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Abstract

We study by direct numerical simulation the Rayleigh-Bénard convection in
supercritical 3He using an anelastic approximation. The latter is based on
scaling analysis associated with asymptotic expansions of the full governing
equations which has an important consequence for numerical integration of
the model. The approximate equations are supplemented by a parametric
state equation and are solved numerically by a finite difference method cou-
pled with a projection method. Numerical results giving time evolutions of the
temperature difference between the horizontal walls are calculated and com-
pared to experimental data. The convection onset is examined for the studied
configuration.
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Nomenclature

A aspect ratio, A = L/H
ATG adiabatic temperature gradient
cp, cv specific heat capacities
H height
L width
Ek reduced total kinetic energy
Eu Euler number
F Froude number
Gh dimensionless number
P mean thermodynamic pressure
Ps hydrostatic pressure
Pr Prandtl number
q heat flux density (Wm−2)
Re Reynolds number
Ra Raleigh number
Ramod modified Rayleigh number
Ti initial temperature
t0 time scale
tD diffusion time
tep time of the piston effect

Greek symbols
β isobaric thermal expansion, K−1

γ ratio of specific heats
∆T Temperature difference between the horizontal walls, µK
ε reduced temperature parameter, ε = Ti−Tc

Tc

θ scale of the temperature difference, θ = qH
Tck

κ thermal conductivity, W−1K−1

µ dynamic viscosity, kgm−1s−1

ρ density
ρs density stratification

Subscripts
0 reference value
b bottom
c value at critical point

1. Introduction

Transport properties of pure fluids display large variations when approaching
the gas-liquid critical point. In such fluids, the thermal diffusivity tends to zero
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while the isothermal compressibility, the thermal expansion coefficient and the
isobaric specific heat diverge. These behaviors lead to a specific mechanism
of heat transfer called the piston effect (PE) which induces a rapid homoge-
nization of the temperature by thermoacoustic effects. The PE was initially
observed experimentally in micro-gravity by [1] then evidenced theoretically
by [2]-[4].
The interest shown the last two decades on the hydrodynamic stability of su-
percritical fluids is reflected in a significant number of experimental [5]-[6],
theoretical [7]-[8] and numerical works [9]-[11]. One of the configurations that
quickly emerged as a study model is the Rayleigh-Bénard convection because
of the interaction between two stability criteria: the classical Rayleigh criterion
valid in Boussinesq and the Schwarzschild criterion valid for atmospheric flows
at large scales. In supercritical fluids, the Schwarzchild criterion becomes rel-
evant on small scales of length, including cells with very small dimensions due
to the divergence of the compressibility [12]-[13]. A modified Rayleigh number
was proposed by [14] including the difference between the real gradient and the
adiabatic temperature gradient. The latter, ATG = ρg(∂T/∂P )s, is related
to an adiabatic process and corresponds to the temperature gradient obtained
by moving a fluid particle along the hydrostatic pressure gradient. It has a
stabilizing effect in the convection onset and its role is becoming increasingly
important when approaching the critical point [5].

The primary goal of this paper is to validate the use of the anelastic approx-
imation for supercritical fluids. The paper basically consists of two parts.
The first one is devoted to describe the set of approximations applied to full
compressible Navier-Stokes equations based on an anelastic approximation.
Another important point of our work lies in the use of a parametric state
equation of supercritical 3He. It has the advantage to reproduce accurately
physical properties of the fluid near the critical point. The anelastc equations
allow to simulate the Rayleigh-Benard convection in supercritical fluids driven
by a weak heating from below. A method is proposed to solve the derived
equations. The second part is devoted to 2D numerical results obtained in the
same conditions as in experiments described in [6]. The validation of the code
is done by comparing numerical solutions to experimental data. The convec-
tion onset is also examined through the influence of the aspect ratio on the
total kinetic energy, and temperature fields during the transient phase.

2. CONFIGURATION

Following the experimental studies [6], we are interested in the onset of the
Rayleigh-Bénard convection in the supercritical 3He, for modified Rayleigh
numbers above the instability threshold. A thin layer of 3He (H = 1.06mm) is
bounded by two horizontal plates. The fluid is initially at rest with conditions
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close to the critical point (ρc, pc, Tc)= (41.45kg/m3, 1.15105Pa, 3.31K).

• The initial temperature in the cavity is uniform and slightly greater than
Tc. The distance to the critical point is characterized by ϵ = (Ti−Tc)

Tc
.

• The fluid is initially stratified with an mean value equal to the critical
density ρc.

The bottom wall is heated with a uniform heat flux while the upper one is
maintained at the initial temperature Ti (fig.1). The considered values of
the heat flux q are such as (T − Ti)/(Ti − Tc) is always « 1. This allowed
us to consider that the dynamic viscosity µ, the thermal conductivity k, the
specific heat cp and the coefficient of the isobaric thermal expansion β remain
constant in the considered temperature interval with values taken at the initial
temperature Ti.

Figure 1: Supercritial 3He in Rayleigh-Benard configuration.

3. GOVERNING EQUATIONS

The values of the heat flux q and the parameter ϵ considered in this study
allow us to assume that:

• the physics of the phenomena considered in this work may be described
in the framework of continuum mechanics. The flow is therefore governed
by the full compressible Navier-Stokes equations. We have chosen to use
the enthalpy form of the energy equation and the equation of state in a
parametric form fitted to experimental data [15].

• the dynamic viscosity µ, the thermal conductivity k, the specific heat cp
and the isobaric thermal expansion coefficient β remain constant in the
considered temperature interval and equal to their values at the initial
temperature Ti.

4



Using the following reference quantities (the subscript c refers to values at the
critical point):

• length: L0 = H, the fluid layer thickness;

• Pressure: P0 = pc; Density: ρ0 = ρc; Temperature: T0 = Tc

• Velocity: V0 = a characteristic velocity of the flow which tends to zero
when the heating flux q responsible for the flow tends to zero.

• Time: t0 = L0/V0

the governing equations in dimensionless form read:

∂ρ

∂t
+∇ � (ρ−→V) = 0

ρ
d
−→
V

dt
= −Eu∇p+

1

Re
∇ � τ − 1

F2
ρ−→z

ρ
dT

dt
=

1

PrRe
∇2T +Ghβ(Ti)Ti

dp

dt
p = f(ρ, T )

where β = −1
ρ

(
∂ρ
∂T

)
p
is the isobaric thermal expansion coefficient and the stress

tensor τ is defined by: τ =
1

2

(
∇
−→
V +∇

−→
V t
)
+

∇ �−→V
3

I

with the following dimensionless parameters:

Re =
ρcV0H

µ
Reynolds number Eu =

pc
ρcV 2

0

Euler number Gh =
pc

ρccpTc

Pr =
µcp
k

Prandtl number F =
V0√
gH

Froude number γ =
cp
cv

ratio of specific heats

4. THE ANELASTIC APPROXIMATION

In the context of a numerical simulation, the main difficulties arise from the
fact that the compressible Navier-Stokes equations support acoustic waves.
Though these waves are not important in this Rayleigh-Bénard configuration
as they do not contribute in a significant way to energy transfer compared to
convective effects, they involve very restrictive stability criteria for the numer-
ical simulation. In order to overcome these drawbacks, they are filtered out by
using a so-called low Mach number approximation (LMNA), taking advantage
of the low speed nature of the convective effects. More precisely, a particular
kind of LMNA is used, namely anelastic approximation used for instance in
stratified geophysical flows.
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For this purpose, an analysis of the orders of magnitude of the different terms
shows that Eu ≫ 1. A regular asymptotic expansion is then performed by
expanding all the primary variables in powers of the small parameter η = 1/Eu:

p = p(0) + ηp(1) +O(η2)

ρ = ρ(0) + ηρ(1) +O(η2)
−→
V =

−→
V (0) + η

−→
V (1) +O(η2)

T = T (0) + ηT (1) +O(η2)

Inserting these expansions into the Navier-Stokes equations, a sequence of an
O(η−1) and of an O(1) problems is obtained:

4.1. O(η−1) order problem

∇p(0) +
1

EuF2
ρ(0) +

1

EuRe
∇ � τ (0) = 0 (1)

where

1

EuF2
=

ρcgH

pc
and

1

EuRe
=

µV0

pcH

The first term of (1) is a pure O(η−1) order term and will thus be kept. The
second and third terms of (1) behave differently when q increases:

• In the framework of continuum mechanics the Knudsen number is ≪ 1.
Thus, the kinetic gas theory involves that the parameter

1

EuRe
is ≪ 1 .

• The parameter
1

EuF2
is small but its value is fixed since it does not

depend on the distance to the critical point nor on the input heat flux,

Therefore, only the two first terms of (1) are retained in the zeroth problem
yielding:

∇p(0) +
1

EuF2
ρ(0)−→z = 0

This equation involves that p(0) and the density ρ(0) do not depend on x nor
y. The pressure therefore may be split into two parts:

p(0)(z, t) = P (t) + ps(z)
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where P (t) =
∫ 1

0
p(0)(z, t) dz is the average thermodynamic pressure and (ps(z), ρs(z) =

ρ(0)(z)) are the initial pressure and density stratification, solutions of the sys-
tem:

dps
dz

+
1

EuF2
ρs(z) = 0 (2)

ps = f(ρs, Ti) (3)

subject to the constraints: ∫ 1

0

ρs(z) dz = 1 (4)∫ 1

0

ps(z) dz = 0 (5)

4.2. Zero(th) order problem

Once the η−1 order problem is solved, the zero(th) order problem reads:

∂ρ(0)

∂t
+∇ � (ρ(0)−→V (0)) = 0

ρ(0)
d
−→
V (0)

dt
= −∇p(1) +

1

Re
∇ � τ (0) − 1

EuF2
ρ(1)−→z

ρ(0)
dT (0)

dt
=

1

PrRe
∇2T (0) +Gh(βT )Ti

(
dP

dt
+
−→
V (0) �∇p(0)

)
p(0)(z) = f(ρ(0), T (0))

Replacing ρ(1) by its first order approximation (ρ− ρ(0))/η and taking into the

fact that
1

EuF2
is finite and that ρ(0) = ρs is independent of the time t, the

first order problem finally reads:
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∇ � (ρs
−→
V) = 0 continuity equation

(6)

ρs
d
−→
V

dt
= −∇π +

1

Re
∇ � τ − 1

F2
(ρ− ρs)

−→z momentum equation

(7)

ρs
dT

dt
=

1

PrRe
∇2T +Gh(βT )Ti

(
dP

dt
+
−→
V �∇ps

)
energy equation

(8)

P (t) + ps(z) = f(ρ, T ) equation of state
(9)∫

V

ρdυ = L/H global mass conservation

(10)

Where the superscripts (0) and (1) have been dropped and π stands for p(1).
We can notice that this model derived from an anelastic approximation, differs
slightly from the one proposed by Accary et al [10], in particular with the use
of ρs instead of ρ everywhere excepted in the buoyancy term. Our model
may thus be seen as an extended Boussinesq approximation using a stratified
density field instead of a uniform one.

5. BOUNDARY CONDITIONS

The classical no-slip condition
−→
V = 0 on the walls is used for the velocity.

Concerning the temperature, different sets of boundary conditions were used
on the horizontal walls whereas the side boundaries are adiabatic:

1. Dirichlet: in this case, the horizontal lower plate is maintained at an
uniform temperature Tb(t),

2. In experimental data, the heating is performed using a uniform heat flux
q(W/m2). Two kind of boundary conditions were used in the numerical
simulations to ensure the proper heat flux.

(a) The given heat flux q(t) is imposed pointwise by means of a Neu-
mann condition,

(b) Due to the huge discrepancy between the thermal conductivities
of the fluid and of the copper plates used in the experiments, we
assumed that the temperature Tb of the bottom plate is uniform in
space and depends only on the time t, i.e. Tb = Tb(t). An additional
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constraint has therefore to be imposed to ensure the correct overall
heat flux, namely:

−k
1

A

∫ A

0

∂T

∂z

∣∣∣∣
z=0

dx = q(t) (11)

6. NUMERICAL METHODOLOGY

Centered mimetic finite differences on a staggered MAC mesh are used for the
spatial discretization [16]. The grid is uniform in the x-direction and variable
in z. The time derivatives are approximated by a second order backward Euler
scheme in which the linear terms are treated implicitly while the non linear
terms are treated explicitly with an Adams-Bashforth extrapolation. Giving
the solution (

−→
V (n), p(n), T (n), ρ(n)) at time level n∆t, it is well known (see for

instance [17]) that the solution at time level (n + 1)∆t may be obtained by
solving the following sequence of problems:

1. Resolution of the energy equation

(
ρsσT I−∇2

)
T n+1 = Sn,n−1

T +Gh [βT ]T=Ti

(
dP

dt

n+1

+
−→
Vn �∇ps

)
(12)

2. Computation of ρ(n+1), P (n+1): the following system of nonlinear equa-
tions consisting of the equation of state written at each point of the mesh
and of an additional condition imposing the conservation of total mass
is solved by Newton-Raphston’s method:

P
n+1

(t) + ps(z) = f(ρn+1, T n+1) (13)∫
V

ρn+1dυ = L/H (14)

3. Computation of
dP

dt

n+1

: along the lines of [18] , a compatibility condition

for
dP

dt

n+1

is obtained by integrating on the whole domain Ω the energy
equation and taking into account the continuity equation:

dP

dt

n+1

=
1

A

∫
∂Ω

∂T

∂−→n
dl (15)

4. Resolution of the momentum and continuity equations

∇ � (ρs
−→
Vn+1) = 0 (16)(

ρsσV I−∇ 2
)−→
Vn+1 +Re∇πn+1 =

−→
S n,n−1

V − Re

F2
(ρn+1 − ρs)

−→z (17)
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where σV = 3Re/2∆t and σT = 3PrRe/2∆t. The source terms are respectively
given by:

Sn,n−1
T = PrRe

(
ρs
4T n − T n−1

2∆t
− 2(ρs

−→
V · ∇T )n + (ρs

−→
V · ∇T )n−1

)
−→
S n,n−1

V = Re

(
ρs
4
−→
Vn −

−→
Vn−1

2∆t
− 2(ρs

−→
V · ∇

−→
V)n + (ρs

−→
V · ∇

−→
V)n−1

)

The coupling
−→
V–π is treated by a classical projection method for incompress-

ible flows [19] applied to ρs
−→
V . The resolution is split in two steps:

• prediction: ρs
−→
V (n) −→ ρs

−→
V (∗)

(
ρsσV I−∇ 2

)−→
V∗ +Re∇πn =

−→
S n,n−1

V − Re

F2
(ρn+1 − ρs)

−→z

supplemented by the no–slip condition
−→
V∗ = 0 on the boundaries.

• correction:

ρs
−→
V (n+1) = ρs

−→
V (∗) + ∇φ, where φ is calculated in order to satisfy ∇ �

(ρs
−→
V(n+1)) = 0

In order to ensure at each time step the correct heat flux (11), the following
procedure holds: In a preprocessing step, a particular problem is solved:(

ρsσT I−∇2
)
T̂ = 0 in Ω (18)

∂T̂

∂x
(0, z) =

∂T̂

∂x
(A, z) = 0 (19)

T̂ (x, 0) = 1 (20)

T̂ (x, 1) = 0 (21)

and its solution T̂ is stored. During the time marching process described in
section 6, the energy equation (12) is solved with an arbitrary value T̃b of the
temperature along the bottom plate, yielding a provisional field T̃ . The actual
temperature filed T reads then

T = T̃ + λT̂

where λ is computed in order to satisfy the flux condition (11).
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7. STATE EQUATION

A parametric state equation defined in [15] is used to describe the (P, ρ, T )
dependence for supercritical 3He. This equation includes a regular part which
matches the properties of the fluid far away of the critical point and a singular
part containing the universality of the fluid behavior close to the critical point,
especially the critical exponents.

8. VALIDATION

The results reported in this section are performed on a horizontal cell of aspect
ratio A = L/H = 4. A grid points 769× 129 is used on a uniform mesh in the
x direction and on a non-uniform hyperbolic tangent mesh in the z direction.

8.1. Criterion for convection onset

The code has been tested first by finding the Rayleigh-Schwarzschild criterion
of the convection onset. According to [14], the threshold of the instability
onset is given by the modified Rayleigh number:

Ramod =
ρ2ccpgβH

4

kµ

(
∆T

H
− g

Tiβ

cp

)
≥ Rac

Where ∆T
H

is the temperature gradient between the horizontal walls and g Tiβ
cp

the adiabatic temperature gradient ATG. For a distance to the critical point
ϵ = 0.02, ATG is equal to 0.034 mK/cm. The critical Rayleigh number Rac
which depends on the boundary layers is equal to 1708 for a configuration with
two solid walls [20]. The critical temperature difference between the horizontal
walls at which the convection starts is then given by: ∆Tonset = ATG ×H +
Rac(kµ/ρ

2
ccpgβH

3). In order to determine the stability threshold, we plot the
total reduced kinetic energy Ec as a function of the modified Rayleigh number
when the bottom wall is maintained at a uniform temperature or subjected to a
uniform heat flux. The total kinetic energy is equal to Ek =

1
2

∫ 1

0

∫ A

0
ρV 2dxdz.

Figure 2 shows the variations of Ek versus the modified Rayleigh number.
With a uniform temperature, the transition to a convective motion occurs at
a critical value Rac ≃ 1811 and the corresponding temperature difference ∆T
between the horizontal walls is equal to 0.041 mK. In the case of a uniform heat
flux, the transition is located close to Rac ≃ 1743 for the range 7.4 × 10−5 <
q < 7.5× 10−5 W/m2.
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Figure 2: Total kinetic energy versus the modified Rayleigh number.

8.2. Impact of the piston effect

When the heating starts, the fluid temperature inside the cavity increases
rapidly due to the piston effect. Owing to the high compressibility and the
very small diffusivity, the heating from below induces the appearance of three
distinct zones : two thermal boundary layers near the top and bottom walls in
which heat transfer is done by diffusion and the bulk of cavity which heated
up adiabatically and homogeneously. The presence of the piston effect mod-
ifies the temperature field compared with an ordinary process of diffusion.
Figure 3 shows profiles of the reduced temperature (T − Tz=H)/θ at different
instants, where θ = qH

Tck
is a scale of the temperature difference. In the diffu-

sion regime, typical profiles of temperatures are characterized by a rapid and
homogeneous temperature in the bulk region during action of the piston effect.
The characteristic time of the piston effect is tep = 0.18s while the diffusion
time tD = 5.4 × 102s. The piston effect is equal to tep = tD

(γ−1)2
[2], and the

diffusion characteristic time is equal TD = H2

k/ρccp
where k/ρccp denotes the

thermal diffusivity at critical density for the ideal gas.
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Figure 3: Vertical profiles of temperature at x = 0.5 for q = 1.69×10−3W/m2 and ϵ = 0.02.

9. NUMERICAL SIMULATIONS

In this section, we are interested in fluid heated from below with a uniform
heating q = 1.69× 10−3W/m2 and for a distance to the critical point ϵ = 0.02.
This configuration allows comparison between our numerical results and ex-
periments available in the literature [6]. The simulations are based on ther-
mophysical properties : cp = 2.19 × 105J/kg/K, k = 1.89 × 10−2W/m/K;
µ = 1.83 × 10−6m2/s and β = −1

ρ
∂ρ
∂T

= 22.1K−1. The other dimensionless
parameters are : Re = 139, Pr = 21.2, Eu = 8 × 107, F = 3 × 102 and
γ = 55.4. The time step ∆t is equal to 1/10 of the characteristic time of the
piston effect tep. The values of time scales are 0.18s and 540s for tep and TD

respectively.

9.1. Comparison with experimental data

Figure 4 displays time evolutions of the temperature difference ∆T (t) obtained
from computations and experimental data of reference [6]. The simulations
were carried out with different state equations of 3He near its critical point :
the parametric law according to [15] and analytic laws (Van der Walls, Redlich
Kwong). One can observe that the profiles related to analytic laws are identi-
cal. All the relaxation curves show similar behavior : an initial phase with a
quasi-linear evolution until attaining a maximum (first peak since the heating
starts) followed by a second phase characterized by damped oscillations before
reaching a quasi-steady state. These oscillations have also been observed ex-
perimentally and are attributed to the interaction between the diffusion and
piston effect [21]. Note that the curve relating to the parametric law shows
better agreement with the experimental results, in particular the period of
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pseudo oscillations and the quasi-steady value of ∆T (t). On the other hand,
the return "from below" to the asymptotic state observed experimentally is
not found in the calculations as in all published numerical simulations. Note
finally that the relaxation curves strongly depend on the heating flux q and
the proximity to the critical point ϵ as shown in experiments of Kogan and
Meyer [5],[12].
To examine the impact of aspect ratio on the ∆T (t) profiles, simulations were
carried out with three values A = 4, 8 and 16. We point out that the ex-
periments were conducted in a shallow cavity with aspect ratio equal to 57.
The numerical results displayed in figure 5 reveal once again deviations be-
tween experiment and simulations during the transient phase. The high of
the first peak remains larger in simulations and does not vary with the aspect
ratio. For A = 16, the amplitudes of damped oscillations are lower than for
A = 4 or A = 8 but the locations of extrema are not well synchronized with
experimental data.
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Figure 4: Experimental and numerical profiles ∆T (t) from 2D computations for q = 1.69×
10−3W/m2, ϵ = 0.02 and aspect ratio A = 2.
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Figure 5: Comparison between experimental and numerical profiles of ∆T (t) for q = 1.69×
10−3W/m2 at ϵ = 0.02 and aspect ratios A = 4, 8, 16.

9.2. Convection onset

We examine first the influence of aspect ratio on the convection onset. Figure
6 shows transient profiles of ∆T and total kinetic energy as function of time
for three values (A = 4, 8, 16) on a short period up to 40s. The figure shows
principally two phases: a first one where the kinetic energy is insignificant,
followed by a second one where the kinetic energy increases rapidly and at-
tains a maximum which coincides with the maximum of ∆T profile. As can
be seen, the convection is triggered at the same time whatever the aspect ratio
before the profiles merge during the ascent phase. Snapshots of the kinetic
energy are displayed in figure 7 at t ≃ 17s to evidence this point. Only the
left half of each cavity is represented since the profiles of kinetic energy are
symmetric. One can see that the convective starts first at the edges in the
same proportions regardless the aspect ratio.
Figure 8 shows snapshots of temperature fields at different instants for a cav-
ity with aspect ratio A = 8. The corresponding times are marked on figure
9 to locate them on the ∆T profile. During the initial phase, figures 8(A,B)
exhibits temperature fields still dominated by the diffusive regime although
weak irregularities appear on the isotherms of fig.8(B). Figure 8(C) shows the
development of thermal plumes at the extremities then gradually cover the
whole space between the horizontal walls as ∆T increases. On figure 6, the
first peak of kinetic energy located at t ≃ 30s indicates that convection has
developed substantially which nearly coincides with the maximum of ∆T (t).
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at time t = 32s , figure 8 (D) shows that a cooling is initiated as a result of
the fluid movement from the cold top region to the bottom. When approach-
ing the second pick (minimum), an excess cooling leads to an homogeneous
temperature in the bulk which is the signature of the piston effect (fig.8(E)
at t ≃ 36s). Figures 8(F,G) give the temperature profiles corresponding to
moments approaching the quasi-steady state. Isotherms display upward and
downward thermal plumes arising from the horizontal walls.
The role of the piston effect (PE) on the damped oscillations has been de-
scribed and argued by Amiroudine and Zappoli in [21]. According to their
description, when the bulk temperature increases sufficiently (thermal plumes
cover the whole space after the heating starts), the temperature gradient at the
cold top boundary increases. The cold piston effect is then operative driving
the cold fluid downwards. It leads to a decrease of the temperature and to
the first peak in the ∆T profile. An excess cooling of the bulk increases the
temperature gradient at the bottom boundary. The hot piston effect becomes
then dominant driving the hot fluid upwards, thus producing a minimum in
∆T , and so on.
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Figure 6: Time evolution of the kinetic energy Ec and ∆T for A = 4, 8, 16.
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Figure 7: Snapshot of Kinetic energy for A = 4, 8, 16 at time t ≃ 17s.
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Figure 8: Temperature fields at different instants : q = 1.69 × 10−3W/m2, ϵ = 0.02 and
A = 8.
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10. Conclusion

We presented a hydrodynamic model to study Rayleigh-Bénard convection
in supercritical fluids within an anelastic approximation. The model is then
applied to two-dimensional numerical simulations of a thin layer of supercritical
3He heated from below, in the same conditions as in experiments mentioned in
[6]. A parametric state equation is used which has the advantage to reproduce
accurately physical properties of the fluid near the critical point. The main
results in this study are summarized as follows:

• Rayleigh-Schwarzchild instability criterion for the convection onset has
been highlighted in the presence of the piston effect.

• Numerical profile of ∆T (t) exhibits deviations with experimental curve
during the initial phase but agree well at quasi-steady state. The use of
a parametric state equation gives better results than do analytic laws.

• Convection onset does not change with the the aspect ratio.
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