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A generalized finite volume method
for density driven flows in porous media

Yueyuan Gao ∗, Danielle Hilhorst†,
and Huy Cuong Vu Do ‡∗

December 24, 2020

Abstract. We apply a semi-implicit scheme in time together with a generalized finite volume
method for the numerical solution of density driven flows in porous media; it comes to solve
a nonlinear convection-diffusion parabolic equation for solute transport together with an
elliptic equation for the pressure. In the first part, we compute the solutions for three
specific problems: a problem involving a rotating interface between salt and fresh water,
Henry’s problem and a three dimensional saltpool problem. In the second part, we take the
heat transfer into account and perform simulations for a system from the documentation of
SEATWAT. We use adaptive meshes, based upon square volume elements in space dimension
two and cubic volume elements in space dimension three.

Keywords: Density driven flows in porous media; The generalized finite volume method
SUSHI; Adaptive meshes; Heat transfer.

1 Introduction
In this paper, we present results which have been obtained in the context of an exploratory
project of CNRS (PEPS ECODEVA) on the numerical simulation of flows with variable
density for the production of lithium batteries. More precisely, the purpose of this project is
related to the exploitation of lithium deposits in salt lakes, also known as “Salars”. In recent
years, lithium has become a strategic element for industrial countries because it is the basic
element of lithium-ion batteries used for hybrid and electric vehicles. Therefore its production
has become of high interest for all major groups involved in the car industry as well as
suppliers of these groups. Currently the largest deposit in the world is the Salar Uyuni, in the
department of Potosí in South-West Bolivia. This deposit represents one third of the world
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resources. In March 2008, Bolivia has authorized the exploitation, however reserving this
right ot its nationals. Chile has the second largest deposit with the Salar Atacama and it has
become the world’s largest exporter since 1997, with the German company Chemettal as main
operator. Argentina also has a lithium deposit, the Salar Hombre Muerto, which is located
in the northwest of the country. Other Salar areas of the Altiplano of Argentina provide
mining exploitation concessions to foreign companies, among whom European groups.

Other deposits are exploited, including salt lakes in Tibet as well as mines in Australia,
Russia and the United States. They are not accessible to European operators. The largest
deposits are either clusters of crystallized salt (solid) or lenses of supersaturated salt water
created by evaporation under endorheic conditions (which are not led to a superficial network
reaching the sea). The latter type of deposit is that of salars of the Andean Altiplano.
Rational exploitation implies mastering these special aqueous flows whose density depends
on the concentration of salts (lithium included). An operating technique consists in sweeping
the reservoir with fresh water in order to obtain a maximal recovery without earthworks and
with a minimal impact on fluid levels, and thus a minimal impact on the environment. This
explains the need of implementing research methodologies and techniques from hydrogeology.
The purpose here is to extract salt water which contains lithium. In a later stage, the lithium
will be separated from the salt water.

From a mathematical viewpoint, it amounts to studying a coupled system describing the
interaction between flow and transport in a porous medium. More specifically, the equations
governing density-dependent transport are the Darcy’s law (1.1a), the continuity equation
for the fluid (1.1b), the continuity equation for the solute (1.1c), which are given as

q = −k
µ

(
∇p− ρ(c)g

)
in Ω× (0, T ), (1.1a)

θ
∂ρ(c)

∂t
+∇ ·

(
qρ(c)

)
= ρsQs in Ω× (0, T ), (1.1b)

θ
∂
(
ρ(c)c

)
∂t

+∇ ·
(
qρ(c)c− ρ(c)D∇c

)
= ωsρsQs in Ω× (0, T ), (1.1c)

together with suitable boundary conditions of the form
c = cD(x, t) on ∂Ωc

D × (0, T ),
∂c

∂n
= c̄N(x, t) on ∂Ωc

N × (0, T ),

p = pD(x, t) on ∂Ωp
D × (0, T ),

q · n = q̄N(x, t) on ∂Ωp
N × (0, T ),

(1.2)

with ∂Ω = ∂Ωc
D

⋃
∂Ωc

N = ∂Ωp
D

⋃
∂Ωp

N where ∂Ωc
D and ∂Ωp

D correspond to Dirichlet boundary
conditions and ∂Ωc

N and ∂Ωp
N correspond to Neumann boundary condition for the concen-

tration and the pressure respectively. The initial condition is given by c(x, 0) = c0(x) in Ω.
q represents the velocity of the flow, p the pressure, and c the concentration of a transported
species. The porosity θ is the fraction of the voids (empty spaces) over the total volume, D
the dispersion-diffusion tensor, k the permeability, µ the dynamic viscosity, ρ the density,
and g is the gravity. Qs model the source or sink term of the fluid with density ρs. ωs is
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the solute mass fraction. We also apply the constitutive equation relating fluid density to
concentration for dilute solutions under isothermal conditions, which can be expressed as

ρ(c) = ρ0(1 + āc) (1.3)

where ā = ρmax/ρ0 − 1 [6].
We refer to [1] and [3] for modeling aspects. As far as the numerical methods are con-

cerned, Hilhorst et al. [7] have discussed the numerical approximation of system (1.1) by
means of the standard finite volume method. However, discretizing the diffusion terms with
this method is only applicable with conforming meshes satisfying an orthogonality condition.
The generalized finite volume method SUSHI permits to perform computations on rather
general nonconforming meshes (cf. Definition 2.1 below), for instance in the case of con-
figurations which occur when using adaptive meshes involving squares or cubes of different
sizes. These adaptive meshes permit precise numerical computations with a smaller number
of volume elements. We refer to the Section 2.2 for a more detailed discussion.

In order to apply the generalized finite volume method SUSHI, we set w := w(c) =

∫ c

0

ρ(s)ds,

m(w) = ρ(c)c and %(w) = ρ(c) and rewrite the system in the form
q = −k

µ

(
∇p− %(w)g

)
in Ω× (0, T )

θ
∂%(w)

∂t
+∇ ·

(
q%(w)

)
= ρsQs, in Ω× (0, T ),

θ
∂m(w)

∂t
+∇ ·

(
qm(w)

)
−∇ · (D∇w) = ωsρsQs in Ω× (0, T ),

(1.4)

where the unknown functions are now p and w. In the benchmarks, the initial condition and
boundary condition of w are directly computed from the corresponding conditions of c. We
consider 3 benchmarks, a rotating interface problem and Henry’s problem in space dimension
2 and a 3 dimensional saltpool problem. We refer to [9] for a finite element discretization
of Problem (1.1) in space dimension 3. An advantage of finite volume methods is that the
discrete integrals of the functions ρ(c) and ρ(c)c are numerically accurately preserved. We
discuss the mass conservation in Section 3.4.

We then take the heat transfer into consideration. Heat can be recovered from ground-
water. Depending on the application, the recovered heat can be used for the production of
heat or for power generation. The geothermal heating allows both to replace conventional
heating and to produce hot water. We study a coupled system describing the interaction
between flow and transport in a porous medium, where the density and the viscosity depend
on the concentration of the species being transported, and also on the temperature. We use
a model problem proposed in the SEAWAT documentation [10] as a test case. This model
problem consists in a two-dimensional cross section of a confined coastal aquifer initially
saturated with relatively cold seawater at a temperature of 5◦C. Warmer fresh water with
a temperature of 25◦C is injected into the coastal aquifer along the left boundary to rep-
resent the flow from inland areas. The warmer fresh water flows from left to right, where
it discharges into a vertical ocean boundary. The ocean boundary is represented with hy-
drostatic conditions based on the fluid density calculated from seawater salinity at 5◦C. No
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flow conditions are assigned to the top and bottom boundaries. Mathematically, we solve a
system for the hydraulic water head h, the solute concentration C and the temperature Θ;
note that the fluid density ρ and viscosity µ are functions of h, C and Θ. This problem is a
simplified representation of what may occur in a coastal carbonate platform.

The outline of this paper is as follows. In Section 2, we introduce the space and time
discretization and the generalized finite volume method SUSHI and present the method of
mesh refinement. In Section 3, we present our numerical algorithm which is based upon
the SUSHI scheme. We present numerical results for 3 test cases: a rotating interface
problem and Henry’s problem in space dimension 2 and a 3 dimensional saltpool problem.
In Section 4, we consider the density driven flow problem coupled with heat transfer and
apply a semi-implicit scheme for the time discretization coupled with the SUSHI scheme for
the space discretization. We perform simulations and compare our results with the results
of SEAWAT. Our results are very close to the results obtained by SEAWAT.

2 Numerical method and adaptive mesh

2.1 The generalized finite volume method SUSHI

In order to present the numerical scheme, we first introduce notations related to the space
and time discretization.

Definition 2.1 (Space discretization). Let Ω be a polyhedral open bounded connected subset
of Rd and ∂Ω = Ω\Ω its boundary. A discretization of Ω, denoted by D, is defined as the
triplet D = (M, E ,P), where:

1. M is a finite family of non empty convex open disjoint subsets of Ω (the "control
volumes") such that Ω =

⋃
K∈MK. For any K ∈ M, let ∂K = K\K be the boundary of

K; we denote by |K| the measure of K and d(K) the diameter of K.
2. E is a finite family of disjoint subsets of Ω (the "interfaces"), such that, for all σ ∈ E , σ

is a nonempty open subset of a hyperplane of Rd and denote by |σ| its measure. We assume
that, for all K ∈M, there exists a subset EK of E such that ∂K =

⋃
σ∈EK σ.

3. P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M, such that
for all K ∈ M, xK ∈ K and K is assumed to be xK-star-shaped, which means that for all
x ∈ K, the inclusion [xK ,x] ⊂ K holds.

For all σ ∈ E , we denote by xσ the barycenter of σ. For all K ∈ M and σ ∈ EK , we
denote by DK,σ the cone with vertex xK and basic σ, by nK,σ the unit vector normal to σ
outward to K and by dK,σ the Euclidean distance between xK and the hyperplane including
σ. For all σ ∈ E , we define Mσ = {K ∈ M : σ ∈ EK}. And we denote by Eint for the
ensemble of all the inner edges.

Definition 2.2 (Time discretization). We divide the time interval [0, T ] into N equal time
steps of length δt = T/N . Thus δt = tn − tn−1 for all n = 1, ..., N , where t0 = 0.

In order to present the application of the SUSHI method, we formally integrate the two
last equations of (1.4) on the domain K × (tn−1, tn) for each K ∈ M and n = 1, ..., N to
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obtain

θ

∫
K

(
%(w(x, tn))− %(w(x, tn−1))

)
dx

+
∑
σ∈EK

∫ tn

tn−1

∫
σ

q%(w) · nK,σdγdt =

∫ tn

tn−1

∫
K

ρsQs dxdt,

θ

∫
K

{m(w(x, tn))−m(w(x, tn−1))} dx +
∑
σ∈EK

∫ tn

tn−1

∫
σ

qm(w) · nK,σdγdt

−
∑
σ∈EK

∫ tn

tn−1

∫
σ

D∇w · nK,σdγdt =

∫ tn

tn−1

∫
K

ωsρsQs dxdt.

(2.1)

We first denote by FD
K,σ(w) the numerical flux which approximates the diffusion flux∫

σ

−D∇w · nK,σdγ. We recall below formulas which have been derived by [4].

FD
K,σ(w) =

∑
σ′∈EK

Aσσ
′

K (wK − wσ′), (2.2)

where the matrices Aσσ′K , which are symmetric and positive-definite, are defined by

Aσσ
′

K =
∑
σ′′∈EK

yσ
′′σ ·DK,σ′′y

σ′′σ′ where DK,σ′′ =

∫
VK,σ′′

Ddx. (2.3)

VK,σ′′ is the cone with the vertex point xK and the base σ′′ with

yσσ
′
=


|σ|
|K|

nK,σ +

√
d

dK,σ
(1− |σ|

|K|
nK,σ · (xσ − xK))nK,σ if σ = σ′,

|σ′|
|K|

nK,σ −
√
d

dK,σ |K|
|σ′|nK,σ′ · (xσ − xK)nK,σ otherwise,

(2.4)

where d is the space dimension.

Next we denote by FC
K,σ(p, w) which approximates the term

∫
σ

q · nK,σdγ. We apply an

idea in [7] and set

FC
K,σ(p, w) =

k

µ

( ∑
σ′∈EK

Aσσ
′

K (pK − pσ) + |σ|g · nK,σ · %(wσ)
)
, (2.5)

for all σ ∈ EK , where Aσσ
′

K =
∑
σ′′∈EK

yσ
′′σ ·DK,σ′′y

σ′′σ′ with DK,σ′′ =

∫
VK,σ′′

1dx. As a result,

we have the following approximations∫
σ

q%(w) · nK,σdγ ≈ FC
K,σ(p, w)%(wσ),∫

σ

qm(w) · nK,σdγ ≈ FC
K,σ(p, w)m(wσ),

which will be applied in section 3.2.
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2.2 Adaptive mesh

An essential feature of the generalized finite volume method SUSHI scheme is that it allows
to use non-matching volume elements. This permits us to apply an adaptive mesh method
combining square or cubic elements of different sizes in the numerical tests. We refine the
mesh in regions of strong variations of the unknown function while we merge elements in
areas where the unknown function undergoes small variations. The adaptive mesh reduces
the number of elements and edges, and economizes CPU time. After each refinement or
merge, we calculate the values of discrete unknown functions of next time step on the new
mesh.

In many articles, the value of the discrete gradients is often chosen as a refinement
criterion. In this work, we introduce a new criterion which is based on the discrete difference
of unknowns. The advantages of this method are: (1) it is easy to implement, and (2) we can
easily manage the number of unknowns as well as the refinement-remerge areas. Moreover,
in some cases, the discrete gradient and discrete difference give the same results, for example
in the case where the mesh size is close to uniform in the refinement area.

To this purpose, we define the maximum of the discrete difference of unknowns at the cell
center and at its edges: UK = max

σ∈EK
|uK − uσ| where u is a chosen unknown. Then we sort all

the elements in order of increasing UK . The element L is added to a list called "refined-list" if
(UL − min

K∈M
UK)/(max

K∈M
UK − min

K∈M
UK) > α where 0 < α < 1. It means that the "refined list"

includes the elements whose unknown undergoes the highest discrete difference. The scalar
α controls the amount of refined elements (the length of the refined-list). If α = 0.75, around
one fourth of the elements of the current mesh will be refined. If α is close to 1, the refined-
list is very short. If the element L satisfies (UL − min

K∈M
UK)/(max

K∈M
UK − min

K∈M
UK) < β where

0 < β < α, it is added to the "coarse-list". In a similar way, the scalar β controls the length
of the coarse-list. If β tends to 0, the coarse-list becomes empty. Figure 1 demonstrates our
statements.

Figure 1: The refined-list and the coarse-list.

We start with a uniform square in space dimension 2 or a uniform cubic mesh in space
dimension 3. After each time step, we compute a new coarse-list and a new refined-list. If
an element belongs to the refined-list, it is divided into smaller ones: it will be divided into
4 small squares in space dimension 2 or 8 cubes in space dimension 3. If some neighbor
elements belong to the coarse-list, they are merged together. We refer to [14] for detailed
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interpolation methods and we use linear interpolation to assign values to the new unknowns
after each refinement. In practice u corresponds to the salt concentration, except at the end
of this paper where u is taken one time as the temperature.

3 Density driven flows in porous media

3.1 Initial condition on p

In system (1.4), when c is known, the second equation is an elliptic equation of p. Thus, we
do not need any initial condition for p. We refer to [5] for the discussion of the compatibility
relation between the pressure p and the density ρ.

However, in the discretized form of the problem, we will need to impose an initial con-
dition for p, which we do by solving the elliptic equation ∇ ·

(
q%(w0)

)
= 0 together with

the given boundary conditions provided that a Dirichlet boundary condition is imposed on
a part of the boundary (Henry’s problem and the saltpool problem); otherwise the initial
pressure would not be uniquely defined.

In the rotating interface problem, due to the Neumann boundary condition on p, there
is no uniqueness of the solution p. This leads us to add an extra term ε∂p(x, t)/∂t to the
second equation of system (1.4) with ε small. Therefore the equation for p becomes parabolic
so that we have to impose an initial condition; we will suppose that the initial condition is
such that p(x, 0) = 0 at x0 = (0, 0) and satisfies ∇·

(
q%(w0)

)
= 0 for all x ∈ Ω together with

the homogenous Neumann boundary condition on ∂Ω. Then the initial pressure is uniquely
defined.

3.2 Numerical scheme

We associate with the mesh the following discrete spaces

XD = {((vK)K∈M, (vσ)σ∈E), vK ∈ R, vσ ∈ R}.

We first discuss the discretization of the initial condition. As w is a function of c, the
initial condition of the scheme for w is computed based on the initial condition of c by

w0
K =

1

|K|

∫
K

w
(
c0(x)

)
dx, w0

σ =
1

|σ|

∫
σ

w
(
c0(x))dγ. (3.1)

As mentioned in the section 3.1, if p0(x) is given, we use a similar scheme to obtain the
discrete initial condition

p0
K =

1

|K|

∫
K

p0(x)dx, p0
σ =

1

|σ|

∫
σ

p0(x)dγ. (3.2)

In the rotating interface problem, in Henry’s problem and in the saltpool problem, we solve
numerically the equations described in the section 3.1 to obtain the discrete initial condition
for p in XD.
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Next we present a semi-implicit finite volume scheme corresponding to system (1.4), after
plugging in the Darcy’s law into the 2 last equations. For each n ∈ {1, ..., N}:

We suppose that wn−1 and wn−2 are already known and search for pn ∈ XD such that

θ|K|
δt

(
%(wn−1

K )− %(wn−2
K )

)
+
∑
σ∈EK

{
FC
K,σ(pn, wn−1) · %(wn−1

σ )
}

=
(Qρ)

n
K

δt
for all K ∈M, (3.3a)

∑
K∈Mσ

{
FC
K,σ(pn, wn−1) · %(wn−1

σ )
}

= 0 for all σ ∈ Eint, (3.3b)

FC
K,σ(pn, wn−1) = |σ|qN(xσ, tn) for all xσ ∈ ∂Ωp

N , (3.3c)
pnσ = pD(xσ, tn) for all xσ ∈ ∂Ωp

D. (3.3d)

Then, knowing pn and wn−1, we search for wn ∈ XD such that

θ|K|
δt

(
m(wnK)−m(wn−1

K )
)

+
∑
σ∈EK

FD
K,σ(wn)

+
∑
σ∈EK

FC
K,σ(pn, wn−1) ·m(w̃nK,σ) =

Qn
K

δt
for all K ∈M, (3.4a)

∑
K∈Mσ

{
FD
K,σ(wn) + FC

K,σ

(
pn, wn−1) ·m(w̃nK,σ)

}
= 0 for all σ ∈ Eint, (3.4b)

FD
K,σ(wn) = −|σ|D(xσ, tn)

∂w

∂c
(xσ, tn) · cN(xσ, tn) for all xσ ∈ ∂Ωc

N , (3.4c)

wσ = w
(
cD(xσ, tn)

)
for all xσ ∈ ∂Ωc

D. (3.4d)

where (Qρ)
n
K =

∫ tn
tn−1

∫
K
ρsQsdxdt and Qn

K =
∫ tn
tn−1

∫
K
ωsρsQsdxdt. We denote by ∂Ωp

D and
∂Ωc

D the parts of the boundary corresponding to the Dirichlet boundary conditions and by
∂Ωp

N and ∂Ωc
N the parts of the boundary corresponding to the Neumann boundary conditions

for the pressure p and the concentration c respectively. When n = 1, we omit the term
%(wn−1

K ) − %(wn−2
K ) in the equation (3.3a). The two equations (3.3b) and (3.4b) come from

the local conservation of the discrete fluxes on the interior edges. We apply a centered
scheme for the convection term in (3.3) and an upwind scheme for the convection term in
(3.4). More precisely, we define w̃K,σ according to the upwind scheme

m(w̃nK,σ) =

{
m(wnK) if FC

K,σ(pn, wn−1) > 0
m(wnσ) otherwise.

Moreover, in the discrete equation (3.4), m(wn) is a nonlinear function of unknown wn.
We apply Newton’s method to calculate wn.
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3.3 The rotating interface problem

The rotating interface problem involves zero source terms: Qs = 0 together with the bound-
ary conditions, 

∂c

∂n
= 0 on ∂Ω× [0, T ]

q · n = 0 on ∂Ω× [0, T ]
(3.5)

where Ω = (0, 100)× (0, 100) m2 and T = 500 days.
As already mentioned above, a technical problem is that if p is a solution, p+p̄ is a solution

as well, with p̄ an arbitrary constant. This leads us to transform the elliptic equation for
p into a parabolic equation by adding the extra term ε∂p(x, t)/∂t which makes the model
slightly compressible,

ε
∂p

∂t
+ θ

∂%(w)

∂t
+∇ · (q%(w)) = 0. (3.6)

Then the discretized form of the equation for p is given by:

ε|K|
δt

(pnK − pn−1
K ) +

θ|K|
δt

(
%(wn−1

K )− %(wn−2
K )

)
+
∑
σ∈EK

FC
K,σ

(
pn,m(wn−1)

)
%(wn−1

K,σ ) = 0. (3.7)

The initial concentration is given by c(x, 0) = 0 if x belongs to the right half domain
and c(x, 0) = 1 otherwise. The initial condtion for p has been discussed in section 3.1. The
parameter values are defined in Table 1. Note that with the homogenous Neumann boundary
condition (3.5), the conservation of mass holds as indicated in (3.9). The conservation of
mass is discussed in the subsection 3.4 below.

Figure 2: The initial condition for the rotat-
ing interface problem.

Symbol Value Unit

k 3.1× 10−12 m2

D 3.3× 10−6 m2/s
g 9.81 m/s2

θ 0.5 -
µ 10−3 kg/(m · s)
ρ0 103 kg/m3

ā 0.3 -
ε 10−5 -

Table 1: Parameters for the rotating interface
problem.

Because of the gravity, the salt water, which is heavier, diffuses towards the bottom;
meanwhile the pure water, which is lighter, diffuses towards the top. Therefore, the interface
slowly evolves from a vertical to a horizontal line. After about 300 days, the fluid is in
equilibrium and the motion stops. One can observe the movement of the interface in the
figures 3 and 4. Figure 3 shows the flux field q of the problem at the initial time and at
time t = 200 days while the second one shows the time evolution of the concentration. The
refined elements are essentially located in the neighbourhood of the interface and follow it
as it moves.
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t=0 day t=200 days

Figure 3: The flux field q of the rotating interface problem.

In the simulation, we start with a very coarse discretization mesh with 5 × 5 square
elements. An adaptive mesh is applied at each time step, taking into account the variations
of the concentration c. We present the numerical results of the concentration in Figure 4.
At the beginning, because the mesh is coarse, we choose α = 0.75 to create more refined ele-
ments. Then we choose β = 0.2 to make a balance between refinement and derefinement. At
t = 50 days, the number of elements is large enough, we choose again α = 0.85 to reduce the
number of volume elements to be refined and β is also decreased to β = 0.1. From t = 250
to the end, the evolution is slow, so that we choose α = 0.95 and β ' 0. Table 2 shows
the number of volume elements of the adaptive mesh at various times. At the beginning,
the adaptive mesh has a small number of elements. At the end, the mesh is approximately
a uniform mesh of 40 × 40. In Figure 5 we compare the CPU times with different meshes,
namely three uniform meshes with respectively 100 (10×10), 400 (20×20) and 1600 (40×40)
volume elements and an adaptive mesh.
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t=10 days t=25 days

t=50 days t=100 days

t=250 days t=500 days

Figure 4: Time evolution of the concentration using an adaptive mesh.
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Time NoE NoU

t=0 days 120 420
t=10 days 355 1123
t=20 days 499 1567
t=30 days 583 1825
t=50 days 597 2171
t=100 days 934 2882
t=200 days 1192 3660
t=300 days 1309 4013
t=500 days 1378 4221

Table 2: Number of volume elements (NoE)
and Number of unknowns (NoU) in the rotat-
ing interface problem using an adaptive mesh.

Figure 5: CPU time in the rotating interface
problem using different meshes.

3.4 Mass conservation

In this subsection we discuss the conservation of mass. We first check the mass conservation
in the partial differential equation system. For each t, we integrate the transport equation
(1.1c) on Ω× (0, t) in the case that Qs = 0:∫

Ω

θ
(
ρ(c(x, t))c(x, t)− ρ(c0(x))c0(x)

)
dx

+

∫ t

0

∫
Ω

∇ · (qρ(c(x, τ))c(x, τ))dxdτ −
∫ t

0

∫
Ω

∇ · (D∇w(c(x, τ)))dxdτ = 0,

which yields

θ
(∫

Ω

ρ(c(x, t))c(x, t)dx−
∫

Ω

ρ(c0(x))c0(x)dx
)

= −
∫ t

0

∫
∂Ω

ρ(c(x, τ))c(x, τ)q · n dγdτ +

∫ t

0

∫
∂Ω

Dρ(c(x, τ))∇c · n dγdτ.

(3.8)

We recall that that q · n = 0 and ∂c/∂n = 0 on ∂Ω, which we substitute in (3.8) to deduce
that ∫

Ω

ρ(c(x, t))c(x, t)dx =

∫
Ω

ρ(c0(x))c0(x)dx.

Thus the system possesses the mass conservation property. Next, we check the mass is also
conserved by the numerical scheme. We add up the semi-implicit discrete equations (3.4) on
all control volumes, and setting Q = 0, we obtain:∑
K∈M

θ|K|
(
m(wnK)−m(wn−1

K )
)

+ δt
∑
K∈M

∑
σ∈EK

(
FD
K,σ(wn) + FC

K,σ

(
pn,m(wn−1)

)
m(wn)

)
= 0.
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We define the total mass at the time tn = nδt by
∑
K∈M

|K|m(wnK). Using the local conservation

of the discrete fluxes on the interior edges (3.4) and the homogenous Neumann boundary
condition, we deduce that: ∑

K∈M

|K|m(wnK) =
∑
K∈M

|K|m(w0
K), (3.9)

which expresses the fact that in our algorithm, the mass is conserved. We check in Table 3
that, in the simulation, the mass is indeed conserved.

Time (days) Mass Time (days) Mass

t = 0 6.5× 106

t = 10 6.500000000000002× 106 t = 100 6.499999999999990× 106

t = 20 6.500000000000004× 106 t = 200 6.499999999999996× 106

t = 30 6.499999999999998× 106 t = 300 6.499999999999975× 106

t = 50 6.500000000000006× 106 t = 500 6.499999999999961× 106

Table 3: Total mass obtained by the generalized finite volume method SUSHI.

3.5 Henry’s problem

Henry’s problem describes the advance of a salt water front in a confined aquifer which
is initially charged with fresh water. Henry developed a solution method to compute the
steady-state distribution of the solute. He applied the Boussinesq approximation, which
involves a stream function. Henry derived analytical expressions for the stream function
and the concentration in the form of a Fourier series; the resulting algebraic equations for
the determination of the Fourier coefficients must be obtained numerically. The ’mystery’
of Henry’s problem is that no numerical model so far has been able to closely reproduce his
semi-analytical solution. Nevertheless, because of the absence of other non numerical solution
for this kind of nonlinear problems, Henry’s problem has become one of the standard tests
for variable density groundwater models.

Mathematically, Henry’s problem is defined as System (1.1) in the rectangle Ω together
with zero source term Qs = 0 and the initial conditions, such that c(x, 0) = 0 and that the
pressure p(x, 0) satisfies ∇ ·

(
q%(w(x, 0))

)
= 0 for all x ∈ Ω; and the boundary conditions

c = 0 on Γ2 × (0, T ),

c = 1 on Γb3 × (0, T ),
∂c

∂n
= 0 on (Γ1 ∪ Γ4 ∪ Γh3)× (0, T ),

p = ρ0|g|(α(1− y)− y) on Γ3 × (0, T ),

q · n = 0 on (Γ1 ∪ Γ4)× (0, T ),

q · n = q0 on Γ2 × (0, T ),

(3.10)
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where Γ3 = Γh3 ∪Γb3 and y is y-coordinate. Figure 6 shows the configuration of the boundary
conditions. We perform the numerical tests on the space domain Ω = (0, 1)× (0, 1) m2, with
T = 0.05 day. The parameters are given in Table 4.

Figure 6: The boundary conditions for
Henry’s problem.

Symbol Value Unit

k 1.02× 10−9 m2

D 6.6× 10−6 m2/s
g 9.81 m/s2

θ 0.3 -
µ 10−3 kg/(m · s)
ρ0 103 kg ·m3

ā 0.025 -
q0 −6.6× 10−5 m/d

Table 4: Parameters for Henry’s problem.

The simulations in Figure 8 describe the intrusion of salt water in a confined aquifer.
The salt water enters from the right-hand-side, while the fresh water, of density ρ0, flows
in from the left-hand-side at a constant rate. Therefore, the concentration in the area near
the coastal side increases in time. At first the interface between the fresh and the salt water
coming from the right-bottom corner has a large slope (left figure in Figure 7), which slowly
decreases in time as the salt concentration enters into the domain (right figure in Figure 7).

Figure 7: The flux field q at initial time and final time for Henry’s problem.

The variation of the concentration c stays in a region around the boundary x = 1, i.e. Γ3.
We refine the mesh according to the variation of c and choose α = 0.8 to make the refine-list
long enough and set β = 0.15 to make the process stable. Table 5 presents the number of
elements of the adaptive mesh at various times, which is smaller than the number of elements
of the uniform mesh 40× 40. In the adaptive mesh, the smallest volume elements have the
same diameter as the volume elements in the uniform mesh 40×40. The number of elements
is one of the reasons why the CPU time is smaller than the CPU time corresponding to the
uniform mesh 40 × 40. The evolutions of the CPU times in different meshes are shown in

14



t=0.001 days t=0.0025 days

t=0.005 days t=0.01 days

t=0.025 days t=0.05 days

Figure 8: Time evolution of the concentration in Henry’s problem using an adaptive mesh.

Figure 9. As a conclusion, when using the same precision over the high variation region, we
save CPU time by using an adaptive mesh, especially in the case of Henry’s problem.
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Time NoE NoU

t=0 days 120 420
t=0.001 days 262 844
t=0.002 days 307 983
t=0.003 days 328 1046
t=0.005 days 331 1053
t=0.01 days 469 1477
t=0.02 days 586 1834
t=0.03 days 649 2025
t=0.05 days 673 2099

Table 5: Number of volume elements (NoE)
and number of unknowns (NoU) in Henry’s
problem using an adaptive mesh.

Figure 9: CPU times in Henry’s problem us-
ing different meshes.

3.6 The saltpool problem

We present below a numerical test in space dimension 3, the saltpool problem, which is
studied in [9] and [11]. We consider a 0.2 × 0.2 × 0.2 m3 cube with fresh water being
injected on top of the domain while the bottom is full of salt water. Initial conditions are
such that freshwater lies over saltwater with a 0.008 m wide transition zone centered at
zm = 0.06 m. In the transition zone, the mass fraction varies linearly from c = 0 to c = 1,
that is

c(x, y, z, 0) =


1, if z ≤ zm − 0.008/2,
1
2
− (z − zm)/0.008, if zm − 0.008/2 < z < zm + 0.008/2,

0, if z ≥ zm + 0.008/2.

(3.11)

The source term is such that Qs = 0. Boundary conditions for the flow equation (1.1b) are
modeled by an inlet normal flux Neumann condition in the inlet area a1 = 0.01 × 0.01 m2,
and a Dirichlet freshwater piezometric head condition corresponding to a pressure value zero
at the outlet a2 = 0.01 × 0.01 m2. On all other parts of the boundary, no flow boundary
conditions are imposed. As for the transport equation (1.1c), we impose a homogenous
Dirichlet boundary condition on the inlet area a1, while we impose a homogenous Neumann
boundary condition on Γ\a1. In summary, the boundary conditions for the saltpool problem
are given by 

q = −Q, on a1

p = 0, on a2

∂p

∂n
= 0, on Γ \ {a1 ∪ a2}

c = 0, on a1

∂c

∂n
= 0, on Γ \ a1

(3.12)
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For the dispersion-diffusion tensor in (1.1c), we apply the Scheidegger’s dispersion model

D(q) = θDI + (αL − αT )
qT ⊗ q

|q|
+ αT |q|I, (3.13)

where αL and αT are the longitudinal and transverse dispersivity of the isotropic porous
medium, respectively. And we compute the numerical flux qnK in element K as follows

qnK =
1

2

∑
σ∈EK

1

|σ|
FC
K,σ(pn, wn−1)nK,σ for all K ∈M.

In this test case, we perform a simulation corresponding to test case 1 of the article
by K. Johannesen et al. [9]. The parameters are presented in Table 6. For the discretiza-
tion, we start with a coarse mesh 5 × 5 × 5 elements. We use a fixed time step δt = 100
seconds. The regions around the inlet and outlet as well as at the interface are refined at
time step n = 0 to capture the boundary effect. Figure 11 shows the time evolution of
the process while Figure 12 shows the outlet concentration obtained by means of (i) our
simulation; (ii) the simulation of [9]; (iii) the real experiment. In the first period, our result
is very close to the experimental result. In the time interval [1000, 4000] seconds, it is a
little further from the experimental curve but it is slightly better than the result from [9].
In the last period, the result from [9] is closer to the experimental result than our result.

Figure 10: The geometry of the saltpool prob-
lem.

Symbol Value Unit

k 1.19× 10−9 m2

D 1.06× 10−9 m2/s
g 9.81 m/s2

θ 0.357 -
µ 1.002× 10−3 kg/(m · s)
ρ0 998.2 kg/m3

ā 0.0076 -
αL 4.3× 10−5 m
αT 1.2× 10−3 m
Q 1.89× 10−6 m3/s

Table 6: Parameters in the saltpool problem.

4 Density driven flow coupled with heat transfer
In this section, we pursue the study of Section 3 on the interaction between flow and transport
in porous medium and we take heat transfer into account. The model problem is proposed
in the SEAWAT documentation [10].

The SEAWAT code is a computer program for the simulation of a multi-species solute and
heat transport [10]. It combines the software codes MODFLOW and MT3DMS which solve
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t=500 seconds t=1000 seconds

t=1500 seconds t=2000 seconds

t=4000 seconds t=6000 seconds

Figure 11: Time evolution of the saltpool problem using an adaptive mesh.
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Figure 12: Outlet concentration of the saltpool problem.

the flow and the solute-transport equations respectively. The coupling between flow and
transport is performed through a synchronous time-stepping approach that cycles between
MODFLOW solutions of the flow equation and MT3DMS solutions of the transport equation.
SEAWAT includes both explicit and implicit methods for coupling the flow and the solute-
transport equations. With the explicit method, a lagged approach is used for assigning fluid
densities in the flow equation. With the implicit coupling method, solutions of the flow
and transport equations are repeated interactively solved, and concentrations and densities
are updated within each time-step until the maximum difference in fluid density at each
single cell for consecutive iterations is less than a user-specified value. As for the numerical
methods, SEAWAT uses finite differences for solving the variable-density flow equations.
The numerical methods used by the MT3DMS program to simulate solute transport in a
constant-density flow field are directly used in SEAWAT to simulate the solute transport in
a variable-density flow field.

Both MODFLOW and MT3DMS use cell-centered grids. In this formulation, the depen-
dent variables obtained in the finite-difference solution represent average values (assumed to
be given at the cell center) for the respective cells. The same block-centered grid is used by
SEAWAT, MODFLOW and MT3DMS.

We propose a uniform code using the generalized finite volume method SUSHI. The
structure is much simpler since we deal with a single code instead of two codes which are
coupled with each other. We refer to [2] for the study of a related problem by means of a
Voronoi box based finite volume method. We apply mesh refinement and show the results
of three test cases. Our results are very close to those obtained by SEAWAT.
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4.1 Partial differential equation system

4.1.1 Variable density groundwater equation

We consider a system of equations presented in SEAWAT and present below the case of a
single species. The space domain is given by the rectangle Ω = (0, L)× (0, H). We consider
the following form of the variable density groundwater flow equation

Ssρ
∂h

∂t
+ θ

∂ρ

∂C

∂C

∂t
+∇ · (qρ) = qsρs in Ω× (0, T ), (4.1)

where h [m] is the equivalent fresh water head, Ss [1/m] is the specific storage, defined as
the water volume released from the storage per unit decline of h, ρ = ρ(h,C,Θ) [kg/m3] is
the fluid density, θ is the porosity, qs [d−1] is a source or sink of the fluid with density ρs.
Equation (4.1) is a generalized form of equation (1.1b). The velocity q [m/d] is given by
Darcy’s law:

q(h, µ, ρ) = −µ0

µ
K0

(
∇h+

ρ− ρ0

ρ0

∇z
)
, (4.2)

where µ [kg/(m · s)] is the dynamic viscosity and µ0 is a reference viscosity, ρ0 is the density
when the fluid is at the reference concentration C0 [kg/m3] and the reference temperature
Θ0 [◦C]. K0 [m/d] is the hydraulic conductivity tensor and z [m] is the elevation, such that
∇z = (0, 1)T.

4.1.2 The fluid density ρ in equation (4.1)

For the transport of the solute species, where the concentration of the species can affect
the fluid density, Hughes and Sanford [8] have implemented the following equation of state

ρ(h,C,Θ) = ρ0 +
∂ρ

∂C
(C − C0) +

∂ρ

∂Θ
(Θ−Θ0) +

∂ρ

∂P
(P − P0).

We reformulated here the term
∂ρ

∂P
(P−P0) by using the height of a water column l of density

ρ0. The variable l, which can be thought of as the pressure head in terms of the reference
density, is related to the pressure by

P = lρ0g,

where l = h− z. After some simple rearrangements, we can thus rewrite the formula for the
fluid density as a function of the concentration, the temperature and the hydraulic head as

ρ(h,C,Θ) = ρ0 +
∂ρ

∂C
(C − C0) +

∂ρ

∂Θ
(Θ−Θ0) +

∂ρ

∂l
(h− h0). (4.3)
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(a) profile of ρ(0, C, 25) (b) profile of ρ(0, 0,Θ)

Figure 13: The fluid density ρ(C,Θ, h). The parameters are given in Table 7.

4.1.3 The fluid viscosity µ in equation (4.1)

The dynamic viscosity is considered to be a function of temperature and solute concentration,
which is a typical approach in [3]; we neglect the dependence of the viscosity on the fluid
pressure. A general equation for representing the fluid viscosity as a function of concentration
and temperature is given by

µ(C,Θ) = µ0 +
∂µ

∂C
(C − C0) +

∂µ

∂Θ
(Θ−Θ0).

On a number of temperature ranges, the linear approximation does not adequately represent
the effect of temperature on the dynamic viscosity. For this reason, an alternative equation
for the dynamic viscosity has been implemented, namely

µ(C,Θ) =
∂µ

∂C
(C − C0) + µΘ(Θ).

There are many options for representing µΘ(Θ) as a function of temperature. Here we use
the following viscosity and temperature relation

µΘ(Θ) = A1 · A

( A3

Θ + A4

)
2 ,

where the values A1, A2, A3 and A4 are positive constants (cf. C.I. Voss [13]). As a result
we obtain the following formula for the dynamic viscosity

µ(C,Θ) =
∂µ

∂C
(C − C0) + A1 · A

( A3

Θ + A4

)
2 . (4.4)
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(a) profile of µ(C, 25) (b) profile of µ(0,Θ)

Figure 14: The fluid viscosity µ(C,Θ). The parameters are given in Table 7.

4.1.4 The solute transport equation and the heat transport equation

The equation for solute transport in groundwater is an advection-dispersion equation. A
general form is given by

(1 +
ρbK

C
d

θ
)
∂(θC)

∂t
+∇ · (qC)−∇ ·

(
(θDC

m + a · q)∇C
)

= qsCs in Ω× (0, T ), (4.5)

where ρb [kg/m3] is the bulk density, KC
d [m3/kg] is the distribution coefficient for salinity,

DC
m [m2/d] is the diffusion coefficient and a [m] is the dispersivity tensor. We remark that

the dispersion tensor is defined as

a · q := (aL − aT )
q⊗ q

|q|
+ aT |q|I. (4.6)

Next we present a possible form for the heat transport equation, which was proposed by
Thorne et al. [12] to highlight the similarity with the solute transport equation

(1 +
ρbK

Θ
d

θ
)
∂(θΘ)

∂t
+∇ · (qΘ)−∇ ·

(
(θDΘ

m + a · q)∇Θ
)

= qsΘs in Ω× (0, T ), (4.7)

where KΘ
d [m3/kg] is the distribution coefficient for the temperature and DΘ

m [m2/d] is the
bulk thermal diffusivity. We propose to solve the system of partial differential equations
(4.1), (4.2), (4.5) and (4.7) together with the boundary conditions

h = hD(x, t) on ∂Ωh
D × (0, T ),

q · n = q̄N(x, t) on ∂Ωh
N × (0, T ),

C = CD(x, t) on ∂ΩC
D × (0, T ),

∂C

∂n
= CN(x, t) on ∂ΩC

N × (0, T ),

Θ = ΘD(x, t) on ∂ΩΘ
D × (0, T ),

∂Θ

∂n
= ΘN(x, t) on ∂ΩΘ

N × (0, T ),

(4.8)
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where ∂Ω = ∂Ωh
D

⋃
∂Ωh

N = ∂ΩC
D

⋃
∂ΩC

N = ∂ΩΘ
D

⋃
∂ΩΘ

N and where ∂Ωh
D, ∂ΩC

D and ∂ΩΘ
D cor-

respond to Dirichlet boundary conditions and ∂Ωh
N , ∂ΩC

N and ∂ΩΘ
N correspond to Neumann

boundary conditions for the hydraulic head h, the concentration C, and the temperature Θ
respectively. The initial conditions are given by

h(x, 0) = hini(x) in Ω,

C(x, 0) = Cini(x) in Ω,

Θ(x, 0) = Θini(x) in Ω.

(4.9)

4.2 Numerical approximation

4.2.1 Numerical approximation of the fluxes

We plug Darcy’s law (4.2) into (4.1) and integrate over the volume element K for each
K ∈M to obtain

Ss

∫
K

ρ
∂h

∂t
dx +

∫
K

θ
∂ρ

∂C

∂C

∂t
dx−

∑
σ∈EK

∫
σ

ρ
µ0

µ
K0∇h · nK,σ dγ

−
∑
σ∈EK

∫
σ

ρ
µ0

µ
K0

ρ− ρ0

ρ0

∇z · nK,σ dγ =

∫
K

qsρs dx.

(4.10)

The diffusion flux −
∫
σ

ρ
µ0

µ
K0∇h ·nK,σ dγ is approximated by the numerical flux ρσF h

K,σ(h).

More precisely
ρσF

h
K,σ(h) = ρσ

µ0

µσ

∑
σ′∈EK

Aσσ
′

K (hK − hσ′) for h ∈ XD, (4.11)

where the symmetric and positive-definite matrices Aσσ′K are given by

Aσσ
′

K =
∑
σ′′∈EK

yσ
′′σ ·

(∫
VK,σ′′

K0 dx
)
yσ
′′σ′ , (4.12)

and yσσ
′ is given as in (2.4).

We integrate equations (4.5) and (4.7) over the volume element K for each K ∈ M, to
obtain∫

K

(1 +
ρbK

C
d

θ
)
∂(θC)

∂t
dx +

∑
σ∈EK

∫
σ

q C · nK,σ dγ

−
∑
σ∈EK

∫
σ

(θDC
m + a · q)∇C · nK,σ dγ =

∫
K

qsCs dx,∫
K

(1 +
ρbK

Θ
d

θ
)
∂(θΘ)

∂t
dx +

∑
σ∈EK

∫
σ

q Θ · nK,σ dγ

−
∑
σ∈EK

∫
σ

(θDΘ
m + a · q)∇Θ · nK,σ dγ =

∫
K

qsΘs dx.

(4.13)
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In what follows we define the numerical fluxes FC
K,σ(C) and FΘ

K,σ(Θ) in order to approxi-

mate the diffusion fluxes −
∫
σ

(θDC
m + a · q)∇C · nK,σ dγ and −

∫
σ

(θDΘ
m + a · q)∇Θ · nK,σ dγ

respectively. In view of the SUSHI scheme, we express the discrete fluxes FC
K,σ(C) and

FΘ
K,σ(Θ) in terms of the discrete unknowns as:

FC
K,σ(C) =

∑
σ′∈EK

A
σσ′

K (CK−Cσ′), A
σσ′

K =
∑
σ′′∈EK

yσ
′′σ ·
(∫

VK,σ′′
(θDC

m+a · q) dx
)
yσ
′′σ′ , (4.14)

and

FΘ
K,σ(Θ) =

∑
σ′∈EK

Âσσ
′

K (ΘK−Θσ′), Âσσ
′

K =
∑
σ′′∈EK

yσ
′′σ ·
(∫

VK,σ′′
(θDΘ

m+a · q) dx
)
yσ
′′σ′ . (4.15)

4.2.2 Numerical scheme

We remark that from [10], the derivatives ∂ρ
∂h
, ∂ρ
∂C

, ∂ρ
∂Θ

in the equation (4.3) and ∂µ
∂C

in the
equation (4.4) are constants. We set θC = θ + ρbK

C
d and θΘ = θ + ρbK

Θ
d and present

below a semi-implicit finite volume scheme corresponding to the system (4.1) - (4.7) with
the boundary condition (4.8) and the initial conditions (4.9).

The initial conditions for the scheme are given by

h0
K =

1

|K|

∫
K

hini(x) dx, C0
K =

1

|K|

∫
K

Cini(x) dx, Θ0
K =

1

|K|

∫
K

Θini(x) dx. (4.16)

Next we present the discretized problem. For each n ∈ {1, ..., N}:
Knowing hn−1,Cn−1, Cn−2 and Θn−1, find hn ∈ XD such that

Ss|K|ρn−1
K (hnK − hn−1

K ) + θ|K| ∂ρ
∂C

(Cn−1
K − Cn−2

K ) + δt
∑
σ∈EK

F h
K,σ(hn)ρn−1

σ

−δt
∑
σ∈EK

µ0

µn−1
σ

ρn−1
σ − ρ0

ρ0

ρn−1
σ (K0∇z) · nK,σ|σ| = ρsQ

n
K for all K ∈M, (4.17a)

∑
K∈Mσ

{
F h
K,σ(hn)ρn−1

σ

}
= 0 for all σ ∈ Eint, (4.17b)

hnσ = hD(xσ, tn) for all xσ ∈ ∂Ωh
D, (4.17c)

qnσ = |σ|qN(xσ, tn) for all xσ ∈ ∂Ωh
N . (4.17d)

where Qn
K =

∫ tn

tn−1

∫
K

qs dxdt, F h
K,σ(v), ρn−1

σ , and µn−1
σ are computed as (4.11), (4.19) and

(4.20), respectively. We remark that when n = 1, the term (Cn−1
K −Cn−2

K ) in equation (4.17a)
is omitted. The approximate velocity qnσ is given by

qnσ = F h
K,σ(hn)− µ0

µn−1
σ

ρn−1
σ − ρ0

ρ0

(K0∇z) · nK,σ|σ|, (4.18)
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where
ρnσ = ρ0 +

∂ρ

∂C
(Cn

σ − C0) +
∂ρ

∂Θ
(Θn

σ −Θ0) +
∂ρ

∂l
(hnσ − h0), (4.19)

and

µnσ =
∂µ

∂C
(Cn

σ − C0) + A1 · A

( A3

Θn
σ + A4

)
2 . (4.20)

Knowing qn, Cn−1, find Cn ∈ XD such that

θC |K|(Cn
K − Cn−1

K ) + δt
∑
σ∈EK

qnσC̃
n
K,σ

+δt
∑
σ∈EK

FC
K,σ(Cn) = CsQ

n
K for all K ∈M, (4.21a)

∑
K∈Mσ

{
qnσC̃

n
K,σ + FC

K,σ(Cn)
}

= 0 for all σ ∈ Eint, (4.21b)

Cn
σ = CD(xσ, tn) for all xσ ∈ ∂Ωc

D, (4.21c)

FC
K,σ(Cn) = −(θDC

m + a · q
n
σ

|σ|
nK,σ)|σ|CN(xσ, tn) for all xσ ∈ ∂Ωc

N . (4.21d)

Knowing qn, Θn−1, find Θn ∈ XD such that

θΘ|K|(Θn
K −Θn−1

K ) + δt
∑
σ∈EK

qnσΘ̃n
K,σ

+δt
∑
σ∈EK

FΘ
K,σ(Θn) = ΘsQ

n
K for all K ∈ T , (4.22a)

∑
K∈Tσ

{
qnσΘ̃n

Kσ + FΘ
K,σ(Θn)

}
= 0 for all σ ∈ Eint, (4.22b)

Θn
σ = ΘD(xσ, tn) for all xσ ∈ ∂ΩΘ

D, (4.22c)

FΘ
K,σ(Θn) = −(θDΘ

m + a · q
n
σ

|σ|
nK,σ)|σ|ΘN(xσ, tn) for all xσ ∈ ∂ΩΘ

N . (4.22d)

The approximate fluxes FC
K,σ(v) and FΘ

K,σ(v) are defined by (4.14) and (4.15), respectively.
The three equations (4.17b), (4.21b) and (4.22b) come from the local conservation of the
discrete fluxes on the interior edges. Note that we use an upwind scheme for the convection
term in (4.21a) and (4.22a) with

C̃n
K,σ =

{
Cn
K if qnσ > 0

Cn
σ otherwise and Θ̃n

K,σ =

{
Θn
K if qnσ > 0

Θn
σ otherwise

for each time step n.
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5 Numerical tests
We propose an alternative simulation for the model problem developed in the SEAWAT
documentation [10]. The problem consists in a two-dimensional cross section of a confined
coastal aquifer initially saturated with relatively cold seawater at temperature 5◦C, so that
hini = 0, Cini = 35 and Θini = 5. Warmer fresh water at temperature 25◦C is injected into
the coastal aquifer along the left boundary to represent the flow from inland areas. The
warmer fresh water flows to the right, where it discharges into a vertical ocean boundary.
The ocean boundary is represented with hydrostatic conditions based on the fluid density
calculated from the seawater salinity at 5◦C. No flow boundary conditions are assigned on
the top and bottom boundaries. Because of the gravity and no flux boundary conditions
at the top and bottom boundaries, the velocity is different at the top, bottom and middle
of the aquifer. At the bottom, the flow is very slow so that the values of the concentration
and of the temperature do not change much. At the top, the flux is very strong, so that the
values of the concentration and of the temperature change fast. This problem is a simplified
representation of what may occur in a coastal carbonate platform.

L

Q = 0, ∂C/∂n = 0, ∂Θ/∂n = 0

Q = 10
C = 0
Θ = 25

h = (H − z) ρC−ρ0
ρ0

∂C/∂n = 0
∂Θ/∂n = 0

Q = 0, ∂C/∂n = 0, ∂Θ/∂n = 0

H

Figure 15: The boundary conditions of the model problem

The space domain is given by L = 2000 m and H = 1000 m and the boundary condition
on the sea water boundary is given by h(x = L, z) = (H − z) · ρC−ρ0

ρ0
, where the elevation z

is such that 0 ≤ z ≤ H. The average flux velocity on the boundary (x = 0, z) is given by
qN = Q

H
with Q = 10m2/d. And we have that qs = 0.

The adaptive mesh is very efficient here, since the variations of the concentration and of
the temperature only take place in their interface areas respectively. We present numerical
simulations in three cases. For test cases 1 and 2 below, we neglect the heat transfer equation
and consider the mesh refinement to be based on the variation of the concentration C. In
test case 3, the interfaces of the concentration and of the temperature do not advance with
the same speed, so that we perform a first computation with the refinement based on the
variation of the concentration (Figures 21 and 22) and a second time computation with the
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refinement based on the variation of the temperature in order to present the results on the
temperature profiles (Figure 23).

We start from a uniform 40×20 square mesh to discretize the domain (0, L)×(0, H). We
choose α close to 0.8 in order to make the refined-list long enough, and we choose β around
0.2 for the remerge list in order to keep the process stable.

5.1 Test case 1 and test case 2

In the first 2 test cases, we consider different expressions of the fluid density ρ and suppose
that the fluid viscosity µ is constant, i.e. µ(x, t) = µ0 for all x and t. We neglect the heat
transfer equation and consider the system

Ssρ
∂h

∂t
+ θ

∂ρ

∂C

∂C

∂t
+∇ · (qρ) = qsρs in Ω× (0, T ),

(1 +
ρbK

C
d

θ
)
∂(θC)

∂t
+∇ · (qC)−∇ ·

(
(θDC

m + a · q)∇C
)

= qsCs in Ω× (0, T ).

(5.1)
We apply the scheme (4.17), (4.18) and (4.21) for the numerical simulations.

Test case 1: We suppose that the fluid density only depends on concentration C which
can be rewritten as

ρ = ρ0 +
∂ρ

∂C
(C − C0). (5.2)

The figures 16 and 17 show the time evolution of the concentration in test case 1.

Test case 2: In this test case, we consider the density ρ to be a linear function of
concentration C and temperature Θ:

ρ = ρ0 +
∂ρ

∂C
(C − C0) +

∂ρ

∂Θ
(Θ−Θ0). (5.3)

The value of the slope
∂ρ

∂Θ
is −0.375. The negative sign indicates that the fluid density

increases as the temperature decreases, as shown in Figure 13(b). And the temperature is a
simple linear function of the concentration:

Θ = (
Θinflow −Θocean

Cinflow − Cocean
)C + (Θinflow −Θocean) = −4

7
C + 20, (5.4)

where Θinflow = 25oC, Θocean = 5oC, Cinflow = 0 kg/m3 and Cocean = 35 kg/m3. The figures
18 and 19 show the time evolution of the concentration in this test case.

Comparison between the test cases 1 and 2: we compare the numerical results
obtained in the 2 cases: it turns out that the front displacement is lower in test case 2 than in
test case 1; moreover we also observe that the transition front’sx width is thinner in test case
2. We then compare our results to those in SEAWAT [10]. The transient movement of the
freshwater-saltwater transition zone in the simulations performed in SEAWAT corresponding
test case 1 and test case 2 are shown as Figure 20. Our results look very similar to those of
SEAWAT.
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Figure 16: Concentration profiles at the initial time and at the times t = 5000 and t = 10000 days
for test case 1.
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Figure 17: Concentration profiles at the times t = 30000, t = 60000 and t = 200000 days for test
case 1.
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Figure 18: Concentration profiles at the initial time and at the times t = 5000 and t = 10000 days
for test case 2.
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Figure 19: Concentration profiles at the times t = 30000, t = 60000 and t = 200000 days for test
case 2.
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The transient motion of the freshwater-saltwater transition zone for test case 1 in SEAWAT.

The transient motion of the freshwater-saltwater transition zone for test case 2 in SEAWAT.

Figure 20: Simulation for the test cases 1 and 2 using SEAWAT [10].
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5.2 Test case 3

In this test case, we consider the system coupled with the heat transfer equation. Then the
fluid density ρ is given by (4.3) and the viscosity µ is given by (4.4).

An adaptive mesh corresponding to the concentration variation is used for the simulations
shown in the figures 21 and 22. Meanwhile we perform the simulation for a second time with
an adaptive mesh corresponding to the temperature variation for the numerical results of
temperature. The time evolution of the temperature is shown in Figure 23. Our result are
compared to those in SEAWAT to show that both are similar. The transient motion of the
freshwater-saltwater transition zone and that of temperature transition zone in SEAWAT
corresponding to test case 3 are shown as Figure 24.

We remark that the width of the transition fronts of the concentration C is thicker in
test case 3 where there is a coupling with the heat transport equation.

Parameter Value Unit

Specific storage Ss 1.00× 10−5. 1/m
Porosity θ 0.35 −

Reference viscosity µ0 0.001 kg/(m · s)
Reference density ρ0 1000 kg/m3

Bulk density ρb 1761.5 kg/m3

Reference concentration C0 0 kg/m3

Reference temperature Θ0 25 C
Horizontal hydraulic conductivity Kh0 10 m/d
Vertical hydraulic conductivity Kv0 0.1 m/d

Longitudinal dispersivity aL 1 m
Transverse dispersivity aT 0.1 m
Diffusion coefficient DC

m 1.00× 10−10 m2/d
Bulk thermal diffusivity DΘ

m 0.150309621 m2/d
Distribution coefficient for concentration KC

d 0 m3/kg
Distribution coefficient for temperature Kθ

d 2.00× 10−4 m3/kg
A1 2.394× 10−5 −
A2 10 −
A3 248.37 −
A4 133.15 −

δµ/δC 1.92× 10−6 m2/d
δρ/δh 4.46× 10−3 kg/m4

δρ/δC 0.7 −
δρ/δΘ −0.375 kg/(m3 · C)

Table 7: Parameters of the model problem

The authors would like to thank Konstantin Brenner for indicating to them a number
of references about density dependent flows in porous media, in particular [1] and the three
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Figure 21: Concentration profiles at the initial time and at the times t = 5000 and t = 10000 days
for test case 3.
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Figure 22: Concentration profiles at the times t = 30000, t = 60000 and t = 200000 days for test
case 3.
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Figure 23: Temperature profiles at the time t = 5000, t = 30000 and t = 200000 days.

36



The transient motion of the freshwater-saltwater transition zone for test case 3 in SEAWAT.

The transient motion of the temperature transition zone for test case 3 in SEAWAT.

Figure 24: Simulation for test case 3 using SEAWAT [10].
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dimensional saltpool problem in this paper. They acknowledge the GDRI ReaDiNet for the
financial support and for having provided opportunities of presenting the results.
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