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Toward fully conservative hybrid Lattice Boltzmann Methods for compressible flows

S. Zhao (赵崧),1, 2 G. Farag,1 P. Boivin,1, a) and P. Sagaut1

1)Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, 13451 Marseille,

France

2)CNES launchers directorate, Paris, France

(Dated: December 15, 2020)

This article presents a new numerical scheme designed to solve for any scalar equation

coupled with a Lattice-Boltzmann solver (in so-called hybrid methods). Its most

direct application is to solve an energy equation, in parallel with a Lattice-Boltzmann

solver dealing with mass and momentum conservation.

The numerical scheme is specifically designed to compute the energy flux consis-

tently with the mass and momentum flux (as is done, for instance, using Riemann

solvers).

This scheme effectively lifts a major limitation of current compressible hy-

brid Lattice-Boltzmann, in which the energy conservation is tackled under non-

conservative form, leading to discretization errors on jump conditions across shocks.

Combined with our recently presented pressure-based solver [G. Farag et al, Physics

of Fluids, vol. 32, no. 6, p. 066106, (2020)], the resulting hybrid Lattice-Boltzmann

scheme is, to the authors’ knowledge, the first to numerically conserve simultaneously

mass, momentum and total energy.

a)Electronic mail: pierre.boivin@univ-amu.fr
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I. INTRODUCTION

Lattice Boltzmann Methods (LBM) has received a fastly growing interest in the past two

decades. They are now recognized as a powerful tool for Computational Fluid Dynamics, and

as a potential candidate for a breakthrough toward revolutionary CFD1. Most published

works dealing with LBM are related to low Mach number continuum flows, covering a

broad range of flow physics, among which multiphase flows, thermal flows, combustion

and non-Newtonian flows (see2,3 for examples). Therefore, designing an efficient Lattice

Boltzmann Method well suited for viscous high speed subsonic and supersonic flows remains

a challenging issue, since the Asymptotic Preservation (AP) as defined by Filbet and Jin4,5

for this case, i.e. the recovery of the compressible Navier-Stokes equations is tricky (see,

e.g.6–9 for examples dealing with AP kinetic schemes). It is reminded here that a Lattice

Boltzmann Method has the AP property, if, at fixed mesh size and time step, a consistent

discretization of the Navier-Stokes equations is recovered in the limit of vanishing Knudsen

number.

Since LBM can be derived as a discretization of the Boltzmann equation10, it can in-

herit from the later the capability to handle compressible flow physics. Here, the problem

lies in the efficiency of LBM rather than in an intrinsic inability to capture compressible

flows (assuming that the conservativity of the method has been enforced), since to recover

accurately compressible flow physics a direct and ”rough” discretization of the Boltzmann

equation in velocity, space and time is known to lead to the definition of numerical methods

with non-standard lattices that may involve a large number of discrete velocities3,10.

A common way to decrease the computational cost and the memory storage is to use

a segregated approach, in which the energy equation is treated separately from the mass

and momentum conservation equations. Doing so, it is expected to that it is possible to

drastically reduce the number of unknowns per cell (i.e. the number of discrete velocities)

along with a decrease of the algorithmic complexity of the equation associated to each

unknown (i.e. the computational complexity of the collision model). On the opposite, in

monolithic approaches all equations are treated simultaneously in the same way, e.g.11–17.

Segregated Lattice Boltzmann methods can be grouped into two main classes. The first

one corresponds to Double Distribution Function (DDF) approach in which a second set

of distribution functions is defined to solve the energy equation via a kinetic advection-
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relaxation approach, e.g.18–21. The second one is related to hybrid methods, in which the

macroscopic energy equation is solved using a classical Finite Volume/Difference/Element

method, e.g.22–24. Both approaches have shown promising results in the recent past, and are

being actively developed by various research groups.

Segregated methods, as all methods based on a discretization of the Boltzmann equation,

should be Asymptotic Preserving (AP) methods and therefore should be conservative. The

conservativity issue has been addressed by several authors for methods originating in Boltz-

mann kinetic equation (e.g., see25–28), and it appears that several features of usual LBM can

lead to the loss of conservativity:

• Since LB methods are discrete ordinate/velocity methods with fixed discrete veloc-

ities, their collision models must be adapted in order to get an exact/conservative

evaluation of the moments of interest and the preservation of the associated colli-

sion invariants, while still recovering the targeted macroscopic equations. Adaptation

of the collision kernels can be done in several ways, among which supplementing a

truncated polynomial expansion of the Maxwellian equilibrium function found in gas

kinetic theory by forcing terms to balance truncation errors (e.g.18,19,21–23), or building

a synthetic collision model that explicitly enforces some constrains (usually solving a

nonlinear problem at every grid point and time step), e.g.11,12,14–16,20,29,30. It is worth

noting that in the former case, many authors refer to conservativity error as Galilean

invariance error or symmetry-breaking errors, since the error scales as a power of the

velocity.

• Time integration, including the splitting between the streaming and the collision steps,

must be performed in a carefully chosen way, e.g.25.

To the knowledge of the authors, a complete theoretical analysis of the AP and conserva-

tion properties of segregated LBM for compressible viscous flows is still missing. Segregated

hybrid LBM for thermal compressible flows renders the problem theoretically more diffi-

cult, since it mixes a mesoscopic approach for mass and momentum conservation with a

macroscopic approach for energy. Numerical experiments have shown that it is a powerful

approach, but recent theoretical analyses and numerical experiments31 have shown that some

conservativity issues may arise that can lead to limitations in terms of numerical stability

and convergence toward the correct shock jump relation for strong shock waves. More pre-

3



cisely, a lack of consistency in the mass flux ρu evaluation between the mass and momentum

equation on one hand, and the energy equation on the other hand has been identified.

This problem can be partially cured by using a non-conservative form of the energy equa-

tion and choosing a thermodynamic variable whose evolution equation does not explicitly

exhibit a pressure work term p∇·u, e.g. the entropy as in23. While increasing the stability of

the method, this choice doesn’t lead to a fully conservative method, and Rankine-Hugoniot

shock jump relations are not exactly recovered for strong shock waves. This can be un-

derstood considering the advection of a conserved scalar quantity φ in parallel of the mass

conservation equation:

(
∂ρ

∂t

)
I

+ (∇ · (ρu))I = 0 (1)

(
∂ρφ

∂t

)
II

+ (∇ · (ρuφ))II = 0 (2)

where subscripts I and II refer to LBM and macroscopic discretization, respectively. The

last conservative equation can be rewritten as a combination of a non-conservative equation

and the mass conservation equation

(
ρ
∂φ

∂t
+ φ

∂ρ

∂t

)
II

+ (φ∇ · (ρu) + ρu · ∇φ)II = 0 (3)

from which one obtains

[
ρ

(
∂φ

∂t
+ u · ∇φ

)]
II

= −
[
φ

(
∂ρ

∂t
+∇ · (ρu)

)]
II

(4)

showing that the scalar is conserved and the conservative and non-conservative forms of

the scalar equation are equivalent if the right hand side of Eq. (4) is null. Since the mass flux

is estimated via Eq. (1), one can see that an error proportional to φ [(∇ · (ρu))I − (∇ · (ρu))II ]

appears in hybrid methods based on a conservative form of the scalar equation.

The present paper aims at designing a fully conservative hybrid LBM approaches for

thermal compressible flows that will satisfy the AP condition for the continuum compressible

regime, including solutions with shock waves. To this end, a new discretization of the

macroscopic thermodynamic variable equation is introduced, that will allow for the use of

the conservative form of the total energy, resulting in a dramatic improvement of both the

conservativity and stability of the method. It relies on the idea that the macroscopic and the
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kinetic equation must be coupled in a deeper way than in previous hybrid LBM approaches,

in order to alleviate the inconsistency in the mass flux evaluation between the two parts of the

global method. To this end, it is proposed to evaluate the fluxes in the macroscopic equation

for the thermodynamic variable directly from the distribution functions of the kinetic part.

The idea of using a kinetic approach to evaluate numerical fluxes in a macroscopic evolution

equation is not new. As a matter of fact, it is the cornerstone of Gas Kinetic Schemes

(GKS) proposed during the 1970’s for Euler and Navier-Stokes equations (see32–37) and

their sequels, among which UGKS7,38–40, DUGKS41–43, DGKS9,44, FDGKS45, LBMFS46–48

and SLBM49–52. All these approaches are monolithic ones, and therefore they cannot be

used straightforwardly to improve segregated hybrid LBM.

In a separate way, some authors have proposed so-called Lattice Boltzmann schemes

for scalar transport53–57, with application to the transport of stresses in non-Newtonian

fluid models and passive scalar transport. In these schemes, the advection term for the

scalar quantity is directly computed by combining the distribution functions and the scalar

quantity, rather than computing the macroscopic velocity and then applying a usual Finite

Difference/Finite volume Scheme to solve the macroscopic equation. An important point is

that these schemes have all been derived to recover the non-conservative form of the scalar

equation, assuming flow incompressibility.

In order to improve conservativity and recover AP property for the continuum compress-

ible flow regime, it is proposed in the present paper to improve the previously proposed

hybrid LBM methods by extending the so-called Lattice Boltzmann scalar schemes to en-

ergy equation. A main novelty of the present method is that mass and momentum equation

are solved in a classical LBM way, while a macroscopic evolution equation is still used for

energy, the fluxes of the later being evaluated from distribution functions. To the knowledge

of the authors, such a method has not been proposed yet.

This paper is organized as follows: the scalar transport schemes with LBM populations

will be presented in Section II. Conservation properties and stability are assessed using the

classical Taylor-Green Vortex (TGV) test case in Section IV. Compressible test cases with

shocks are then addressed in Section V to demonstrate the performance of the schemes when

discontinuities are encountered. Conclusions are drawn in Section VI.
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II. SCALAR TRANSPORT USING LBM DISTRIBUTION FUNCTIONS

A. Scalar flux schemes using collision populations

The present idea of using LBM populations for scalar transport comes from the Taylor

analysis of LBM schemes. The streaming step of almost any LBM scheme can be expressed

as

fi(x, t+ ∆t) = f col
i (x− ci∆t, t) (5)

where fi is the population and f col
i the collide population to be streamed3, and ci are the

discrete velocities of the considered DnQm lattice. Their detailed expressions depend on the

LBM scheme, but Eq. (5) always gives the transport equation for the moments of fi

Πf
α1···αn ≡

∑
i

ciα1
· · · ciαnfi (6)

through Taylor expansion, where the vector ci denotes the lattice velocity of direction i.

Multiplying Eq. (5) by the solution-independent term ciα1
ciα2
· · · ciαn and then writting the

Taylor series expansion of its R.H.S around x, one obtains

Πf
α1···αn(x, t+ ∆t) =

∑
i

ciα1
· · · ciαnf col

i (x− ci∆t, t)

=Πfcol

α1···αn −∆t
∂

∂xαn+1

Πfcol

α1···αn+1

+
∆t2

2

∂2

∂xαn+1∂xαn+2

Πfcol

α1···αn+2
+O(∆t3) , (7)

where the variables without any space or time indicators denote the corresponding values

at (x, t) for the sake of simplicity. This equation indicates a numerical scheme for the

divergence of moments

∇L · (Πfcol

α1···αn+1
) ≡ 1

∆t

(
Πfcol

α1···αn −
∑
i

ciα1 · · · ciαnf col−
i

)

=
∂

∂xαn+1

Πfcol

α1···αn+1
− ∆t

2

∂2

∂xαn+1∂xαn+2

Πfcol

α1···αn+2
+O(∆t2) , (8)

where the upper script − denote the variables at (x − ci∆t, t). For instance, the spatial

derivative of the first order moments of the collide population, usually the momentum Πα ≡
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∑
i ciαf

col
i = ρuα, can be evaluated as

∇L · (ρu) ≡ 1

∆t

∑
i

(
f col
i − f col

i

−
)

=
∂

∂xα
ρuα −

∆t

2

∂2

∂xα∂xβ
Πfcol

αβ +O(∆t2), (9)

seemingly a first-order approximation. Yet, combining this equation with Eq. (7) for next

order moment Παβ yields

Πf
α1···αn(t+ ∆t,x) =Πfcol

α1···αn −
∆t

2

∂

∂xαn+1

[
Πfcol

α1···αn+1
+ Πf

α1···αn+1
(x, t+ ∆t)

]
+O(∆t3) ,

(10)

showing that the numerical operator ∇L is second-order accurate for the LBM mass flux

evaluation, without any artificial viscous terms

∇L · (ρu) =
1

2

[
∂

∂xα
ρuα +

∂

∂xα
ρuα (t+ ∆t,x)

]
+O(∆t2) . (11)

It is worth noting that the above equation just serves as a demonstration of the order of

accuracy in the evaluation of the mass flux in LBM. In practice, values at the next time step

t + ∆t are never used, i.e. the LBMs considered in the current study are always explicit.

More illustrative deductions of the above equations can be found in appendix A.

Let us now consider the multiplication of a scalar field φ and the collide population f col,

denoted by

fφi ≡ φf col
i , (12)

whose moments are

Πfφ

α1···αn ≡
∑
i

ciα1
· · · ciαnφf col

i =
∑
i

φΠfcol

α1···αn (13)

Inserting the first moments of fφi into Eq. (8), one obtains the following numerical scheme

for the scalar flux

∇U · (ρuφ) ≡ 1

∆t

∑
i

(
fφi − fφi

−)
=

∂

∂xα
ρuαφ−

∆t

2

∂2

∂xα∂xβ
Πfφ

αβ +O(∆t2) (14)

Unfortunately, this scheme is only first order accurate with a significant artificial viscous

term proportional to the second moments of fφ. This dissipation term can not be canceled

by time marching like the mass flux. Indeed, unlike the mass flux, the scalar flux ρuαφ is not

7



transported by the population fφ anymore. So that Eq. (10) can not be applied to cancel

the artificial viscous terms, as discussed in Appendix A.

However, Some modifications can be performed to make the flux more “central” in order

to reduce the numerical dissipation. Instead of using fully upwind reconstruction of φ, one

can use a centered reconstruction the scalar, leading to the following numerical divergence

operator

∇C · (ρuφ) ≡ 1

∆t

∑
i

[
f col
i

φ+ + φ

2
− f col

i

−φ+ φ−

2

]
(15)

where the upper script + denotes the variables at (x+ci∆t, t). The Taylor expansion of this

equation given in Appendix B shows that this centered scheme does not bring any artificial

viscous terms with respect to the scalar field.

It is important noting that the terms “upwind” or “centered” in this context are defined

with respect to the lattice velocities. In practice, both ∇U and ∇C operators use the values

of the scalar and collision populations from all neighbor nodes in the lattice, which is quite

different from classical upwind schemes.

It is worth mentioning that in both numerical divergence operators ∇U and ∇C , the

mass flux part in the scalar flux is numerically identical to the mass flux resolved by the

LBM. These numerical schemes are computationally affordable under the hybrid LBM-FD

framework, because the collision population is already available. Indeed, these scalar flux

operators are just special forms of finite difference method (FDM) except that, the coeffi-

cients are now accounting for the mass transport. In other words, the operators proposed

here are just special forms of FD spatial derivation schemes which intend to inherit some

numerical properties of double distribution approaches, with a reduced computational cost.

B. Bridging with other LBM scalar transport schemes

The idea of using LBM populations to compute the scalar transport can be found in

several papers, see53–55. Generally speaking, these works focus on the transport of a passive

scalar in non-conservative form, by evaluating the u · ∇φ term using the LBM populations

from neighboring cells. For instance, Onishi et al. 53 consider that the mass transport from

cell x to x + ci∆t by streaming is equal to f col
i (x); and that the one from cell x + ci∆t to

x is given by f col
ī (x+ ci∆t), where the index ī corresponds to the lattice whose direction is

8



opposite to lattice i. Thus, the scalar transport is modeled as

(u · ∇φ)O ≡ 1

∆t

∑
i

[
φf col

i

ρ
(x)− φf col

ī

ρ
(x + ci∆t)

]
, (16)

According to53,55, it is also possible to reduce the numerical dissipation by modifying the

population used to transport the scalar :

(u · ∇φ)OC ≡ 1

∆t

∑
i

{[
φ

(
f col
i

ρ
− ωi

)]
(x)−

[
φ

(
f col
ī

ρ
− ωī

)]
(x + ci∆t)

}
, (17)

Other authors54 noticed that the net mass exchange through the interface x+ 1
2
ci∆t into

cell x is equal to

∆mi ≡ f col
ī (x + ci∆t)− f col

i (x) , (18)

so that the total scalar exchange can be expressed by only considering the “upstream”

values, leading to

(u · ∇φ)OS ≡
∑
i

−∆mi

ρ(x, t+ ∆t)

 φ(x, t) if ∆mi ≤ 0

φ(x + ci∆t, t) otherwise.
(19)

It is worth noting that these numerical schemes for non-conservative scalar flux cannot be

applied directly in compressible flows. As a matter of fact, one can demonstrate that these

schemes rely on the incompressibility assumption, i.e. ∇ ·u ≈ 0, to work properly. In order

to compare these schemes with the ∇U and ∇C operators in compressible configurations,

their conservative extensions given in Appendix C are used as references in the present work.

C. Applications in the energy transport for HRR-p LBM

As mentioned in the introduction, the scalar transport methods designed in the current

work aim at curing the incompatibility between mass flux evaluations in the energy and

mass conservation equations in hybrid LBM-FD approaches. For instance, in HRR-p LBM

proposed in58, the governing equations for the flow fields are

∂ρ

∂t
+
∂ρuα
∂xα

= 0 (20a)

∂ρuα
∂t

+
∂(ρuαuβ + pδαβ + Tαβ)

∂xβ
= 0 (20b)
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supplemented by an entropy equation in non-conservative form for the energy transport

∂s

∂t
+ uα

∂s

∂xα
=

1

ρT

[
Tαβ

∂uα
∂xβ
− ∂qβ
∂xβ

]
(21)

where the viscous tensor reads

Tαβ = µ

(
∂uα
∂xβ

+
∂uβ
∂xα
− δαβ

2

3

∂uγ
∂xγ

)
(22)

with µ as dynamic viscosity, and the heat flux

qβ = −λ ∂T
∂xβ

(23)

where λ is the heat conductivity. The entropy field is connected to the flow fields through

the ideal gas equation of state (EOS)

p = ρrT , s = Cv ln
p

ργ
(24)

with Cv being the constant volume specific heat capacity, r the specific gas constant and

γ ≡ Cp/Cv the adiabatic exponent.

In the original HRR-p method58, the flow fields (ρ and ρu) are computed by lattice

Boltzmann method, while the entropy equation is updated using an explicit Euler method

for time-integration supplemented by MUSCL scheme for advection along with a second

order centered scheme for viscous terms. In practice, the density field evolves according to

ρ(x, t+ ∆t) = ρ− p

c2
s

+
∑
i

f col
i

−

= ρ−
∑
i

[
f col
i − f col

i

−
]
, (25)

putting in evidence an identical mass flux (f col
i − f col

i
−

) compared to classical density

based LBMs. The momentum fields are updated as

[ρuα](x, t+ ∆t) = ρuα −
∑
i

ciα

(
f col
i − f col

i

−
)
. (26)

The collision populations f col
i are evaluated through a hybrid recursive regularized (HRR)

collision procedure, yielding

f col
i = f eq

i + (1− ∆t

τ
)fneq
i +

∆t

2
FE
i (27)
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where the equilibrium part (f eq
i ), the non-equilibrium part (fneq

i ) and the forcing terms

for viscous tensor (FE
i ) are evaluated from their projections onto the D3Q19 rotational

symmetry basis of Gauss–Hermite polynomials up to third order59,

f eq
i = ωi

[
p

c2
s

+
H(1)
iα

c2
s

ρuα +
H(2)
iαβ

2c4
s

ρuαuβ +
H(3r)
iγ

6c6
s

a(3r),eq
γ

]
(28a)

fneq
i = ωi

[
H(2)
iαβ

2c4
s

a
(2),neq
αβ +

H(3r)
iγ

6c6
s

a(3r),neq
γ

]
(28b)

FE
i = ωi

H(2)
iαβ

2c4
s

a
(2),E
αβ (28c)

where ωi is the Gaussian weight associated to the discrete velocity ci, p the pressure, and

cs ≡ ∆x/(
√

3∆t) the lattice speed of sound. Further details about this collision operation

can be found in Appendix D. The role of forcing term FE
i is to enforce conservativity

(in the sense given in Refs.25,26) by balancing errors coming from both truncation of the

polynomial expansion of the polynomial expansion of the Maxwellian and the quadrature

error associated to the lattice.

The objective of the current work is to couple the conservative form energy equation with

the LBM via this hybrid approach. To this end, instead of using the non-conservative formu-

lation of entropy equation (21), the conservative form of total energy or entropy equations

are discretized with the proposed numerical schemes, i.e.

∂ρE

∂t
+
∂ρHuα
∂xα

=
∂Tαβuα
∂xβ

− ∂qβ
∂xβ

(29a)

∂ρs

∂t
+
∂ρsuα
∂xα

=
1

T

[
Tαβ

∂uα
∂xβ
− ∂qβ
∂xβ

]
(29b)

where H ≡ E + p/ρ = e+ 1
2
uαuα + p/ρ is the total enthalpy, and e = CvT the inner energy

for idea gas. It is worth noting that when the scalar transport schemes are applied to the

total energy equation, the scalar transported should be total enthalpy (H) instead of total

energy (E). In the current work, the viscous terms in the R.H.S of Eq. (29) are resolved by

second order central FD schemes same as in our previous works58,60.

Using conservative formulation in energy transport should lead to conservation of the

energy scalar. This is numerically guaranteed at the discrete level by the proposed schemes

, i.e. the sum of all the scalar fluxes over any periodic domain is zero:
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∑
x

∇U · (ρuφ) ≡
∑
x

(
1

∆t

∑
i

[
f col
i φ− f col

i

−
φ−
])

= 0 .

∑
x

∇C · (ρuφ) ≡
∑
x

(
1

∆t

∑
i

[
f col
i

φ+ + φ

2
− f col

i

−φ+ φ−

2

])

=
1

2∆t

(∑
i

∑
x

[
f col
i φ+ − f col−

i φ
]

+
∑
i

∑
x

[
f col
i φ− f col−

i φ−])
= 0 . (30)

The major benefit of the proposed schemes is the compatibility between the mass flux

evaluation in the scalar transport equation and the one resolved by LBM. This feature

is highlighted in the centered scheme ∇C , granting it a skew-symmetry property, since it

also conserves the associated quadratic invariant ρφ2 (see61 for a discussion about quadratic

invariant conservation by numerical schemes). This can be demonstrated by examining the

semi-discrete form of the scalar equation:

∑
x

δt(ρφ
2) ≡

∑
x

(
2φδt(ρφ)− φ2δtρ

)
≡ − 1

∆t

∑
x

(
2φ∇C · (ρuφ)− φ2

∑
i

[
f col
i − f col−

i

])

= − 1

∆t

∑
x

(
φ
∑
i

[
f col
i φ+ − f col−

i φ+ f col
i φ− f col−

i φ−]− φ2
∑
i

[
f col
i − f col−

i

])
= − 1

∆t

∑
x

∑
i

(
φf col

i φ+ − φf col−
i φ−)

= − 1

∆t

∑
i

∑
x

(
φ+(φf col

i )− φ(φ−f col−
i )

)
= 0 (31)

Here the δt denotes the semi-discretized time derivation operator which only consider the

convective part of the scalar evolution61. It is clear that invariant conservation is due to

the identical mass flux evaluations in both the scalar flux and those resolved by LBM in

Eq. (25). To the best of the authors’ knowledge, none of the scalar transport schemes in the

literature has such feature.
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III. GLOBAL ACCURACY OF THE HYBRID LATTICE BOLTZMANN

METHOD

Although the analysis based on Taylor expansion displayed in Appendix A gives the

order of accuracy of the proposed spatial operators, the global order of segregated solver

should be studied using numerical test cases. To this end, an one-dimensional entropy spot

advection is considered58. This test case is initialized with an uniform initial velocity field

corresponding to u = 1 (approximately at Ma 0.2) on a periodic one-dimensional domain of

L = 1. Other variables are initialized according to

ρ = ρ0

[
1 + δ exp

−(x− x0)2

R2

]
(32)

T = T0

[
1− δ exp

−(x− x0)2

R2

]
(33)

In practice, the parameters are chosen as T0 = 20, ρ0 = 1, x0 = 0.5, R = 0.05 and

δ = 0.001. The time step is given such that the CFL number is around 0.5. The energy

scalar transported in the current test is the total energy following Eqn. (29a), without any

viscous term to mimic a Euler calculation. Flow fields after one flow-over time are compared

to their reference solutions (which are their initial values for this specific test). The global

order of the solver is studied by the relative error defined as

ε(φ) ≡
√∫

(φ− φref)2dx∫
φ2

refdx
(34)

Relative errors for density, velocity and energy are plotted versus the number of points in

the calculation domain as figure 1. It is quite clear that the global convergence rate of the

hybrid LBM solver with the total energy equation discretized by the upwinded operator ∇U

achieves first order, and the global order of the center operator ∇C simulation is around

two. Note that the flat tails in Fig. 1(b) merely indicate that the velocity fields reach the

range of the machine tolerance with the chosen grid.

IV. TEST CASE: COMPRESSIBLE TAYLOR-GREEN VORTEX

The inviscid Taylor-Green vortex (TGV) test-case is addressed to assess the conservation

properties of the proposed numerical schemes. It is calculated in a 2π × 2π × 2π periodic

domain with only 32 grid points in each direction to emphasize the stability feature of the
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Figure 1: Error on density (a), velocity (b) and internal energy (c) as a function of the

spatial discretization for the numerical schemes ∇C (E-cons) and ∇U (E-cons-UP), for the

entropy spot convection test case.

schemes. The viscosity is set to 10−25 kg/m/s to mimic an inviscid condition for LBM

solvers23. The initial fields are given by Eqn (35), corresponding to constant density initial

conditions (CDIC) at given Ma numbers62,63.

ux = sinx cos y cos z (35a)

uy = − cosx sin y cos z (35b)

uz = 0 (35c)

ρ = 1 (35d)

p =
1

γMa2 +
1

16
(cos 2x+ cos 2y) (cos 2z + 2) (35e)

Numerical configurations tested in the current work are listed in Table I. The density

and momentum fields are all resolved by the HRR-p LBM flow solver58 while the energy

scalar transport is modeled using several different solutions: internal energy, total energy

and entropy are used in either conservative or primitive form. Only the Euler part of the

14



energy transport equations is considered to emphasize the impact of the flux schemes, i.e.

∂ρE

∂t
+
∂ρHuα
∂xα

= 0 (36a)

∂e

∂t
+ uα

∂e

∂xα
+
p

ρ
uα,α = 0 (36b)

∂ρs

∂t
+
∂ρsuα
∂xα

= 0 (36c)

∂s

∂t
+ uα

∂s

∂xα
= 0 (36d)

The second order accurate isotropic spatial derivation operator used in60 or MUSCL

schemes employed in58 are applied for the energy scalar gradients in primitive form. The

scalar flux in conservative form are discretized using either the ∇C and ∇U operators, or

the low-dissipation scalar transport scheme proposed in53 in its conservative form given by

Eq. C3. The original scheme proposed in53 given by Eq. (C1) is numerically equivalent

to our ∇U operator, therefore it is not tested separately. Also, although the operator ∇OS

proposed in54 is tested in its extended conservative form given by Eq. (C4), the results are

not reported in the current work because they are very close to those obtained by operator

∇U . The time integration of the scalar equation is performed using a first-order explicit

Euler scheme to achieve a two-way coupling between energy scalar solvers and the LBM

flow solver64, with an acoustic CFL number close to 0.5.

The variables that are conserved numerically are listed in Table II. It is worth noting

that the HRR-p LBM flow solver always conserves density and momentum, as proved in

Appendix E. As demonstrated in Eq. (31), the case s− cons should conserve both the linear

invariant (ρs) and the quadratic invariant ρs2. However, in the case E − cons, ρE2 is only

globally conserved due to presence of the pressure work puα in the flux other than only

ρEuα, as pointed out in61. Two distinct Ma numbers, Ma=0.08 and Ma=0.8, are chosen to

cover both nearly incompressible and compressible regimes.

A. Nearly incompressible case

The temporal evolution of the concerned quantities when Mach number is 0.08 are dis-

played in Fig. 2. The results are reported by the normalized displacement from their original
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Table I: Nomenclature in Taylor-Green vortex simulations

Configuration Energy scalar equation Flux scheme

E-cons Equation (36a) Equation (15)

e-prim Equation (36b) 2ed order isotropic60

s-cons Equation (36c) Equation (15)

s-prim Equation (36d) 2ed order isotropic60

s-prim-MU Equation (36d) MUSCL58

E-cons-UP Equation (36a) Equation (14)

E-cons-Onishi Equation (36a) Equation (C3)53

s-cons-Onishi Equation (36c) Equation (C3)53

Table II: Variable conserved locally Xor globally (X) by tested numerical schemes

E-cons e-prim s-cons s-prim s-prim-MU E-cons-UP E-cons-Onishi s-cons-Onishi

ρ X X X X X X X X

ρu X X X X X X X X

ρE X X X

ρs X X

ρE2 (X)

ρs2 X

values61, i.e.

〈f〉 ≡ f − f0

|f0|
≡
∫
f(t)dV −

∫
f(0)dV

|
∫
f(0)dV| . (37)

All numerical configurations succeed in conducting this test up to t = 10 except E-

cons-Onishi and s-cons-Onishi, where the low-dissipation operators ∇OC proposed in53 is
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employed. The simulations s-cons-Onishi becomes unstable almost immediately after the

sinitial time and therefore the results are not plotted. The simulation E-cons-Onishi remains

stable up to t ' 1. This is not surprising because it can be shown from a Taylor analysis

of the operator ∇OC that, its numerical dissipation is proportional to ρuu, which is too

small to stabilize the simulation at this Mach number. It is seen from Fig. 2 that in this low

Mach configuration, the density and momentum are conserved numerically in all numerical

recipes at a tolerance of 10−10. The kinetic energy from different schemes are decaying at

almost the same rate as shown in Fig. 2(c), which is reasonable for hybrid LBM solvers

because at low Mach number, the variation of kinetic energy should be dominated by the

dissipation properties of the LBM flow solver which is identical in all setups. The kinetic

energy maintains approximately 70% of its original value at t = 7, which is even better than

the performance of some high-order compressible schemes on much finer grids62.

Scalar fields listed in table II are all conserved as expected, which can be seen in a zoomed

view of the corresponding curves in Figure 3. The entropy quadrature 〈ρs2〉 in the s-cons

configuration plotted in Figure 3(c) conserves with a tolerance of 10−9, which proves that the

scalar operator ∇C in equation (15) is quadrature preserving. The total energy quadrature

〈ρE2〉 resolved from configuration E-cons and E-cons-UP are given in Figure 3(d). Although

this quantity is only globally conserved61, its variation is very small (at a tolerance of 10−6),

because the efforts of the pressure work should be very small at low Mach number.

It is also worth noting that the primitive formulation of the entropy equation (Eq. 36d)

equipped with an isotropic spacial operator (s-prim) performs quite well in preserving energy

quantities under this nearly incompressible case. It effectively preserves the entropy (ρs) and

the associated quadratic invariant ρs2. Even the internal energy and its quadratic invariant

(ρe, ρe2) are nearly conserved as seen in Fig. 3. The primitive formulation of entropy with

MUSCL scheme (s-prim-MU) applied in our previous works23,58,65 for compressible flows

fails to conserve any energy scalar due to the complex numerical treatment involving much

larger stencils, but it gives a stable solution.

B. Higher Mach number case

The compressible simulations of TGV are performed at Ma=0.8. At this Mach number,

operator ∇OC leads to stable simulations. The conservative variables are displayed in Fig. 4
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Figure 2: Temporal evolution of (a)ρ, (b) ρu, (c) ρκ, (d) ρs, (e) ρe, (f) ρE, (g) ρs2, (h) ρe2,

(i) ρE2 quantities in TGV simulation from different configurations at Ma=0.08.
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Figure 3: Temporal evolution of conserved scalars (a) ρs, (b) ρE, (c) ρs2, (d) ρE2 in TGV

test cases at Ma=0.08.

using the ratio between their spatial integration at time t and the initial values, i.e.

f

f 0

≡
∫
f(t)dV∫
f(0)dV (38)
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The conservative properties of the schemes are the same as in Table II, although the total

energy quadratic invariant ρE2 which is globally conserved in E-cons configuration varies

significantly because of the non-negligible pressure work effects at this higher Mach number.

Nevertheless, the proposed schemes are still stable on this coarse grid, and the conservation

properties are still observed.
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Figure 4: Temporal evolution of statistical (a) ρ, (b) ρu, (c) ρs, (d) ρE, (e) ρs2, (f) ρE2

quantities in TGV simulation from different configurations, Ma=0.8.

V. COMPRESSIBLE CASES WITH DISCONTINUITIES

Having confirmed the stability and conservative properties of the proposed schemes, we

now assess their performances in the presence of shock waves. To deal with discontinuities,

we combine the schemes given in Eqs. (14) and (15) dynamically using a shock sensor already
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used in our previous works23,58. When a discontinuity is detected by the sensor, the fully

upwind operator ∇U given by Eq. (14) is applied, while the centered scheme ∇C defined in

Eq. (15) is applied elsewhere. Artificial viscosity obtained by the Jameson shock sensor66 is

also added to the LBM flow solver for better stabilization58. The conservative formulations

of total energy and entropy are tested with the dynamic upwinding, denoted by E-cons-

dyn and s-cons-dyn in the following. A one-dimensional shock-tube and a two-dimensional

Riemann configuration are simulated.

A. SOD shock-tube case

This classical one-dimensional Sod shock tube case is set initially as (ρL, uL, pL) = (1, 0, 1)

and (ρR, uR, pR) = (0.125, 0, 0.1). The computational domain is discretized by 400 points

with an acoustic CFL number around 0.5. The density, velocity and pressure fields at

t = 0.2 are shown in Fig. 5. Apart from the numerical methods E-cons-dyn and s-cons-dyn

proposed in the current work, the s-prim-MU scheme58 mentioned in the TGV test case is also

examined. A reference solution obtained from an Riemann solver on a much finer grid (2000

points) is also provided. It can be seen that all numerical configurations lead to stable

solutions at t = 0.2, however, only the E-cons-dyn scheme gives the correct inner energy

profile. This is due to the fact that, under discrete form, only the conservative total energy

equation can lead to the appropriate Hugoniot relations through a strong discontinuity67.

B. Two-dimensional Riemann problems

Two-dimensional Riemann problems proposed in68 are considered to investigate the multi-

dimensional performance of the proposed schemes. Configurations No. 3, No. 4, No. 6 and

No. 12 in68 are selected. All these simulations are stable using E-cons-dyn and s-cons-dyn

schemes with a grid revolution of 400×400, but as for the SOD test case, only total energy

equation leads to correct solutions when strong shocks are encountered. Figure 6 displays

the density iso-contours of configuration No.3 resolved by different schemes. The initial

condition of this configuration is given in Table III. Compared to the reference solutions

reported in68, only the E-cons-dyn case recovers the correct 2D pattern.
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Figure 5: Density, velocity, pressure and internal energy evolution (resp. a, b, c, d) in SOD

shock tube at t = 0.2 resolved by different schemes. (e, f, g, h) correspond to the same

plots, zoomed in the region of interest.

(a) (b) (c)

Figure 6: Density iso-contours of 2D Riemann case No. 3 in68 at t = 0.3 obtained with (a)

E-cons-dyn, (b) s-cons-dyn and (c) s-prim-MU schemes.
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ρ = 0.5323 p = 0.3 ρ = 1.5 p = 1.5

u = 1.206 v = 0 u = 0 v = 0

ρ = 0.138 p = 0.029 ρ = 0.5323 p = 0.3

u = 1.206 v = 1.206 u = 0 v = 1.206

Table III: Riemann 2D conf. 368

VI. CONCLUSIONS AND DISCUSSIONS

We have presented a new numerical scheme for use in segregated hybrid LB models, i.e.

models consisting of a LB solver for mass and momentum conservation coupled with a FD

solver for the macroscopic energy conservation equation (or another scalar). The numerical

scheme was specifically designed to remove the inconsistency between mass conservation

treated by the LB solver, on one hand, and the mass conservation hidden into the scalar

equation (e.g. total energy) in conservative form.

This is particularly useful for compressible flows, where the equivalence between the var-

ious forms of energy equation is only valid in continuous form. When discontinuities are

encountered, only the total energy equation in conservative form can lead to the correct

Hugoniot jump relations. The ability to accurately jump conditions was shown on challeng-

ing one and two-dimensional Riemann problems.

The result, applied to the HRR-p model proposed58, is a numerical method that not only

numerically conserves ρ, ρu, but also ρE (and ρE2 globally), a characteristic which was

never obtained, to the authors knowledge, using a hybrid LBM formulation.

Compared with the MUSCL scheme used in our previous work58, another advantage –

besides leading to adequate jump conditions – is that it only requires the nearest-neighbor

information, thus reducing MPI exchanges in an HPC framework.

The scheme can also be adapted easily to take into account external forces work, e.g.

gravity, by simply modifying the flux to be computed (ρH in the case of total energy - see

Eq. (29a)).

Lastly, its simple implementation allows to dynamically include upwinding where required
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to enhance stability (at the cost of additional numerical diffusion).
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Appendix A: Second order accuracy of the LBM mass flux evaluation

To demonstrate the order of accuracy of the mass flux evaluation in LBM, let first expand

the momentum transport using equation (7)

(ρuα)(t+ ∆t,x) = ρuα −∆t
∂

∂xβ
Πfcol

αβ +O(∆t2) (A1)

This equation leads to an expression of the cross derivation of the second order moments of

f col

∂2

∂xαxβ
Πfcol

αβ =
∂

∂xα

(
∂

∂xβ
Πfcol

αβ

)
=

1

∆t

∂

∂xα
[ρuα − (ρuα) (t+ ∆t,x)] +O(∆t) (A2)
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Substituting the corresponding term in the the LBM mass flux scheme Eq. (9) will give a

second order accuracy of the mass flux evaluation as in equation (A3)

∇L · (ρu) =
∂

∂xα
ρuα −

∆t

2

∂2

∂xαxβ
Πfcol

αβ +O(∆t2)

=
∂

∂xα
ρuα −

∆t

2

[
1

∆t

∂

∂xα
[ρuα − (ρuα) (t+ ∆t,x)] +O(∆t)

]
=

∂

∂xα

ρuα + (ρuα) (t+ ∆t,x)

2
+O(∆t2) (A3)

It is worth noting that although equation (10) is generally valid for any LBM distributions,

there is one essential requirement to make the flux evaluation second order as indicated in

the above deductions: the next order moments, e.g. mass flux ρuα here, must be also

transported by the same population. In contract, the population fφ introduced in Eq.(12)

only servers to transport the scalar field, the scalar flux ρuαφ are not governed by the same

population anymore. As a matter of fact, the velocity components in the scalar flux are

updated by the population f in practice. Thus, the upwinded divergence operator ∇U can

not achieve second order by time marching.
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Appendix B: Taylor expansion of the center scalar operator

∇C · (ρuφ) ≡ 1

2∆t

[
φ

(
∆t
∂ρuα
∂xα

− ∆t2

2

∂2Πfcol

αβ

∂xα∂xβ
+O(∆t3)

)

+

(
ρφ+ ∆tρuα

∂φ

∂xα
+

∆t2

2
Πfcol

αβ

∂2φ

∂xα∂xβ
+O(∆t3)

)
−
(
ρφ−∆t

∂ρuαφ

∂xα
+

∆t2

2

∂2φΠfcol

αβ

∂xα∂xβ
+O(∆t3)

)]

=
∂

∂xα
ρuαφ+

∆t

4

[
−φ

∂2Πfcol

αβ

∂xα∂xβ
+ Πfcol

αβ

∂2φ

∂xα∂xβ
−
∂2φΠfcol

αβ

∂xα∂xβ

]
+O(∆t2)

=
∂

∂xα
ρuαφ+

∆t

4

[
−φ

∂2Πfcol

αβ

∂xα∂xβ
+ Πfcol

αβ

∂2φ

∂xα∂xβ
− ∂

∂xα

∂φΠfcol

αβ

∂xβ

]
+O(∆t2)

=
∂

∂xα
ρuαφ+

∆t

4

[
−φ

∂2Πfcol

αβ

∂xα∂xβ
+ Πfcol

αβ

∂2φ

∂xα∂xβ

− ∂

∂xα
(φ
∂Πfcol

αβ

∂xβ
+ Πfcol

αβ

∂φ

∂xβ
)

]
+O(∆t2)

=
∂

∂xα
ρuαφ+

∆t

4

[
−φ

∂2Πfcol

αβ

∂xα∂xβ

− (
∂φ

∂xα

∂Πfcol

αβ

∂xβ
)− φ

∂2Πfcol

αβ

∂xα∂xβ
− (

∂Πfcol

αβ

∂xα

∂φ

∂xβ
)

]
+O(∆t2)

=
∂

∂xα
ρuαφ−

∆t

4

[
∂

∂xα
(φ
∂Πfcol

αβ

∂xβ
) +

∂

∂xβ
(φ
∂Πfcol

αβ

∂xα
)

]
+O(∆t2)

(B1)

Thus, although this scheme is first order corresponding to the flow part (
∂Πf

col

αβ

∂xα∂xβ
), it does

not introduce any artificial diffusion corresponds to the scalar field. As there is no second

order derivative of φ in this expression.
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Appendix C: Conservative extensions of previously existing scalar transport

schemes

The original scalar transport proposed by Onishi et al.53 in Eq.n (16) can be modified for

conservative formulation as

∇O · (ρuφ) ≡ 1

∆t

∑
i

[
(f col
i φ)(x)− (f col

ī φ)(x + ci∆t)
]
. (C1)

It is exactly the same as the proposed upwind operator ∇U , because when considering

ci = −cī, one has

∇O · (ρuφ) ≡ 1

∆t

∑
i

[
(f col
i φ)(x)− (f col

ī φ)(x + ci∆t)
]

=
1

∆t

∑
i

[
(f col
i φ)(x)− (f col

ī φ)(x− cī∆t)
]

=
1

∆t

∑
i

[
(f col
i φ)(x)− (f col

i φ)(x− ci∆t)
]

= ∇U · (ρuφ) (C2)

The corrected low-dissipating counterpart of this scheme introduced in53,55 in Eq. (17)

can be expressed as

∇OC · (ρuφ) ≡ 1

∆t

∑
i

{[
(f col
i − ωi

∑
j

f col
j )φ

]
(x)−

[
(f col
ī − ωi

∑
j

f col
j )φ

]
(x + ci∆t)

}
,

(C3)

with ωi the Gaussian weights of the lattice. It is worth noting that the ρ is substituted by∑
j f

col
j to be more general, thus can be cooperated with the pressure based HRR-p solver.

Finally, in the context of conservative formulations, the scheme proposed by Osmanlic

et al.54 given in Eq. equation (19) can be written with the definition of the mass exchange

∆mi in Eq. (18)

∇OS · (ρuφ) ≡ −
∑
i

∆mi

 φ(x, t) if ∆mi ≤ 0

φ(x + ci∆t, t) otherwise.
(C4)

27



Appendix D: Hybrid regularized recursive collision in HRR-p

The D3Q19 rotational symmetry basis of Gauss-Hermite polynomials used in HRR-p

reads

H(0)
i ≡ 1 (D1a)

H(1)
i,α ≡ ciα (D1b)

H(2)
i,αβ ≡ ciαciβ − c2

sδαβ (D1c)

H(3)
i,αβγ ≡ ciαciβciγ − c2

s(δαβciγ + δβγciα + δαγciβ) (D1d)

H(3r)
i,1 ≡ H(3)

i,xxy +H(3)
i,yzz (D1e)

H(3r)
i,2 ≡ H(3)

i,xzz +H(3)
i,xyy (D1f)

H(3r)
i,3 ≡ H(3)

i,yyz +H(3)
i,xxz (D1g)

H(3r)
i,4 ≡ H(3)

i,xxy −H(3)
i,yzz (D1h)

H(3r)
i,5 ≡ H(3)

i,xzz −H(3)
i,xyy (D1i)

H(3r)
i,6 ≡ H(3)

i,yyz −H(3)
i,xxz (D1j)

In the collision operation (eq.(27)), the projection of the equilibrium distribution on the

Hermite basis reads

a(0),eq ≡ H(0)
i f eq

i =
p

c2
s

(D2a)

a(1),eq
α ≡ H(1)

i,αf
eq
i = ρuα (D2b)

a
(2),eq
αβ ≡ H(2)

i,αβf
eq
i = ρuαuβ (D2c)

a
(3),eq
αβγ ≡ H

(3)
i,αβγf

eq
i = ρuαuβuγ (D2d)

a
(3r),eq
1 ≡ 3

(
a(3),eq
xxy + a(3),eq

yzz

)
(D2e)

a
(3r),eq
2 ≡ 3

(
a(3),eq
xzz + a(3),eq

xyy

)
(D2f)

a
(3r),eq
3 ≡ 3

(
a(3),eq
yyz + a(3),eq

xxz

)
(D2g)

a
(3r),eq
4 ≡ a(3),eq

xxy − a(3),eq
yzz (D2h)

a
(3r),eq
5 ≡ a(3),eq

xzz − a(3),eq
xyy (D2i)

a
(3r),eq
6 ≡ a(3),eq

yyz − a(3),eq
xxz (D2j)

The second order projections of the non-equilibrium part are evaluated as

a
(2),neq
αβ = H(2)

iαβ

[
f col
i (x− ci∆t, t−∆t)− f eq

i

]
. (D3)
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The corresponding third order projections are calculated through a recursive procedure

a
(3),neq
αβγ = uαa

neq
βγ + uβa

neq
αγ + uγa

neq
αβ . (D4)

The forcing term FE
i in the collision step is added to obtain a correct viscous tensor. In

the current study, it is evaluated as described in58.

Appendix E: Numerical conservation of mass and momentum in HRR-p

In any periodic calculation domains, the spacial integration of density at next time step

evaluated by HRR-p can be written as

∑
x

ρ(x, t+ ∆t) =
∑
x

[
ρ+

∑
i

(
f col
i

− − f col
i

)]
=
∑
x

ρ+
∑
i

∑
x

(
f col
i

− − f col
i

)
=
∑
x

ρ (E1)

which is the same as the current time step. The momentum components at next time step∑
x

ρuα(x, t+ ∆t) =
∑
x

∑
i

(
ciαf

col
i

−
)

=
∑
x

∑
i

(
ciαf

col
i

)
=
∑
x

ρuα (E2)

which is also identical to the corresponding integration in the current time step.
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