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UNCONDITIONAL CHEBYSHEV BIASES IN NUMBER FIELDS

DANIEL FIORILLI AND FLORENT JOUVE

Abstract. Prime counting functions are believed to exhibit, in various contexts, discrep-
ancies beyond what famous equidistribution results predict; this phenomenon is known as
Chebyshev’s bias. Rubinstein and Sarnak have developed a framework which allows to con-
ditionally quantify biases in the distribution of primes in general arithmetic progressions.
Their analysis has been generalized by Ng to the context of the Chebotarev density theo-
rem, under the assumption of the Artin holomorphy conjecture, the Generalized Riemann
Hypothesis, as well as a linear independence hypothesis on the zeros of Artin L-functions. In
this paper we show unconditionally the occurence of extreme biases in this context. These
biases lie far beyond what the strongest effective forms of the Chebotarev density theorem
can predict. More precisely, we prove the existence of an infinite family of Galois extensions
and associated conjugacy classes C1, C2 ⊂ Gal(L/K) of same size such that the number
of prime ideals of norm up to x with Frobenius conjugacy class C1 always exceeds that of
Frobenius conjugacy class C2, for every large enough x. A key argument in our proof relies
on features of certain subgroups of symmetric groups which enable us to circumvent the
need for unproven properties of zeros of Artin L-functions.

1. Introduction and statement of results

In 1853, Chebyshev noticed in a letter to Fuss [C] that there seems to exist a bias in the
distribution of primes modulo 4, that is in most intervals of the form [2, x], there appears
to be more primes of the form 4n + 3 than of the form 4n + 1. It turns out that the
specific statements made in Chebyshev’s letter are quite deep: the second is equivalent to
the Riemann hypothesis for L(s, χ−4), and the first can be made explicit under an additional
linear independence hypothesis on the zeros of L(s, χ−4). Chebyshev’s observation has been
widely generalized over the years; notably, Rubinstein and Sarnak [RS] have shown that
for two invertible residue classes a and b modulo q, there exists a bias towards a (that
is π(x; q, a) > π(x; q, b) is true more often than π(x; q, a) < π(x; q, b)) if and only if b is
a quadratic residue and a is a non-quadratic residue. These theoretical results, as well
as the numerical determinations of the bias in the paper, are conditional on the generalized
Riemann hypothesis and a linear independence hypothesis on the non-trivial zeros of Dirichlet
L-functions. In the same paper [RS, §5], the authors mention several possible generalizations
including biases in the distribution of prime ideals in Galois extensions of number fields. This
context was explored by Ng in his Ph.D. thesis [N]. Consider a Galois extension L/K of
number fields, a congugacy class C ⊂ G = Gal(L/K), and define the Frobenius counting
function

π(x;L/K,C) :=
∑

p/OK unram.
Np≤x

Frobp=C

1,
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where Frobp denotes the Frobenius conjugacy class associated to the unramified prime ideal
p, and Np = |OK/p| denotes its norm. The Chebotarev density theorem asserts that
π(x;L/K,C) ∼ |C|

|G|

∫ x
2

dt
log t

. More precisely, one is interested in understanding the size of
the sets

PL/K;C1,C2 := {x ∈ R≥1 : |C2|π(x;L/K,C1) > |C1|π(x;L/K,C2)}.
Ng [N] has shown under Artin’s holomorphy conjecture, GRH, as well as a linear indepen-
dence hypothesis on the set of zeros of Artin L-functions, that the set PL/K;C1,C2 admits a
logarithmic density, that is the limit

δ(PL/K;C1,C2) := lim
X→∞

1

logX

∫
1≤x≤X

x∈PL/K;C1,C2

dx

x

exists. Moreover, he computed this density in several explicit extensions, under the same
hypotheses.

The goal of this paper is to show unconditionally the existence of the density δ(PL/K;C1,C2)
in some families of extensions and for specific conjugacy classes. More precisely, we will
exhibit a sufficient group-theoretic criterion on G = Gal(L/K) which implies in particular
that δ(PL/K;C1,C2) = 1. This will involve the class function rG : G→ C defined by

rG(g) := #{h ∈ G : h2 = g}.

We will require L/Q to be Galois, and for a conjugacy class C ⊂ G we will denote by C+

the unique conjugacy class of G+ := Gal(L/Q) which contains C. Explicitly,

C+ :=
⋃
a∈G+

aCa−1. (1)

Theorem 1.1. Let L/K be an extension of number fields for which L/Q is Galois. As-
sume that the conjugacy classes C1, C2 ⊂ G = Gal(L/K) are such that C+

1 = C+
2 , but

rG(gC1) < rG(gC2), where gCi is a representative of Ci. Then, for all large enough x we have
the inequality |C2|π(x, L/K,C1) > |C1|π(x, L/K,C2). In particular, the set PL/K;C1,C2 has
natural (and logarithmic) density equal to 1.

Remark. The fact that the natural density of PL/K;C1,C2 exists in Theorem 1.1 is remarkable
since it is widely believed that in the classical case of primes in arithmetic progressions as
well as in the more general case of Galois extensions of number fields, the logarithmic density
is the appropriate notion to work with. In general one cannot expect natural densities to
exist (see [K], as well as [RS, p. 174] and the references therein).

Note also that in Theorem 1.1, one can further impose C1 and C2 to have the same size.
Indeed, we will see in the proof of Proposition 1.2 (see §2) that there exists families of
examples in which the group G is abelian.

Next we state a group theoretic result showing that the hypotheses of Theorem 1.1 are
satified by infinitely many couples (G,G+) and associated conjugacy classes C1, C2 ⊂ G.

Proposition 1.2. For n ≥ 8 the symmetric group G+ = Sn admits a subgroup G which
contains conjugacy classes C1, C2 satisfying C+

1 = C+
2 , but rG(gC1) < rG(gC2), where gCi ∈ Ci

(i = 1, 2).
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The combination of Theorem 1.1, Proposition 1.2 and the fact going back to Hilbert that
the inverse Galois problem over Q is solved for the symmetric group Sn immediately yields
the following consequence.

Corollary 1.3. There exists infinitely many Galois extensions L/K and conjugacy classes
C1, C2 ⊂ Gal(L/K) for which δ(PL/K;C1,C2) = 1.

The paper is organized as follows. Section 2 is devoted to the group theoretic aspects
of our main result. In particular we prove Proposition 1.2 and discuss generalizations and
related questions. In Section 3, we prove Theorem 1.1. We conclude the paper with Section 4
which is devoted to numerical computations and illustrations of Theorem 1.1.
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2. Group theoretical results

The goal of this section is to construct families of abelian extensions L/K satisfying the
hypotheses of Theorem 1.1.

Proof of Proposition 1.2. For n ≥ 8, consider the permutations g1 := (12)(34) and g2 :=
(57)(68) as elements of Sn. Let G := 〈(12)(34), (5678)〉 < Sn. We claim that the choices
C1 = g1 and C2 = g2 satisfy the required properties. Indeed, C+

1 = C+
2 = C(2,2), where C(2,2)

is the set of elements of Sn of cycle type (2, 2). Moreover, an enumeration of the elements
of G shows that rG(g1) = 0 and rG(g2) = 4. �

The next lemma gives a group theoretical criterion which generalizes the construction in
the proof of Proposition 1.2 and which implies the conditions of Theorem 1.1. (Here and
later in the paper we make a slight abuse of notation by denoting rG(C) the common value
rG(g) as g runs over the G-conjugacy class C.)

Lemma 2.1. Let G+ be a group and let H and K be subgroups having trivial intersection
and such that H centralizes K. Let h ∈ H be a non-square (in H), and let k ∈ K be a square
(in K) which is a conjugate of h in G+. Then, the conjugacy classes C1 = Ch and C2 = Ck
in the group G = HK are such that rG(C2) > rG(C1); in other words, the conditions of
Theorem 1.1 hold.

Proof. The fact that H centralizes K guarantees that G = HK = KH is a subgroup of G+.
Moreover, any x ∈ G such that x2 = k can be written x = st with s ∈ H and t ∈ K (and
in this decomposition there is a unique (s, t) corresponding to each x since H ∩K = {1}).
Thus k = s2t2, which implies that s2 ∈ H ∩K. Therefore s2 = 1, and as a result

#{x ∈ G : x2 = k} = #{x ∈ K : x2 = k} ·#{x ∈ H : x2 = 1} > 0 .
3
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By symmetry, we also have that

#{x ∈ G : x2 = h} = #{x ∈ H : x2 = h} ·#{x ∈ K : x2 = 1} = 0 .

�

In order to apply Lemma 2.1, take for instance G+ = Sn, and let σ, τ ∈ Sn be permutations
of order divisible by 4 which have the same cycle type, but have disjoint supports. Consider
the subgroups H = 〈σ2〉 and K = 〈τ〉, and the elements h = σ2 and k = τ 2. We clearly have
that rK(k) ≥ 1 and rH(h) = 0, and Lemma 2.1 applies.

Remark. From a group theoretical point of view, it would be interesting to classify the
tuples (G,G+, C1, C2) such that G+ is a finite group, G < G+ and C1, C2 are conjugacy
classes of G such that rG(C1) 6= rG(C2) and C+

1 = C+
2 in G+ (recall (1)). For example,

one notices that no such tuple exists where G is a normal subgroup of G+ (see [FJ, Proof
of Lemma 3.13]). Beyond this case, one may ask the following questions: how rare is the
property enjoyed by these tuples? What are the “minimal” examples? Such questions are
the subject of Mounir Hayani’s forthcoming Ph.D. thesis.

3. Proof of Theorem 1.1

To introduce the natural framework of Theorem 1.1, we will work in the setting of [B],
that is we will consider general class functions t : Gal(L/K)→ C, and define1

ψ(x;L/K, t) :=
∑
p/OK
Np≤x
k≥1

t(Frobkp) log(Np); θ(x;L/K, t) :=
∑
p/OK
Np≤x

t(Frobp) log(Np);

π(x;L/K, t) :=
∑
p/OK
Np≤x

p unram.

t(Frobp).

When L/Q is Galois, we will use the shorthands G := Gal(L/K), G+ := Gal(L/Q), as well
as

t+ = IndG
+

G t : G+ → C , g 7→
∑

aG∈G+/G:
a−1ga∈G

t(a−1ga).

Finally, we recall that the inner product of class functions t1, t2 : G→ C is defined by

〈t1, t2〉G :=
1

|G|
∑
g∈G

t1(g)t2(g).

(We will simply write 〈t1, t2〉, dropping the subscript G, where the underlying group is clear
from context.)

Lemma 3.1. Let L/K be an extension of number fields for which L/Q is Galois, and let
t : Gal(L/K)→ C be a class function. We have the estimate

π(x;L/K, t) =

∫ x

2−

dψ(u;L/Q, t+)
log u

− 〈t, rG〉
x

1
2

log x
+ o
( x

1
2

log x

)
.

1See for instance [M, Chap. 1 §4] for a definition of Frobp in the case where p is ramified.
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Proof. For any integer ` ≥ 2, denote by f` : G→ G the class function defined by f`(g) = g`.
Let µ denote the Möbius function; inclusion-exclusion implies that

θ(x;L/K, t) = ψ(x;L/K, t) +
∑
`≥2

µ(`)ψ(x
1
` ;L/K, t ◦ f`)

= ψ(x;L/K, t)− 〈t, rG〉x
1
2 (1 + o(1)) +O(x

1
3 ),

by the Chebotarev density theorem and the identity 1
|G|
∑

g∈G t(g
2) = 〈t, rG〉. The claimed

estimate follows from a summation by parts and an application of the identity

ψ(u;L/K, t) = ψ(u;L/Q, t+),
which is a consequence of the invariance of Artin L-functions under induction ([A, §2], under
the form used in [FJ, Proposition 3.11]). �

Proof of Theorem 1.1. We first compute, for any conjugacy class C of G, any fixed gC ∈ C
and any irreducible character χ of G+,

〈1+C , χ〉G+ = 〈1C , χ|G〉G =
|C|
|G|

χ(gC) =
|C||G+|
|G||C+|

〈1C+ , χ〉G+ ,

where the first step uses Frobenius reciprocity. Therefore, denoting tC1,C2 : Gal(L/K) → C
the class function tC1,C2 =

|G|
|C1|1C1 −

|G|
|C2|1C2 , one has t+C1,C2

= |G+|
|C+

1 |
1C+

1
− |G

+|
|C+

2 |
1C+

2
≡ 0. Hence,

Lemma 3.1 implies that

π(x;L/K, tC1,C2) = −〈tC1,C2 , rG〉
x

1
2

log x
+ o
( x

1
2

log x

)
.

However, −〈tC1,C2 , rG〉 = rG(gC2)− rG(gC1) > 0, and thus π(x;L/K, tC1,C2) > 0 for all large
enough values of x. �

We now discuss more precisely the oscillations of π(x;L/K,C1)−π(x;L/K,C2) for triples
(L/K,C1, C2) chosen as in the proof of Proposition 1.2 and Corollary 1.3 (an explicit example
of such a Galois extension produces Figure 1, and the purpose here is to discuss the rate
of convergence of the function plotted to its asymptotic value). We recall that in the proof
of Proposition 1.2, we have chosen G = 〈(12)(34), (5678)〉 and t = 1C1 − 1C2 , where C1 =
{(12)(34)} and C2 = {(57)(68)}. Since G is abelian of order 8, the class function rm(g) :=
#{h ∈ G : hm = g} is identically equal to 1 for all oddm ≥ 1, and in particular, 〈t◦f3, 1〉 = 0
(where we recall that f` is the function on G raising elements to their `-th power). The
identity ψ(x;L/K, t) = ψ(x;L/Q, t+) ≡ 0 and the Riemann Hypothesis for Artin L-functions
then imply that

θ(x;L/K, t) = ψ(x;L/K, t)− ψ(x
1
2 ;L/K, t ◦ f2)− ψ(x

1
3 ;L/K, t ◦ f3) +O(x

1
5 )

= −〈t, rG〉x
1
2 +

∑
χ∈Irr(G)

〈χ, t ◦ f2〉
∑
ρχ

x
1
4
+ 1

2
=(ρχ)i

ρχ
+O(x

1
5 ),

by the explicit formula (see for instance [N, Theorem 3.4.9]). Here, Irr(G) denotes the set
of irreducible characters of G, and ρχ runs through the non-trivial zeros of the Artin L-
function L(s, L/K, χ). Now, in this particular example 8t ◦ f2 = 1{(5678)} + 1{(5678)(12)(34)} +
1{(5876)} + 1{(5876)(12)(34)}, and thus 〈χ, t ◦ f2〉 = χ((5678)) + χ((5678)(12)(34)) + χ((5876)) +
χ((5876)(12)(34)) (which is not identically zero). This explains why we expect the difference
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between the solid line and the data in Figure 1 to be roughly of order x−
1
4 . (More precisely,

we expect order x−
1
4 almost everywhere, and maximal order x−

1
4 (log log log x)2.)

4. Numerical examples

Figure 1. The normalized difference (π(x;L/K,C1) − π(x;L/K,C2))/R(x)
with 1 ≤ x ≤ 1010 (data due to B. Allombert)

In this section we discuss our numerical verification of Theorem 1.1 and Proposition 1.2.
It would be computationally very expensive to work with the full group S8. However, it
turns out that one can replace S8 with a relatively small subgroup which has the required
properties. Consider G+ := 〈(12)(34), (5678), (15)(27)(36)(48)〉; let us show that G+ is
isomorphic to the wreath product of Z/4Z and Z/2Z, which is of order 32. Denote the
permutations appearing in the generating set of G+ by τ , σ, and γ, respectively, and note
that G+ = 〈σ, γσγ, γ〉 (since γσγ = (1324), and thus (γσγ)2 = τ). The subgroup 〈σ, γσγ〉
is clearly isomorphic to (Z/4Z)× (Z/4Z). Moreover, conjugating by γ on 〈σ, γσγ〉 amounts
to exchanging the two factors Z/4Z, which is the definition of the wreath product.

Consider also the abelian subgroup G := 〈(12)(34), (5678)〉 < G+ as well as the conjugacy
classes C1 := {(12)(34)} and C2 := {(57)(68)}. In the group G+, one has that γ−1C1γ = C2,
that is C+

1 = C+
2 . It follows from Theorem 1.1 that for any Galois number field L/Q such

that Gal(L/Q) ' G+, the sub-extension K = LG has the property that for all large enough
x,

π(x;L/K,C1) > π(x;L/K,C2)

(recall that |C1| = |C2| = 1). Bill Allombert has kindly provided us with the pari/gp code
allowing for a numerical check of this inequality up to x = 1010, for a particular number field

6



L/Q of Galois group G+. Explicitly, L = Q[x]/(f(x)), where2

f(x) =x32 − 128x30 + 5680x28 − 120576x26 + 1386352x24 − 9267712x22 + 38233408x20

− 101305344x18 + 176213088x16 − 202610688x14 + 152933632x12 − 74141696x10

+ 22181632x8 − 3858432x6 + 363520x4 − 16384x2 + 256 .

In Figure 1 we have plotted the difference π(x;L/K,C1)−π(x;L/K,C2), normalized by the
function

R(x) :=
x

1
2

log x
+

∫ x

2

du

u
1
2 (log u)2

∼ x
1
2

log x
,

which can be shown following the proof of Lemma 3.1 to be the “natural approximation”
for the order of magnitude of this difference. As expected, we see that the plotted function
converges to 1

2
, and to illustrate this we have added the solid line y = 1

2
on the plot. Finally,

we see that as predicted in Section 3, the difference between the graph and the solid line is
of order x

1
4 .
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