported plate. Left: dual approach. Right: augmented
approach. Top: complete integration. Bottom: reduced integration.

small when using the augmented formulation. Adding a regularization primal term allows us to enforce locally, near
each singular point, the continuity constraint.
7.1.3. Influence of the penalty factor

Above, the penalty factor was set to �kl = 103⋅E for the primal and augmentedmethods. This factor may look large,
particularly for the augmented approach, and so a further study is necessary. As we are comparing the values ofwℎC at
the center of the plate (cross point), a strong coupling condition at this location is required. Consequently, the influence
of the penalty factor will not be negligible for the simplified approach. The error |wC − wℎC | is shown on Figure 16
for the two quadrature rules and three different mesh parameters ℎ with a penalty factor �kl ∈

[

10−6 ⋅ E, 106 ⋅ E
]. As

expected, the influence of the penalty factor is noticeable for the simplified approach whereas it is negligible for the
optimal one. Concerning the complete quadrature rule (domains and interfaces), the shear locking is particularly visible
for the finer meshes and the error can increase for the largest penalty factors. In this case, the simplified dual approach
artificially produces a misleading low error. It is no longer true for the reduced integration (applied for each patch and
interface) which can alleviate this locking phenomenon. The augmented lagrangian method with the simplified mortar
space exhibits the same accuracy as the dual/augmented optimal methods for a penalty factor �kl ≥ 10 ⋅ E∕ℎ. This
value was used for the other studies of the plate.
7.1.4. Thickness dependency

The reduced quadrature rule, applied here in each domain and for each interface, should lead to a solution inde-
pendent of the thickness t, if we have no shear locking. As the analytical solution is only valid for Kirchhoff-Love
elements, we make the slenderness ratio L∕t vary in our tests from a moderate thin plate L∕t = 103 to a very thin plate
L∕ℎ = 105. A thickness dependant load F = 107 ⋅t3 is applied in order to keep a constant transverse displacementwC .Considering the two quadrature rules and the three multipatch methods (including the simplified and optimal variants)
with a penalty factor �kl ≈ 30 ⋅ E∕ℎ, the error |wC − wℎC | is plotted on Figure 17. As stated in [19] for monopatch
structures, the complete integration leads to an artificial solution dependency on t and and obviously it is still the case
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Figure 16: Influence of the penalty factor for the simply supported plate with quadratic NURBS. From left to right:
ℎ = 1∕10, ℎ = 1∕30 and ℎ = 1∕50. Top: complete integration. Bottom: reduced integration. The simplified construction
of the mortar space leads to an accurate solution as soon as the penalty term goes above a certain moderate threshold.
Observe also the presence of locking when using complete integration.

for multipatch geometries. The reduced quadrature rule avoids shear locking up to all practical purposes. A very slight
locking may nevertheless subsist since, for some boundary conditions and in particular the simply supported one, fewer
Gauss points could be used [19].
7.1.5. Natural frequency analysis

In order to validate the reduced quadrature rule detailed in [19] and implemented here for multipatch structures,
we perform a modal analysis. This will further validate the multipatch methods and will also confirm that no spurious
zero energy modes are generated. For this purpose, we are now considering the generalized eigenvalue problem

�!2u + div(�) = 0 in V ,
u = 0 on Γd ,

where � stands for the density and ! is the natural frequency. We assume linear isotropic elasticity in plane stress. In
addition to the previous physical properties reported on Figure 13, the density is set to � = 7500 kg.m−3. After spatial
discretization we have to solve

KU = (!ℎ)2MU, (15)
where K is the global stiffness matrix andM the global mass matrix

M =
⎡

⎢

⎢

⎣

M1 0 0
0 ⋱ 0
0 0 MK

⎤

⎥

⎥

⎦

.

It has been shown in [19] that, with the considered reduced integration, no zero energy modes were obtained if a
sufficient number of Gauss points was considered at each extremity of the patch, i.e., at locations where there is an
accumulation of basis functions. This should remain valid for multipatch geometries.

The geometry under study is the same as for the structural analysis but the plate is now clamped on its external
boundaries. The first eigenvalue !ℎ1 is compared on Figure 18 to the analytical one !1, taken from [52], for different
multipatch methods and quadrature rules all used with the simplified construction of the dual space. We are using
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Figure 17: Influence of the thickness for the simply supported plate with quadratic NURBS. From left to right: primal,
dual and augmented multipatch methods. Top: complete integration. Bottom: reduced integration. A clear thickness
dependent shear locking is observed as in [19] when using full integration inside the patches.

quadratic NURBS on the left and cubic functions on the right. A numerical reference, taken from Abaqus Finite
Element software is also considered for comparison.

An example of solution can be visualised for conforming meshes (top-left) or non-conforming meshes (top-right).
As for the structural analysis, the penalty method is less accurate than the dual or augmented method which both lead
to the same results. The reduced integration can significantly reduce the locking for quadratic functions but is not
necessary for cubic functions for which numerical locking is obviously less significant. We can add that, as previously
mentioned, no hourglass modes are observed.
7.2. Pinched hemisphere

We are now considering a thick shell structure whose solution is sensitive to the construction strategy used for the
surface normal. We use here the collocated normals introduced in (12). It has a good compromise between accuracy
and computational cost and, moreover, it is compatible with our reduced integration rule. The geometry was taken
from the well-known shell obstacle course which aims at validating shell element, see [53, 54]. It is an hemisphere of
radius R with a 18◦ hole as shown on Figure 19.

The multipatch structure has four patches without singular points and is subjected to equal and opposite concen-
trated forces F applied at the four cardinal points of its equator. The rigid body motions are eliminated fixing two
points of the upper edge and, apart from these points, the two ends are free. This test is characterized by inextensible
bending modes and will guarantee that the element is not suffering from membrane or shear locking. We note uℎA the
horizontal displacement obtained at point A which will be compared to the analytical solution uA = 9.3 ⋅ 10−2 (m).
The results are presented in the same way as for the simply supported plate, see Figure 20.

The penalty factor is set to �kl = 103 ⋅E both for the penalty and the augmented lagrangian approach. An example
of horizontal displacement is plotted for conforming meshes (top-left) and non-conforming meshes (top-right). We
can see that, with a complete integration, these three methods exhibit the same solution as shown in the left plots.
Concerning the reduced quadrature rule with an augmented approach, we observe that the reduced integration can
lower the numerical locking. Moreover, the convergence rate for the finer meshes are quite similar for the complete
and reduced quadrature rules. The developped reduced integration seems not as useful as for the plate due to the
boundary conditions. In fact, the reduced quadrature rule is tuned for Dirichlet boundary conditions on all of the
exterior edges. Consequently, when we have free edges, the quadrature rule is too restrictive, more details are given
in [19]. Nevertheless, we will keep a reduced quadrature rule independent of the boundary conditions in order to be
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Figure 18: First eigenvalue for the clamped plate using the simplified mortar space. Left: quadratic functions. Right:
cubic functions. Top: ratio wℎ

1∕w1. Bottom: error |w1 −wℎ
1 |.

Figure 19: Geometry description and physical properties for a pinched hemisphere. Patches interface are represented in
solid lines, elements in dotted lines.

robust on the industrial problems to follow at the potential cost of a small remaining locking.
7.3. Plate with hole

The last academic example considered herein is an "infinite plate", with a circular hole at its center, subjected to a
uniformly distributed traction force of T = F ⋅L = 105 (N) far away. Using symmetry arguments, only a quarter of the
plate will be considered. An analytical solution is given in [51, 55], predicting the value of �xx along the traction axis.However, this solution was given for 2D plane study with two DOF in translation for each control point. Consequently,
using a thick plate element lead to an asymptotic difference of 4⋅10−3 and therefore, we will take as a reference solution
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Figure 20: Displacement for the pinched hemisphere. Left: multipatch methods and complete integration using different
formulations. Right: different quadrature rules using the same augmented lagrangian formulation.. Top: ratio uℎA∕uA.
Bottom: error |uA − uℎA|.

Figure 21: Geometry descriptions and physical properties for a plate with a hole. We present three partitions : the first one
on the left uses two patches has no cross points. The middle one uses three patcches and is geometrically non-conforming
with one cross point. The right one has four patches and is geometrically conforming with one cross point.

the one obtained for the two patch geometry using the finest mesh and fourth order NURBS (Figure 21).
For the partition represented on the left, the structure is made of two patches and no singular points are present.

Obviously the simplified and optimal approaches will produce the same results. The two other parametrizations, which
are on the center and on the right, have respectively three and four patches and present singular points coming from
the boundary conditions and interfaces intersection. The parametrization with three patches have geometrically non-
conforming interfaces whereas the four patches case only have geometrically conforming interfaces. The convergence
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Figure 22: Simplified and optimal methods for the plate with hole. From left to right: parametrization with two, three
and four patches. Top: dual approach. Bottom: augmented approach. We observe no major influence of the multipatch
structure on the results accuracy.

will be studied using a broken L2 norm on the stresses
||�xx||

2
Σ =

∑

k
||�xx||

2
L2(Volk),

which is equivalent to a brokenH1 norm on the displacements. The relative error can then be computed as

||e(�xx)||Σ =
|

|

|

|

|

1 −
||�xx − �ℎxx||Σ
||�xx − �

ℎref
xx ||Σ

|

|

|

|

|

,

with �ℎrefxx corresponding to the solution obtained with the two patch geometry using the finest mesh and fourth order
NURBS.

This problem is locking free and thus we only show the results with complete integration. The results are shown
on Figure 22 for the three parametrizations. Some examples of displacement along the traction axis are represented for
the two patches case with conforming meshes (top-left) and non-conforming meshes (bottom-left). The penalty factor
for the augmented approach is set to �kl = 10 ⋅E∕ℎ in order to highlight the difference between optimal and simplified
approaches depending on the mesh size.

Obviously, the simplified and optimal approaches produce the same results when the geometry is described with
only two patches. However, when we have cross points, the optimal approach associated with a dual formulation
keeps a smaller error than the simplified one. This was particularly expected because the dual space of the simplified
method is not of optimal order with an additional term in√ℎ. Nevertheless, when we add a regularization term, which
corresponds to the bottom cases, the simplified and optimal methods have a similar convergence with our choice
�kl = 10 ⋅E∕ℎ of penalty factor. We note that a higher penalty factor could be used for the augmented approach with
the simplified treatment at cross points associated with NURBS of order p = 3 and p = 4. The penalization term in
the simplified approach is able to maintain the continuity constraint at cross points.

Concerning the geometrically non-conforming case, the solutions on Figure 22 are obtained by taking each of the
three patches as the mortar side of at least an interface. For this balanced repartition we have respectivelyΩs(10) = Ω0,
Ωs(20) = Ω2 and Ωs(21) = Ω1 as the slave side for the interfaces 10, 20 and 21. In order to show the robustness of
the numerical implementation, we present on Figure 23 the errors obtained for the three patches parametrization with
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Figure 23: Different choices of mortar side for the three patches parametrization of the plate with hole. Left: geometrically
slave conforming case (Ωs(10) = Ω0, Ωs(20) = Ω0 and Ωs(21) = Ω1). Center: balanced repartition of the slave side (Ωs(10) = Ω0,
Ωs(20) = Ω2 and Ωs(21) = Ω1). Right: totally non-conforming case (Ωs(10) = Ω0, Ωs(20) = Ω2 and Ωs(21) = Ω2). Top: dual
approach. Bottom: augmented approach. We observe no major influence of the choice of the mortar side on the results
accuracy.

different choices of mortar side. On the left we have the geometrically slave conforming case which was the choice
of [18]. The two plots at the center represent the balanced repartition. On the right, we took Ω2 as the slave side forthe two geometrically non-conforming interfaces 20 and 21. We obtain similar convergence for the three different
strategies. The industrial geometries to come will use a balanced repartition strategy for the mortar side.
7.4. Gear wheel

The following geometries are more complex and, therefore, no analytical solutions are available. Consequently, the
discrete solutions obtained in IGA, with a simplified dual basis will be compared to a FEM one provided by Abaqus
using thick shell elements. In a first step, the displacements are measured on the nodes of the FEMmesh. After solving
a minimization problem, the corresponding parametric coordinates (�, �) are found and, thanks to the physical mapping
Fk, so are the physical coordinates. The displacement solutions can then be compared.

The first industrial geometry is a simplified gear wheel. In this case, all of the interfaces are geometrically con-
forming. The structure is clamped at its center and concentrated forces are applied on each tooth in such a way that we
have an in-plane loading case, see Figure 24.

The global domain Ω was meshed using an homogeneous size of ℎ ≃ 0.1 (m) for each patch Ωk. The structureis made of 49 patches with 67 interfaces. We can visualize the horizontal displacements obtained using quadratic
NURBS functions on Figure 25.

Using the same mesh for the FEM and IGA solutions, we can observe similar results between the augmented
approach with reduced integrations and the numerical reference. We now want to compare the three multipatch formu-
lations and quadrature rules. In order to do so, we plot the horizontal displacement along Γobs which is visible in greenon Figure 24. These solutions are shown on Figure 26 for quadratic functions with complete and reduced integrations
on the two top figures. The gaps between the solutions coming from IGA and these of FEM are shown on the bottom
side. Penalty factors are set to �kl = 103 ⋅ E for displacements and rotations.

We can see that the element does not suffer from locking as we obtain the same results for complete and reduced
integrations. However, we observe that when using the simplified space the dual method is less accurate than the
augmented agrangian formulation because of the large number of cross points.
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Figure 24: Geometry description and physical characteristics of the gear wheel. The partition uses 49 patches and 67
interfaces.

U, U1

-1.546e-05
-1.293e-05
-1.040e-05
-7.877e-06
-5.351e-06
-2.825e-06
-2.990e-07
+2.227e-06
+4.753e-06
+7.279e-06
+9.805e-06
+1.233e-05
+1.486e-05

(a) IGA simplified augmented - RMP2C1R (b) FEM Abaqus - S8R

Figure 25: Horizontal displacement for the gear wheel problem.

7.5. Side rail
We are now considering a side rail taken from the automobile industry and modelled as a thick shell structure. As

for the gear wheel, each interface is geometrically conforming (Figure 27).
The structure is made of 45 patches with 76 interfaces. A vertical constant pressure F is applied on three of the

top surfaces. Two of its external edges, visible in pink on Figure 27, are clamped. We will compare results from IGA,
with a mesh of 1946 quadratic elements, and FEM which will be our numerical reference with a fine mesh of 11 550
quadratic elements. The vertical displacement will be measured, as previously detailed, along the edge Γobs. At first,we visualize these displacements for both solutions on Figure 28.

After a qualitative validation between the dual approachwith simplifiedmortar space and the FEMone, we compare
the multipatch methods and quadrature rules on Figure 29. The left figures correspond to a complete integration
whereas the right stand for the reduced quadrature rules. This study has highlighted a major drawback concerning the
penalty method, that is the sensitivity to the choice of the penalty factor. Choosing �kl = 103 ⋅E for the displacements
and rotations lead to a lack of accuracy on the vertical displacements. Consequently, the penalty factors were set to
�kl ≃ 10−4 ⋅E for the displacements and �kl ≃ E for the rotations when using the penalty method. For the augmented
method, this choice was far less sensitive and therefore a unique penalty factor of �kl = 10−5 ⋅ E is used for both
displacements and rotations .

We can see at first that the elements are suffering from numerical locking as the three multipatch formulations are
not able to reach the reference when performing an exact integration. The reduced quadrature rule seems primordial
when using quadratice NURBS for this kind of industrial problem. In constrast to the gear wheel problem, the dual
approach using a simplified mortar space does not suffer from a lack of accuracy. This is due to the fact that we use
a fine mesh and, consequently, the dual basis is rich enough even after removing the interpolating functions at cross
points.
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Figure 26: Displacement for the gear wheel. Left: complete integration. Right: reduced integration. Top: displacement
ux. Bottom: relative gap |uIGAx − uFEMx | ∕ |uFEMx |.

Figure 27: Geometry description and physical characteristics of the side rail. It is partitioned into 45 patches with 76
interfaces.

7.6. Oil sump
The last example is requiring more robustness, particularly for the creation of common knots vector on each in-

terface. The structure is an oil sump for which the mid-surface has been extracted from a volumic part created in a
CAD software. Its complexity justifies our preference for our simplified treatment of the cross points compared to an
optimal construction which is hardly feasible here. This case presents many non geometrically conforming interfaces
of different kinds as detailed in Remark 2. A description of the geometry, its patches and properties is given on Figure
30.
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U, U3

+0.000e+00
+4.236e-04
+8.472e-04
+1.271e-03
+1.694e-03
+2.118e-03
+2.541e-03
+2.965e-03
+3.389e-03
+3.812e-03
+4.236e-03
+4.659e-03
+5.083e-03

(a) IGA simplified dual - RMS2C1R (b) FEM Abaqus - S8R

Figure 28: Vertical displacement for the side rail problem.

Figure 29: Displacement for the side rail. Left: complete integration. Right: reduced integration. Top: displacement uz.
Bottom: relative gap |uIGAz − uFEMz | ∕ |uFEMz |.

This structure is made of 279 domains with 525 interfaces. A constant vertical pressure is applied on two of its
upper surfaces and the bottom Γd is clamped. We will compare the penalty, the dual and the augmented lagrangian
approach using the simplified mortar space and reduced integration. For the displacements and rotations, penalty
factors are respectively fixed to �kl = 103 ⋅ E and �kl = 10−5 ⋅ E for the primal and augmented approaches. The
vertical displacements can be observed on Figure 31 for both IGA and FEM solutions.

We are using 1047 (resp. 1570) quadratic elements for the two upper surfaces of the IGA (resp. FEM) mesh.
We obtain similar results for the three approaches as seen on the values of the vertical displacements and horizontal
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Figure 30: Geometry description and properties for an oil sump.

U, U3

-4.965e-06
+2.396e-02
+4.792e-02
+7.188e-02
+9.584e-02
+1.198e-01
+1.438e-01
+1.677e-01
+1.917e-01
+2.156e-01
+2.396e-01
+2.636e-01
+2.875e-01

(a) IGA simplified augmented - RMS2C1R (b) FEM Abaqus - S8R

Figure 31: Vertical displacement for the oil sump problem.

rotations along Γobs (Figure 32). Despite of a coarser mesh for the IGA model, the displacements and rotations are
similar to the numerical reference provided by Abaqus.
Remark 2. The oil sump contains many geometrically conforming and non-conforming interfaces. An illustration
of the local complexity is given in Figure 33 representing the patch Ω7 in the parameter space with its four inter-
faces represented by black lines. We can see three geometrically conforming situations with non-conforming meshes
(a), hierarchical meshes (b) and conforming meshes (d). The situation (c) is geometrically non-conforming but with
conforming meshes. Consequently, the common knots vectors Ξc are different, i.e., Ξc7 = {0, 0.25, 0.5, 0.75, 1} and
Ξc212 ≃ {0, 0.08, 0.16, 0.25, 0.32} respectively for Ω7 and Ω212. ■

8. Conclusion
In this paper, we have developed and analyzed a multipatch isogeometric analysis for thick shell structures, de-

tailing proper choices of mortar spaces for imposing interpatch continuity and introducing an augmented lagrangian
regularisation term for robustness. We have adapted the mortar space strategy proposed in [18] to the thick shell prob-
lem. It uses an equal order pairing taken from the primal basis and only require a local space reduction next to cross
points. In order to handle complex situations encountered with real life industrial parts, we have proposed and assessed
both theoretically and numerically a simpler correction removing interpolant basis functions at each end of an interface
without any further modifications. The stability of the simplified approach was insured at the cost of a non optimal
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Figure 32: Solutions for the oil sump. Left: displacement uz. Right: rotation �x. Top: displacement/rotation. Bottom:
relative gap |

{

uz∕�x
}IGA −

{

uz∕�x
}FEM

| ∕ |
{

uz∕�x
}FEM

|.

order of convergence for the dual space. Nevertheless, adding a regularization term, which is the augmented method,
is able to correct this lack of accuracy.

Altogether, combining this coupling strategy with an adequate reconstruction of surface normal through control
vectors built at specific locations in the parametric space, andwith the reduced quadrature rule proposed in [19] properly
extended to a multipatch environment, we were able to handle a large variety of significant academic and industrial
problems. It allowed us to significantly reduce the numerical locking without introducing any hourglass modes and
this is particularly true for low order shape functions and coarse meshes. It also allowed us to solve complex problems
with non geometrically conforming partitions, which are frequently encountered in practice, but which were rarely
covered up to now in the literature. In particular, the technique seems well adapted to structures of moderate thickness,
described with a large number of patches of moderate degree with many possibly non-conforming interfaces. This
thus constitutes a promising way to introduce IGA in industrial applications.
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Supplementary material. Proof of lemma 2, not to be included in paper
Hereafter (⋅, ⋅) and ‖⋅‖will denote theL2 scalar product and norm on the interface kl. The projectionw = �kl,ℎ(v)is defined by

min
ŵ∈W

‖ŵ − v‖2 under the constraint (ŵ,�) = (v,�),∀� ∈M.

This is a coercive minimisation problem set on a closed subspace of W and has thus a unique solution. The corre-
sponding Euler Lagrange optimality conditions are

(w − v, ŵ) + (ŵ,�) = 0,∀ŵ ∈ W ,w ∈ W ,
(w,�) = (v,�),∀� ∈M,� ∈M.

By application of the inf-sup assumption, there is a vector w� ∈ W such that (w�,�) ≥ C‖w�‖‖�‖. Using this vectoras a test function in the first equality, we get

‖w�‖‖�‖ ≤ 1
C
(w�,�) = −

1
C
(w − v,w�) ≤

1
C
‖w − v‖‖w�‖

hence after division
‖�‖ ≤ 1

C
‖w − v‖.

Plugging this in the first equality written with ŵ = w and in the second equality writtten with � = � yields

‖w − v‖2 = −(w − v, v) − (w,�) = −(w − v, v) − (v,�) ≤ ‖v‖(‖w − v‖ + ‖�‖) ≤ ( 1
C
+ 1)‖v‖‖w − v‖

hence after division ‖w−v‖ is bounded by ‖v‖which yields the desired result by application of the triangular inequality.

Detailed conclusion of proof of Proposition 4, not to be included in paper
By construction of vℎ =

{

(vp)ℎ,#ℎ
}

∈ Ker(Cℎ), their interface jumps are orthogonal to the dual interface spaces,
and hence, by introducing L2 projections �kl,ℎ of �k ontoMkl,ℎ, we get

a(u, vℎ) − L(vℎ) =
∑

k>l
∫kl

(�k − �kl,ℎ) ⋅ (vk,ℎ − vl,ℎ) dkl.

In turn, �k − �kl,ℎ is orthogonal by construction to any function �̂kl,ℎ inMkl,ℎ, and hence

a(u, vℎ) − L(vℎ) =
∑

k>l
∫kl

(�k − �kl,ℎ) ⋅ (vk,ℎ − vl,ℎ − �̂kl,ℎ) dkl.
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From Assumption 4, we have on one hand (assuming that k is the slave node of kl)
||�k − �kl,ℎ||L2(kl)2 = inf

�̂kl,ℎ∈Mkl,ℎ
||�k − �̂kl,ℎ||L2(kl)2 ≤ Cℎskl||�k||Hs(kl)2 ≤ Cℎsk||uk||Hs+3∕2(Ωk)2 ,

for any 0 < s ≤ �(kl) and on the other hand
inf

�̂kl,ℎ∈Mkl,ℎ
||vk,ℎ − vl,ℎ − �̂kl,ℎ||L2(kl)2 ≤ inf

�̂kl,ℎ∈Mkl,ℎ
||vk,ℎ − �̂kl,ℎ||L2(kl)2 + inf

�̂kl,ℎ∈Mkl,ℎ
||vl,ℎ − �̂kl,ℎ||L2(kl)2

≤ C
√

ℎkl(||vk,ℎ||H1∕2(kl)2 + ||vl,ℎ||H1∕2(kl)2 ).

Altogether, we get after summation and using Cauchy Schwarz
a(u, vℎ) − L(vℎ) ≤

∑

kl
Cℎrk||u||Hr+1(Ωk)2 (||vk,ℎ||H1(Ωk)2 + ||vl,ℎ||H1(Ωk)2 )

≤ C
√

∑

k
ℎ2rk ||u||

2
Hr+1(Ωk)2

√

∑

k
||vk,ℎ||2H1(Ωk)2

with 1∕2 < r ≤ minkl(�(kl) + 1∕2). ■

Supplementary material. Detailed proof of Proposition 5, not to be included in paper
We need to estimate ||Ekl,ℎ◦�kl,ℎ

[

Iℎ(u)
]

||ΠH1(Ωk)2 where Ekl,ℎ is the zero extension of an element ofWkl,ℎ. We
denote Q̃ and Q the quadrangular finite elements in the parent space and in the physical space, respectively. Since all
norms are equivalent on the reference element Q̃, we have

||(̃Ekl,ℎ◦�kl,ℎ
[

Iℎ(u)
]

||

2
L2(Q̃)2

≤ C||�kl,ℎ
[

Iℎ(u)
]

||

2
L2()Q̃∩̃kl)2

,

with ̃kl the kl interface once transported on the parent element. After change of variable, since (Ekl,ℎ = 1
ℎk
(̃Ekl,ℎ

and dQ = ℎ2k dQ̃, we have
||(̃Ekl,ℎ◦�kl,ℎ

[

Iℎ(u)
]

||

2
L2(Q̃)2

≃ ||(Ekl,ℎ◦�kl,ℎ
[

Iℎ(u)
]

||

2
L2(Q)2 ,

yielding
||(Ekl,ℎ◦�kl,ℎ

[

Iℎ(u)
]

||

2
L2(Q)2 ≤ C||�kl,ℎ

[

Iℎ(u)
]

||

2
L2()Q̃∩̃kl)2

≤ C
ℎk

||�kl,ℎ
[

Iℎ(u)
]

||

2
L2()Q∩kl)2

.

After summation and using the L2 continuity of the projector �kl,ℎ (Lemma 2), this gives

||Ekl,ℎ◦�kl,ℎ
[

Iℎ(u)
]

||H1(Ωk)2 ≤ C
√

ℎk
||

[

Iℎ(u)
]

||L2(kl)2

≤ C
√

ℎk
||

[

u − Iℎ(u)
]

||L2(kl)2

≤ C
√

ℎk

(

||uk − Iℎ(uk)||L2(kl)2 + ||ul − Iℎ(ul)||L2(kl)2
)

.

We now conclude by a classical scaling argument of Finite Element analysis, although there might be a better proof
in the spline community. Let us thus look as in [36] to the approximation error on an element e of the mesh of kl.By construction, once pulled back on the parametric space of the k patch properly dilated so that the image ̂ of e
be of unit length, the map Îℎ(v̂) − v̂ used in Lemma 1 is continuous from L2(Q̂) onto L2(̂) and hence fromHr+1(Q̂)
onto L2(̂), where Q̂ is a fixed mesh independent domain, which is the union of all mesh elements in the parametric
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space which are used for the construction of Îℎ(v̂). We also observe that the approximation is exact for polynomials of
degree r on Q̂

Îℎ(q̂) − q̂ = 0,∀q̂ ∈ P r(Q̂).

By continuity of the map, there exists therefore a mesh independent constant such that
‖Îℎ(v̂) − v̂‖L2(̂) = ‖Îℎ(v̂ − q̂) − (v̂ − q̂)‖L2(̂) ≤ inf

q∈P r(Q̂)
‖v̂ − q̂‖Hr+1(Q̂) ≤ C|v̂|Hr+1(Q̂),∀v̂ ∈ H

r+1(Q̂).

By going back to the physical space, and since from the regularity of Fk, the norm in L2(e) scales in√ℎk while the
semi norm inHr+1(Q) scales in ℎ−rk , we obtain that

||vk − Iℎ(vk)||2L2(e)2 ≤ C2ℎ2r+1∕2k

∑

Q⊂Qe
|v|2Hr+1(Q)2 .

By summation, and since a given element Q will only be involved an (p) number of times for constructing local
approximation on segments e, we have

||vk − Iℎ(vk)||2L2(kl)2 ≤
∑

e
||vk − Iℎ(vk)||2L2(e)2 ≤ Cℎ2r+1∕2k

∑

e

∑

Q⊂Qe
|v|2Hr+1(Q)2 ≤ Cℎ2r+1∕2k |v|2Hr+1(Ωk)2

.

By using this inequality in our previous estimate, we get

||Ekl,ℎ◦�kl,ℎ
[

Iℎ(u)
]

||H1(Ωk)2 ≤
C

√

ℎk

(

ℎr+1∕2k ||uk||Hr+1(Ωk)2 + ℎ
r+1∕2
l ||ul||Hr+1(Ωl)2

)

which yields the desired result, once combined with Lemma 1.
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