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A LARGE CLASS OF DENDRITE MAPS FOR WHICH MÖBIUS

DISJOINTNESS PROPERTY OF SARNAK IS FULFILLED.

el HOUCEIN el ABDALAOUI & JOSEPH DEVIANNE

Abstract. We prove that any dendrite map for which the set of endpoints is closed and
countable fulfilled Sarnak Möbius disjointness. This extended a result by el Abdalaoui-Askri
and Marzougui [1]. We further notice that the Smital-Ruelle property can be extended to the
class of dendrites with closed and countable endpoints.

1. Introduction

Let X be a compact metric space with a metric d and let f : X → X be a continuous map. We
call for short (X, f) a dynamical system. The Möbius disjointness conjecture of Sarnak [31], [32]
assert that for any dynamical system (X, f) with topological entropy zero, for any continuous
function φ : X −→ C, for any point x ∈ X , we have

SN (x, ϕ) :=
1

N

N
∑

n=1

µ(n)ϕ(fn(x)) = o(1), as N → +∞,(1.1)

where µ is the Möbius function defined by

µ(n) =











1 if n = 1

λ(n) if all primes in decomposition of n are distinct

0 otherwise,

Here, λ stand for the Liouville function λ given by λ(n) = 1 if the number of prime factors of n
is even and −1 otherwise.
We recall that the topological entropy h(f) of a dynamical system (X, f) is defined as

h(f) = lim
ε→0

lim sup
n→+∞

1

n
log sep(n, f, ε),

where for n integer and ε > 0, sep(n, f, ε) is the maximal possible cardinality of an (n, f, ε)-
separated set in X , this later means that for every two points of it, there exists 0 ≤ j < n with
d(f j(x), f j(y)) > ε, f j stand for the j-th iterate of f .
The purpose of this paper is to strengthen the first main result in [1] by proving that the Möbius
disjointness of Sarnak is fulfilled for a zero topological map on the dendrites for which the set
of endpoints is closed and countable. In our proof, we extend and correct the Askri’s proof of
the main theorem in [8]. We further fill the gap in the proof of Theorem 4.10 in [1] when the
derivative set of the endpoints does not intersect an open connected component of the canonical
decomposition of dendrite.
Our result is also related to the conjecture of J. Li, P. Oprocha and G-H. Zhang which assert
that the spectrum of such map is discrete [27]. Therefore, under this conjecture, the Möbius
disjointness property of Sarnak is fulfilled. Indeed, it is well-known that a dynamical system with
discrete spectrum satisfy the Möbius disjointness [19], [3]. Let us further notice that recently, M.
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Nerurkar and the fist author proved that the Möbius disjointness of Sarnak holds for a dynamical
system with singular spectrum [5]. At this point, let us mention that J. Li, P. Oprocha and G.
Zhang proved that any dynamical system with zero topological entropy can be embedded in a
Gehman dendrites with zero entropy. It follows that proving the Möbius disjointness of Sarnak
will settle the conjecture. We thus restrict ourselves to this setting and for the recent and other
results, we refer to [1] and [5].

The principal arithmetical tool of our proof is the Dirichlet prime number theorem (DPNT) [6].
We stress, as pointed out by e.H. el Abdalaoui and M. Nerurkar [5], that the only arithmetical
ingredients used until now are the following.

(1) The prime number theorem (PNT) and the Dirichlet PNT.
(2) The so-called Daboussi-Katai-Bourgain-Sarnak-Ziegler criterion. This criterion assert

that if a sequence (an) satisfy for a large prime p and q, the orthogonality of (anp)
and (anq), then the orthogonality holds between (an) and any bounded multiplicative
function. The proof of this ingredient is based on the PNT and it was used first by
Bourgain-Sarnak-Ziegler [11] and then by many other authors. Recently, this criterion
was generalized by M. Cafferata, A. Perelli and A. Zaccagnini to some class of no bounded
multiplicative functions such as the normalized Fourier coefficients λf of the normalized
Hecke eigenform f and its Dirichlet inverse [14].

(3) Finally, the result of Matomaki-Radzwill-Tao on the validity of average Chowla of order
two [28]. This was used to establish the conjecture for systems with discrete spectra. It
was used by el Abdalaoui-Lemańczyk-de-la-Rue [2], and Huang-Wang and Zhang [20].

Let us emphasize also that the method of the authors in [5] does not use any of the above
techniques. In fact, therein, the authors presented a spectral dissection based on an unpublished
result of W. Veech. From the number theory, they used Davenport’s estimation combined with
Daboussi’s characterization of the Besicovitch class of multiplicative functions [16].
We recall that the dynamical system (X, f) is said to have a the topological discrete spectrum
if the eigenfunctions of its Koopmann operator on the space C(X) span a dense linear subspace
of the C(X) ( C(X) is the space of continuous functions equipped with the strong topology).
It is well-known that this is later property is equivalent to the equicontinuity of the dynamical
system [34]. It also well-known that the system (X, f) has always an invariant probability
measure µ, by Krylov-Bogoliubov theorem [34], that is, for any f ∈ C(X),

∫

φ◦fdµ =
∫

fdµ. The
measurable dynamical system (X, f, µ) is said to have a discrete spectrum if the eigenfunctions
of its Koopmann operator on the space L2(X,µ) span a dense linear subspace of the L2(X,µ).
In [26], Kusherinko established that the measurable dynamical system has a discrete spectrum
if and only if its metric sequence entropy is zero for any sequence. We recall that the system for
which the sequence entropy is zero for any sequence are called null systems. It is turns out that
the notion of null system is related to the so-called tame system. This later notion was coined by
E. Glasner in [17]. The dynamical system (X,T ) is tame if the closure of

{

T n/n ∈ Z
}

in XX is

Rosenthal compact 1. We recall that the setK is Rosenthal compact if and only if there is a Polish
space P such that K ⊂ Baire-1(P ) where Baire-1(P ) is the first class of Baire functions, that is,
pointwise limit of continuous functions on P . By Bourgain-Fremelin-Talagrand’s theorem [12],

K is Rosenthal compact if and only if K is a subset of the Borel functions on P with K = {fn},
fn ∈ C(P ).
The precise connection between null systems and tame systems can be stated as follows [18],
[23], [21]

N ⊂ T ,

where N is the class of null systems and T is the class of tame systems.
In [1], using Kusherinko’s criterion, it is observed that the graph map has a discrete spectrum,
for any invariant measure. In [27], the authors gives an alternative proof. Therein, the authors
strengthened the previous result, by establishing that the quasi-graph has a discrete spectrum, for
any invariant measure. E. Glasner and M. Megrelishvili proved that every continuous action on

1
XX is equipped with the pointwise convergence. This closure is called the enveloping semigroup of Ellis.



A LARGE CLASS OF DENDRITE MAPS 3

dendron is tame [17]. Therein, the authors established also that every action of topological group
on metrizable regular continuum is null, hence, tame. Therefore, for all those systems, the Möbius
disjointness of Sarnak holds. It is also observed in [1] that the Möbius disjointness property is
fulfilled for the monotone maps on a local dendrites. We recall that for every topological space
X , a map f : X → X is called monotone if f−1(C) is connected for any connected subset C of
X . In particular, if f is a homeomorphism then it is monotone.

For the connection between the measurable notion of tame and discrete spectrum, we refer to [4].

Recently, G. Askri [9] proved that if the map on a dendrites has no Li-Yorke pairs, then its restric-
tion to Λ(f), the union of all ω-limit sets and the set of fixed points, is uniform equicontinuous.
It follows that he Möbius disjointness property hold for such maps.

The plan of the paper is as follows. In Section 2, we give some definitions and preliminary
properties on dendrites which are useful for the rest of the paper. In section 3, we state our main
results and its consequences, we further give the proof of the main topological ingredient need it
in its proof. Section 4 is devoted to the proof of our main result. Finally, in section 5, we discuss
the reduction of Sarnak Möbius disjointness to the Gehman dendrites with zero topological and
its related spectral problems.

2. Preliminaries and some results

Let Z, Z+ and N be the sets of integers, non-negative integers and positive integers, respectively.
For n ∈ Z+ denote by fn the n-th iterate of f ; that is, f0=identity and fn = f ◦ fn−1 if
n ∈ N. For any x ∈ X , the subset Orbf (x) = {fn(x) : n ∈ Z+} is called the orbit of x
(under f). A subset A ⊂ X is called f−invariant (resp. strongly f−invariant) if f(A) ⊂ A
(resp., f(A) = A). It is called a minimal set of f if it is non-empty, closed, f -invariant and
minimal (in the sense of inclusion) for these properties, this is equivalent to say that it is an
orbit closure that contains no smaller one; for example a single finite orbit. When X itself is a
minimal set, then we say that f is minimal. We define the ω-limit set of a point x to be the set
ωf (x) = {y ∈ X : ∃ ni ∈ N, ni → ∞, lim

i→+∞
d(fni(x), y) = 0}. A point x ∈ X is called

− periodic of period n ∈ N if fn(x) = x and f i(x) 6= x for 1 ≤ i ≤ n− 1; if n = 1, x is called a
fixed point of f i.e. f(x) = x.
− Almost periodic if for any neighborhood U of x there is N ∈ N such that {f i+k(x) : i =
0, 1, . . . , N} ∩ U 6= ∅, for all k ∈ N. It is well known (see e.g. [10], Chapter V, Proposition 5)

that a point x in X is almost periodic if and only if Orbf (x) is a minimal set of f .
A pair (x, y) ∈ X×X is called proximal if lim infn→+∞ d(fn(x), fn(y)) = 0; it is called asymptotic
if limn→+∞ d(fn(x), fn(y)) = 0. A pair (x, y) ∈ X ×X is is said to be a Li-Yorke pair of f if it
is proximal but not asymptotic.
In this section, we recall some basic properties of graphs, tree and dendrites.
A continuum is a compact connected metric space. An arc is any space homeomorphic to the
compact interval [0, 1]. A topological space is arcwise connected if any two of its points can be
joined by an arc. We use the terminologies from Nadler [29].

By a graph X , we mean a continuum which can be written as the union of finitely many arcs
such that any two of them are either disjoint or intersect only in one or both of their endpoints.
For any point v of X , the order of v, denoted by ord(v), is an integer r ≥ 1 such that v admits
a neighborhood U in X homeomorphic to the set {z ∈ C : zr ∈ [0, 1]} with the natural topology,
with the homeomorphism mapping v to 0. If r ≥ 3 then v is called a branch point. If r = 1, then
we call v an endpoint of X . If r = 2, v is called a regular point of X .
Denote by B(X) and E(X) the sets of branch points and endpoints of X respectively. An edge is
the closure of some connected component of X \B(X), it is homeomorphic to [0, 1]. A subgraph
of X is a subset of X which is a graph itself. Every sub-continuum of a graph is a graph ( [29],
Corollary 9.10.1). Denote by S1 = [0, 1]|0∼1 the unit circle endowed with the orientation: the

counter clockwise sense induced via the natural projection [0, 1] → S1. A circle is any space
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homeomorphic to S1. By a tree X , we mean a graph which contains no simple closed curve. A

point in X is a non-cut point if and only if it is an endpoint of X ( [29], Proposition 9.27), and
a continuum X is a tree if and only if X has only finitely many non-cut points ( [29], Theorem
9.28). As a consequence, a continuum X is an arc if and only if X has exactly two non cut-points
( [29], Corollary 9.29).
By a dendrite X , we mean a locally connected continuum containing no homeomorphic copy
to a circle. Every sub-continuum of a dendrite is a dendrite ( [29], Theorem 10.10) and every
connected subset of X is arcwise connected ( [29], Proposition 10.9). In addition, any two
distinct points x, y of a dendrite X can be joined by a unique arc with endpoints x and y,
denote this arc by [x, y] and let us denote by [x, y) = [x, y] \ {y} (resp. (x, y] = [x, y] \ {x} and
(x, y) = [x, y] \ {x, y}). A point x ∈ X is called an endpoint if X \ {x} is connected. It is called
a branch point if X \ {x} has more than two connected components. The number of connected
components of X \{x} is called the order of x and denoted by ord(x). The order of x relatively to
a subdendrite Y of X is denoted by ordY (x). Denote by E(X) and B(X) the sets of endpoints,
and branch points of X , respectively. By ( [25], Theorem 6, 304 and Theorem 7, 302), B(X) is
at most countable. A point x ∈ X \ E(X) is called a cut point. It is known that the set of cut
points of X is dense in X ( [25], VI, Theorem 8, p. 302). Following ( [7], Corollary 3.6), for any
dendrite X , we have B(X) is discrete whenever E(X) is closed. An arc I of X is called free if
I ∩B(X) = ∅. For a subset A of X , we call the convex hull of A, denoted by [A], the intersection
of all sub-continua of X containing A, one can write [A] = ∪x,y∈A[x, y].

A continuous map from a dendrite (resp. quasi-graph, graph ) into itself is called a dendrite map
(resp. quasi-graph map, resp. graph map).

It is well known that every dendrite map has a fixed point (see [29]). If Y is a sub-dendrite of
X , define the retraction (or the first point map) rY : X → Y by letting rY (x) = x, if x ∈ Y ,
and by letting rY (x) to be the unique point rY (x) ∈ Y such that rY (x) is a point of any arc in
X from x to any point of Y (see [29, Lemma 10.24,p. 176] Note that the map rY is constant on
each connected component of X\Y .
Furthermore, any dendrite can be approximated by tree, that is, there exist an increasing se-
quence of tree (Yi) such that limi Yi = X and the sequence of first point maps (rYi

) converges
uniformly to the identity map on X (see [29], Theorem 10.27) As customary, for a subset A of

X , denote by A the closure of A, A′ the derivative set, that is, the set of all accumulation points
of A and by diam(A) the diameter of A. For the proprieties of derivative set, we refer to [24, §
9, pp.75-78 ].

We need the following results on the structure of dendrites.

Proposition 2.1 ( [29]). Every sub-continuum of a dendrite is a dendrite. Every connected
subset of X is arcwise connected.

Proposition 2.2 ( [29], Theorem 10.2). The set of all branch points is countable.

Proposition 2.3 ( [29], p.187, 10.41 ). Let X be a dendrite. The set of points of order 2 is
continuumwise dense in X.

Theorem 2.4 ( [29], p. 188, 10.42). Let X be a dendrite. Then for each δ > 0, there are finitely
many open connected open and pairwise disjoint subsets U1, . . . , Ur such that

(1) X =
⋃r

i=1 Ui

(2) diam(Ui) < δ
(3) card(Ui ∩ Uj) ≤ 1

For the proof of Theorem 2.4 see also the proof of [25, Theorem 5].

Definition 2.5. Let X be a dendrite and F ⊂ X. We set [F ] the convex hull of F given by the
intersection of all subdendrites containing F .

The following lemma gives a better description of convex hulls in dendrites.
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Lemma 2.6 ( [8]). Let X be a dendrite and F a non empty closed subset of X. Let a ∈ F , then
• [F ] =

⋃

z∈F [a, z]
• E([F ]) ⊂ F and we have E([F ]) = F when F ⊂ E(X)

where [A] stand for the convex hull of a subset A.

We need also the following lemma stated with E(X)′ finite in [8]. Its proof can be obtained in
the similar manner as in [8].

Lemma 2.7 ( [8]). Let X be a dendrite such that E(X) is closed. Let Y ⊂ X a subdendrite
of X such that E(Y ) ∩ E(X)′ = ∅. Then Y is a tree and X\Y has finitely many connected
components. Furthermore, there are pairwise disjoint subdendrites D1, . . . , Dn in X such that
X\Y ⊂

⋃

1≤i≤nDi and Di ∩ Y is reduced to one point for each i.

3. Main results

The main result of this paper is the following.

Theorem 3.1. Let f be a dendrite map on X with zero topological entropy for which E(X) is
closed and countable. Then, f satisfy Sarnak Möbius disjointness (1.1).

As a consequence, we have

Corollary 3.2 ( [1], Theorem 4.10.). Let f be a dendrite map on X with zero topological entropy
for which E(X) is closed and E(X)′ is finite. Then, f satisfy Sarnak Möbius disjointness (1.1).

Proof. By the characterization theorem of the dendrites with a countable set of end points [15,
Theorem 5], if E(X) is not countable then it is a Cantor set. Therefore E(X)′ is not finite. This
finished the proof of the corollary.

At this point, let us notice that recently, G. Askri [9] proved the following lemma.

Lemma 3.3. Let X be a dendrite with End(X) countable and closed and let f : X −→ X be
a continuous map. Suppose that f has no Li-Yorke pairs. If one of the following assumptions
holds

(1) the collection of minimal sets is closed in (2X , dH),
(2) f |Λ(f) is equicontinuous at every point in End(X)′ ,
(3) f |P (f) is uniform equicontinuous,

then f |Λ(f) is equicontinuous. where Λ(f) stand for the union of all ω-limit sets a the set of fixed
points, and P (f) is the set of periodic points.

It follows that if the dendrite map has no Li-Yorke pairs and one of the previous assumptions
holds the Möbius disjointness property is fulfilled. This gives an alternative proof to the proof
of D. Karagulan [22]. We further notice that there exist a dendrite map without Li-York pair
such that Λ(f) = P (f) and he collection of minimal sets is not closed in (2X , dH). Therefore,
the restriction of f to Λ(f) is not equicontinuous (see [9, Lemma 4]). noindentFor the proof of

our main result (Theorem 3.1), we need to extend Smital-Ruette property. This later property
is implicitly contained in several papers of Sharkovsky, but its first proof can be found in [33]
and [30]. G. Askri extended this property to the class of dendrites for which the set of endpoints
is closed and its derivative set is finite. Here, we extend it to the dendrites with closed and
countable endpoints. Our extension is largely inspired from that of G. Askri. We state it as
follows.

Theorem 3.4. Let X be a dendrite such that E(X) is closed and countable. Let f : X → X
be a dendrite map with zero topological entropy. Let L := ωf (x) be an uncountable ω-limit set.
Then there is a sequence of f -periodic subdendrites (Dk)k≥1 and a sequence (nk)k≥1 of integers
with the following properties for any k,

(1) Dk has period αk := n1n2 . . . nk.
(2) For i 6= j ∈ {0, . . . , , αk − 1}, f i(Dk) ∩ f j(Dk) = ∅.
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(3) L ⊂
⋃αk−1

i=0 f i(Dk).

(4)
⋃nj−1

k=0 fkαj−1 (Dj) ⊂ Dj−1.
(5) For i ∈ {0, . . . , αk − 1}, f(L ∩ f i(Dk)) = L ∩ f i+1(Dk).

For sake of completeness, we present a sketch of the proof of Theorem 3.4. For that, we proceed
by induction and as in the proof of Smital-Ruelle property, we are going to prove the result at
step k = 1 and then extend it by induction.

Proposition 3.5. With the same assumptions as in Theorem 3.4, there exists a connected subset
J of X and an interger n ≥ 2 such that

(i) J, f(J), . . . fn−1(J) are pairwise disjoint.
(ii) fn(J) = J .
(iii) L ⊂

⋃

0≤i≤n−1 f
i(J).

(iv) For i ∈ {0, . . . , n− 1}, f(L ∩ f i(J)) = L ∩ f i+1(J).

The proof of Proposition 3.5 relies on the following Lemma.

Lemma 3.6. For x ∈ X, if ω(f)(x) = L is infinite then it contains no periodic point of f .

As in the proof on the interval, we are going to build horseshoes to get contradictions. the
following lemma will be useful.

Lemma 3.7. Let f : X → X a dendrite map such that E(X) is closed and countable. Let a a
fixed point for f and L := ωf (x) an uncountable ω-limit set such that L∩P (f) = ∅ then for any
y ∈ L, there is p, k ≥ 0 such that [a, fk(x)] ⊂ [a, fp(y)].

Proof. Let y ∈ L. We show first that ωf (y) ⊂ ωf (x) is uncountable. Since it is closed and
invariant, we can consider a subset K ⊂ ωf (y) which is minimal. Since L∩P (f) = ∅, it contains
no periodic point, so it is infinite and with no isolated point, hence it is uncountable and so it is
for ωf (y).
Denote now by (Ci)i∈N the sequence of connected components of X\(B(X)∪E(X))). By Lemma
2.7, each Ci is an open free arc in X . There is j ∈ N such that ωf (y) ∩ Cj is uncountable. Let
v, v in this intersection such that u ∈ (a, v). Let Iu, Iv two open dsijoint arcs in Cj such that

u ∈ Iu, v ∈ Iv. Then there exist p, k′ ∈ N such that fp(y) ∈ Iv and fk′

(y) ∈ Iu. but since

fk′

(y) ∈ L, there is k ∈ N such that fk(x) ∈ Iu which leads to the inclusion [a, fk(x)] ⊂ [a, fp(y)].

Proof. [Proof of Lemma 3.6.] Let M = [L] the convex hull of L. We only focus on the case
M ∩Fix(f) 6= ∅. Let a ∈M ∩Fix(f). By the Theorem 3.6, we have that a ∈M\L ⊂M\E(M)
by Lemma 2.7. Hence, ord(a,M) ≥ 2.
The proof of the first step k = 1 for the Smital-Ruelle property is basic since the jumping
dynamic from one side of the fixed point to the other can be described. But, here since each
branch connected to the fixed point a is also a dendrite complicates the proof. Indeed the natural
idea would be to set ωi = ωf(x) ∩Ci with {Ci}i=1,...,p the connected components of X\{a} and
then to apply the same reasoning as in the proof of the first step of the Smital-Ruelle property. It
would be then very complicated to prove that a /∈ J . We need then to take apart the preimages
of a, construct sets in the same way we constructed ω0 and ω1, but such that they are disjoint
from these preimages and then construct the set J . Let us set Fa =

⋃

n≥0 f
−n(a) and Ya = [Fa].

We thus have the following lemma.

Lemma 3.8. L ⊂M\Ya and M\Ya has finitely many connected components.

Proof. We start first by proving that [a, z] ∩ L = ∅ for z ∈ Fa. Indeed, if Fa = {a}, there
is nothing to prove. Else, suppose contrary that there is y ∈ [a, z] ∩M, fp(z) = a, p ≥ 1. We
set I = [a, y] and J = [y, z] and easily construct an horseshoe with the help of Lemma 3.7.
It is actually possible to prove something stronger, that is, L ∩ Fa = ∅ (see [8]). This proves
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that L ⊂ M\
⋃

z∈Fa
[a, z]. Hence , by Lemma 2.6, we have L ⊂ M\Ya. Again by Lemma 2.6,

E(Ya) ⊂ Fa and E(M)′ ⊂ E(M) ⊂ L then E(Ya)∩E(M)′ = ∅. Hence, with Lemma 2.7, Ya is a
tree and M\Ya has finitely many connected components.
We are now able to have a better description of M and understand the action of f on it. In fact
we have the following lemma.

Lemma 3.9. Under above notations, we have
(1) If Fa 6= {a}, for any y ∈ L, (a, y] ∩ Fa 6= ∅.
(2) M\Fa has finitely many connected components C1, . . . , Cn intersecting L. We denote by

lk = L ∩ Ck each intersection.
(3) For each k ∈ {1, . . . , n}, there is a unique j := σ(k) ∈ {1, . . . , n} such that f(Ck)∩Cj 6= ∅

and we have f(lk) = lσ(k).
(4) Each lk is clopen relatively to L.
(5) σ is an n-cycle.

Proof. We give only the proof of (3). Since, the proof of (1), (2), (4) and (5) is the same as the
proof of lemma 5.10 in [8]. Let k ∈ {1, . . . , n}, then f(lk) ⊂ f(L) = L =

⋃

1≤i≤n li. Therefore,

there is j such that f(lk) ∩ lj 6= ∅ then f(Ck) ∩ Cj 6= ∅. Suppose now that there is i 6= j such
that f(Ck) ∩ Ci 6= ∅. Let xj ∈ f(Ck) ∩ Cj and xi ∈ f(Ck) ∩ Ci. We have [xj , xi] ⊂ f(Ck) and
f(Ck)∩Fa = ∅ so [xj , xi]∩Fa = ∅. Hence H = Cj ∪ [xj , xi]∪Ci is a connected subset ofM such
that H ∩Fa = ∅. By maximality of Ci and Cj we have H = Ci = Cj which gives a contradiction.

Let j = σ(k), then we have

f(lk) ⊂ lσ(k).

Suppose that f(lk) ( lσ(k). Then there exists i 6= j such that f(li) ∩ lσ(k) since f(L) = L.
Consequently, f(li) ⊂ lσ(k) and σ(i) = σ(k). Whence, σ is not injective and not surjective and

we have f(L) ⊂
⋃n

r=1 lσ(r) ( L which gives a contradiction and proves that f(lk) = lσ(k).

We are now able to give the proof of Proposition 3.5 and Theorem 3.4.

Proof. [Proof of Proposition 3.5 and Theorem 3.4.] Let s1 := [l1] ⊂ C1 and J :=
⋃∞

k=0 f
kn(s1). We proceed to establish that J satisfy the conditions of the Proposition 3.5. We

notice first that J is connected as a limit of an increasing sequence of connected sets. Since s1
is a subdendrite and s1 ⊂ fn(s1). For the proof of (i), we use here the construction of Fa and

Ci as maximal connected components to show that J, f(J), . . . , fn−1(J) are pairwise disjoint.
Indeed, since s1 ∩ Fa and Fa is backward invariant, f i(s1) ∩ Fa = ∅ for i ≥ 0 and consequently,
fk(J)∩Fa = ∅ for k ≥ 0. Suppose now that f i(J)∩ f j(J) 6= ∅, then f i(J)∩ f j(J) is connected.

If we take then u ∈ lσi(1) and v ∈ lσj(1) then K = Cσi(1) ∪ [u, v] ∪ Cσj(1) is connected in M
and disjoint with Fa by maximality, K = Cσi(1) = Cσj(1) and then, i = j. (ii) and (iii) are

immediate. Finally, for (iv), we have f(L ∩ f i(J)) = f(lσi(1)) = lσi+1(1) = L ∩ f i+1(J). We

conclude the proof of the theorem by induction.

Let us proceed now to the proof of our first main result.
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4. Proof of The main result.

As we mention in introduction, our proof is based essentially on DPNT which we formulated as
follows.

Proposition 4.1. If (xn)n∈N is eventually periodic sequence,

1

N

N
∑

n=1

µ(n)xn −→
N→∞

0.

As a consequence, we have that if the ω-limit set ωf (x) is finite then for any continuous ϕ, we
have that

SN (x, ϕ) −−−−−→
N→+∞

0.

Indeed, it is easy to see that there exist a periodic point y such that (x, y) is asymptotic pair, that
is, limn→+∞ d(fn(x), fn(y)) = 0. We thus need to verify (1.1) only when the ωf(x) is infinite.
For that, We need also the following lemma from [22].

Lemma 4.2. Let (an) ∈ [0, 1]N such that there exists n0 ∈ N such that for n,m ∈ N if an 6= 0
and am 6= 0 then n = m or |n−m| ≥ k. Then

lim sup
N→∞

1

N

∣

∣

∣

∣

∣

N
∑

n=1

an

∣

∣

∣

∣

∣

≤
1

k

At this point, let us assume that L = ωf (x) is infinite. We need thus to examine two cases

according to L is countable or not. In the first case, it follows that Y = Orb(x) = Orb(x) ∪L is
countable, Hence, (Y, f |Y ) is tame and (1.1) holds by [20, Theorem 1.8]. We can thus suppose
L uncountable.

As in the proof given by D. Karagulyan [22] and e. H. el Abdalaoui, G. Askri and H. Marzougui
[1], we are going to make a proof by an approximation by step functions. Let ε > 0 and let δ > 0
an uniform continuity modulus adapted to ϕ. We are going to construct a decomposition of X
into sets of diameter < δ and such that each set shares at most two points with the rest of X .
We use Proposition 2.4 to get a first decomposition. There exists open connected subsets Vi, i =
1, . . . , r such that

(1) X =
⋃r

i=1 Vi
(2) diam(Vi) < δ
(3) card(Vi ∩ Vj) ≤ 1 if i 6= j

To perform such decomposition, we apply Proposition 2.3 to see that there is a finite set F of
cut points in X such that each component Vi of X \ F (2) is satisfied (see [29, p.188]) and (see
also the proof of [24, Theorem 5. p 302]).
Now, in order to get the same kind of estimate as in the proof by D. Karagulyan [22] and e. H.
el Abdalaoui, G. Askri and H. Marzougui [1], we need to modify the sets Vi such that each Vi
share at most two points with the rest of the decomposition.
We set i ∈ {1, . . . , r} and consider the set Vi. We put ∂Vi = {f1, . . . , fpi

} with f1, . . . , fpi
∈ F .

We consider now the tree which has endpoints the f1, . . . , fpi
.

T =
⋃

1≤i,j≤p

[fi, fj ] ⊂ Vi.

We split T into arcs by writing

T =

m
⋃

j=1

aj ,

with aj disjoint open arcs, aj ∩ F = ∅ and card(aj ∩ F ) = card(aj ∩ {f1, . . . , fp}) ≤ 2.

We set now (Ck)k∈K the open connected components of Vi\T and let r : Vi → T the first point
map of T in Vi. Since r is locally constant, r is constant on each Ck and we denote by xk ∈ T
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the value on Ck. Since {f1, . . . , fp} are cutpoints, then xk ∈ T \{f1, . . . , fp}. Hence, there exists
a unique j = c(k) ∈ {1, . . . ,m} such that xk ∈ ajk . We have then a function c : K → {1, . . . ,m}
such that for any k ∈ K, and y ∈ Ck, r(y) ∈ ac(k).
We finally set for j ∈ {1, . . . ,m},

bj = aj ∪
⋃

c(k)=j

Ck.

Then every bj is connected since every point in bj is connected to xc(j), and they are all pairwise

disjoint by construction. We further have that bi and bj are either disjoint or intersect on one of
their endpoints. Furthermore, since ∂Ck = xc(k) ∈ ac(k), we have

∂bj = ∂aj

Whence, we have the desired property , that is,

card(∂bj) = card(∂aj) ≤ 2,

and at the same time, we have

Vi =

m
⋃

j=1

bj

We explain the construction with these drawings.

f1

f2

f3

f4

Vi

X\Vi

f1

f2

f3

f4

T

By applying this same decomposition on every Vi, we get a collection (bi)
s
i=1 of connected open

subsets of X such that
(1) X =

⋃s

i=1 bi,
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f1

f2

f3

f4

f1

f2

f3

f4

a1

a2

a3

f1

f2

f3

f4

a1

a2

a3

f1

f2

f3

f4

b1

b2

b3

(2) diam(bi) < δ since each bi is a subset of one Vj ,

(3) card(bj ∩ bi) ≤ 1,

(4) card(bj\bj) ≤ 2.
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We are now going to make the proof with step functions, and conclude by a density argument.
We consider

ψ(bi) :



















[0, 1] → R

x 7−→ 1 if x ∈ bi,

x 7−→ 1
ord(x) if x ∈ ∂bi,

x 7−→ 0 otherwise.

.

For each bi, we take yi ∈ bi and set ci = ϕ(yi) . We set ϕ0 =
∑r

i=0 ciψ(bi) with ci, i = 0, . . . , r.
Since diam(bi) < δ, we have for x ∈ X

∣

∣ϕ(x)− ϕ0(x)
∣

∣ ≤ ε.

Since wf (x) is infinite, for each k, there is one dendrite f i(Dk) such that

wf (x) ∩ int
(

f i(Dk)
)

6= ∅.

Then there exists n0 ∈ N such that

fn0(x) ∈ int
(

f i(Dk)
)

.

But with the properties of (f j(Dk))j=1,...,αk
, we have for m ∈ N

fn0+m(x) ∈ f i+m mod αk(Dk).

We can thus write

SN(x, ψ(bi)) =
1

N

∑

n<n0

µ(n)ψ(bi)(f
n(x)) +

1

N

N
∑

n=n0

µ(n)ψ(bi)(f
n(x))

= o(1) +

αk−1
∑

j=0

1

N

N
∑

n0

µ(n)ψ(bi)(f
n(x))1fj(Dk)(f

n(x)).

Then we show that for j ∈ {0, . . . , αk − 1}, xjn := ψ(bi)(f
n(x))1fj(Dk)(f

n(x)) for n ≥ n0 almost

behaves like a periodic sequence and control the other terms. Indeed, if f j(Dk) does not contain
any of the points of ∂bi, then (xjn)n≥n0

is either constantly equal to 0 ( if f j(Dk) ∩ bi = ∅) or
periodic ( if f j(Dk) ⊂ bi ). Then, from Proposition 4.1, in both cases, we have

Aj
N :=

1

N

N
∑

n=n0

µ(n)ψ(bi)(f
n(x)) =

1

N

N
∑

n=n0

µ(n)xjn = o(1).

If now on the contrary, f j(Dk) contains one or two points of ∂bi, we can notice that if xjn 6= 0
and xjm 6= 0 then n = m or |n−m| ≥ αk. By Lemma 4.2 once again, we have

lim sup
N→∞

Aj
N ≤

1

αk

.

There at most two intervals f j(Dk), f
l(Dk) in which this situation can occur since card(∂bi) ≤ 2.

It implies that

lim sup
N→∞

|SN (x, ψ(bi))| ≤ lim sup
N→∞

αk−1
∑

j=0

|As
N | ≤

2

αk

.

Letting k → ∞, we obtain the desired result.
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5. Remarks on Li-Oprocha-Zhang’s reduction theorem.

In this section, we recall the reduction of Sarnak Möbius disjointness to the Gehman dendrites
obtained by J. Li, P. Oprocha and G-H. Zhang. Precisely, they established the following

Theorem 5.1 ( [27], Corollary 1.7). The Sarnak’s conjecture is true on every dynamical system
with zero topological entropy if and only if it is so for all surjective dynamical systems over the
Gehman dendrite with zero topological entropy.

We recall that the Gehman dendrite is the topologically unique dendrite whose set of endpoints
is homeomorphic to the Cantor set and whose branch points are all of order 3. The principal

ingredient in their proof is the following

Theorem 5.2. Every one sided-subshift can be embedded to a surjective dynamical system on
the Gehman dendrite with the same topological entropy.

According to the result by M. Boyle, D. Fiebig and U.Fiebig [13], the principal idea is to use the
fact that every dynamical system of zero entropy can be seen as a factor of a two sided subshift
with zero topological entropy, then get back to a one-side subshift with zero topological entropy.
For more details, we refer to [27],

It follows that in the class of Gehman dendrite with zero topological entropy the spectrum can
be any spectrum realized by any map with zero topological entropy. Nervelessness, we ask

Question 5.3. Let (X, f) be a dynamical system with zero topological entropy and endpoints
countable, do we have that its spectrum is singular.

Acknowledgments. This paper is a part of the Master thesis by the second author. The
authors would like to thanks G. Askri, K. Dajani, H. Marzougui, M. Nerurkar, O. Sarig, and
X-D. Ye for their comments and suggestions.
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20. W. Huang, Z. Wang and G. Zhang, Möbius disjointness for topological models of ergodic systems with discrete

spectrum, J. Mod. Dyn., 14 (2019), no 1, 277-290,
21. W. Huang, S. Li, S. Shao X. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems,

23 (2003), 1505–1523.
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31. P. Sarnak, Three lectures on the Möbius function, randomness and dynamics,

http://publications.ias.edu/sarnak/.
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