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Abstract  

 

Earth System Science (ESS) is a rapidly emerging transdisciplinary endeavour aimed at 

understanding the structure and functioning of the Earth as a complex adaptive system. Here 

we discuss the emergence and evolution of ESS, outlining the importance of these 

developments in advancing our understanding of global change. Inspired by early work on 

biosphere-geosphere interactions and by novel perspectives such as the Gaia hypothesis, ESS 

emerged in the 1980s following demands for a new “science of the Earth”. The International 

Geosphere-Biosphere Programme soon followed, leading to an unprecedented level of 

international commitment and disciplinary integration. ESS has produced new concepts and 

frameworks central to the global change discourse, including, the Anthropocene, tipping 

elements and planetary boundaries. The grand challenge for ESS is to achieve a deep 

integration of biophysical processes and human dynamics to build a truly unified 

understanding of the Earth System. 

 

 

 

 

[H1] Introduction  

 

For tens of thousands of years, indigenous cultures around the world have recognised cycles 

and systems in the environment, and that humans are an integral part of these. However, it 

was only in the early 20th century that contemporary systems thinking was applied to the 

Earth, initiating the emergence of Earth System Science (ESS). Building on the recognition 

that life exerts a strong influence on the Earth’s chemical and physical environment, ESS 



 

 

originated in a Cold War context with the rise of environmental and complex system 

sciences1-3.  

 

The ESS framework has since become a powerful tool for understanding how Earth operates 

as a single, complex adaptive system, driven by the diverse interactions among energy, 

matter and organisms. In particular, it connects traditional disciplines — which typically 

examine components in isolation — to build a unified understanding of the Earth. With 

human activities increasingly destabilising the system over the last two centuries, this 

perspective is necessary for studying global changes and their planetary-level impacts and 

risks, including phenomena such as climate change, biodiversity loss, and nutrient loading. 

Indeed, one of the most pressing challenges of ESS is to determine whether past warm 

periods in Earth history are a possible outcome of current human pressures and, if so, how 

they best can be avoided. 

 

In this Perspective, we explore the emergence and evolution of ESS, outlining its history, 

tools and approaches, new concepts, and future directions. We focus largely on the surface 

Earth System, that is, the interacting physical, chemical and biological processes among the 

atmosphere, cryosphere, land, ocean and lithosphere. Although other definitions of ESS 

include the whole planetary interior4-5, the processes of which become increasingly important 

as the timescale of consideration increases6, we focus on the surface where the majority of 

materials are cycled within the Earth System.  

 

 

[H1] The emergence of ESS  

 

We begin with a brief history of ESS, outlining important historical phases, including: 

precursors and beginnings up through the 1970s; the founding of a new science in the 1980s; 

global expansion in the 1990s; and present day ESS. A timeline of key events, publications 

and organisations that characterise the evolution of ESS is shown in Figure 1.  

 

 

[H2] Beginnings (up through the 1970s)  

 

Past conceptualisations of the Earth formed important precursors to the contemporary 

understanding of the Earth System. Examples include J. Hutton’s 1788 ‘theory of the Earth’, 

Humboldtian science in the 19th century, and V. Vernadsky’s 1926 ‘The Biosphere’7. 

Understanding the historical roots of ESS, however, requires a focus on the second half of the 

20th century when, in a Cold War context, important shifts occurred in the Earth and 

environmental sciences8. Thanks to military patronage taking precedence over traditional 

sources of funding for Earth sciences, geophysics experienced unprecedented growth9. 

Moreover, surveying and monitoring the global environment became a strategic imperative, 

providing information that would later be useful for contemporary ESS as it began to 

emerge10,11.  

 

In the middle of the 20th century, international science started to develop, epitomised by the 

International Geophysical Year (IGY) 1957-5812. This unprecedented research campaign 

coordinated the efforts of 67 countries to obtain a more integrated understanding of the 

geosphere, particularly glaciology, oceanography and meteorology. One of the key impacts 

of the IGY was a lasting transformation in the practices used to understand how the Earth 

works. The interpretative and qualitative geological and climatological research based on 



 

 

field observations  - as classicly studied by geographers - was replaced by field 

instrumentation, continuous and quantitative monitoring of multiple variables, and numerical 

models13. This transformation led to the two contemporary paradigms that structure the Earth 

sciences: modern climatology and plate tectonics14,15. 

 

Ecology and environmental sciences also developed rapidly16. Ecosystem ecology emerged 

with the work of G. E. Hutchinson and the brothers H. Odum and E. Odum, and was 

supported by the Scientific Committee on Problems of the Environment (SCOPE).  Large 

projects such as the International Biological Programme (IBP)17 were major steps towards a 

global ecological study. These efforts provided the basis for understanding the role of the 

biosphere in the functioning of the Earth System as a whole18-22.  

 

The 1960s and 1970s were marked by a broadening cultural awareness of environmental 

issues in both the scientific community and general public. Driving this increased awareness 

were the publication of R. Carson’s Silent Spring23, the ‘Only one earth’ discourse at the 

1972 United Nations Conference on the Human Environment24, the first alerts on ozone 

depletion and climatic change25,26, and the Club of Rome’s publication of the Limits to 

Growth report27. The Limits to Growth report warned of the finitude of economic growth due 

to resource depletion and pollution28. Visual images of the Earth, in particular the ‘Blue 

Marble’ image taken by the crew of the Apollo 17 spacecraft on 7 December 1972, sharpened 

the research focus on the planet as a whole and highlighted its vulnerability to the general 

public29-31.  

 

Amidst these developments, in 1972 J. Lovelock introduced the term Gaia as an entity 

comprised of the total ensemble of living beings and the environment with which they 

interact, and hypothesised that living beings regulate the global environment by generating 

homeostatic feedbacks32. Although this hypothesis generated scientific debate and 

criticism33,34, it also generated a new way of thinking about the Earth that emphasized the 

major influence of the biota on the global environment and the importance of the 

interconnectedness and feedbacks that link major components of the Earth System35-37.  

 

The scientific developments up to 1980 - from Vernadsky’s pioneering research, through 

large-scale field campaigns and the emerging environmental awareness of the 1970s, to 

Lovelock’s Gaia - led to a new understanding of the Earth, challenging a purely geophysical 

conception of the planet and transforming our view of the environment and nature16,38. The 

stage was now set for the introduction of a new science - a more formal and well organised 

Earth System science.  

 

  

[H2] Founding a new science (1980s) 

 

Triggered by the growing recognition of global changes such as human-driven ozone 

depletion and climatic change, a series of workshop and conference reports in the 1980s 

called for a new “science of the Earth”39-40. The calls were based on the acknowledgement 

that if a new science was to be founded, it would need to be based on the newly emerging 

recognition of Earth as an integrated entity: the Earth System.   

 

At NASA, the new scientific endeavor was named “Earth system science”. The NASA Earth 

System Science Committee was established in 198341, aimed at supporting the Earth 

Observing System (EOS) satellites and associated research that helped drive the evolving 



 

 

definition of ESS via linked observations, modelling and process studies. The NASA-led 

research initiatives also developed new visual representations of the Earth System, most 

famously the NASA Bretherton Committee diagram4(Fig, 2). The Bretherton diagram (as it is 

often referred to) was the first systems-dynamics representation of the Earth System to couple 

the physical climate system and biogeochemical cycles through a complicated array of 

forcings and feedbacks. Humans constituted a single box of their own connected to the rest of 

the Earth System through three forcings (carbon dioxide (CO2), pollutant emissions, and 

land-use change) and their corresponding impacts42. The Bretherton diagram epitomised the 

rapidly growing field of ESS through its visualisation of the interacting physical, chemical 

and biological processes that connect components of the Earth System and through the 

recognition that human activities were a significant driving force for change in the system.  

 

Reports, workshops and conferences all agreed that ESS, given the very nature of its object, 

should be interdisciplinary and international: interdisciplinary given that interactions between 

processes don’t respect disciplinary barriers, and international because global phenomena are 

studied. Whilst interactions within individual components of the Earth had already been 

studied, the emphasis of ESS was in understanding the multi-component interactions among 

physical, chemical and biological processes. This created a significant challenge in bringing 

different disciplines together to study the Earth System as a whole. 

 

The challenge of international commitment and disciplinary integration was addressed by the 

International Council for Science (ICSU) in 1986 with the formation of the International 

Geosphere-Biosphere Programme (IGBP) 5,43-45, which joined the World Climate Research 

Programme (WCRP), formed in 1980 to study the physical climate component of the Earth 

System 46. IGBP was originally structured around a number of core projects on 

biogeochemical aspects of the Earth System: ocean carbon cycle, terrestrial ecosystems, 

atmospheric chemistry, the hydrological cycle, and others. Two projects of particular 

importance were PAGES (past global changes) and GAIM (global analysis, interpretation 

and modelling) given their locus of strong disciplinary integration. In addition, IGBP 

developed a dedicated project on data and information systems (DIS), especially remotely 

sensed data, to support the research.  

 

This convergence of disciplines accelerated the evolution of ESS, evident as a transition from 

isolated process studies to interactions between these processes and increasingly global-level 

observations, analyses and modelling47. ESS thus facilitated the transformation from 

interdisciplinary research (where multiple disciplines work together to tackle common 

problems) to transdisciplinary research (where disciplinary boundaries fade as researchers 

work together to address a common problem). ESS consequently has a diverse 

epistemological framework, adopting fundamental building blocks and methodologies from 

diverse disciplines to tackle highly complex questions.  

 

The scientific effervescence of the 1980s was linked with the political ambition to do 

something about global change. Motivated by the Brundtland Report (1987), Our Common 

Future48, and the growing interest in sustainable development, many actors thought that 

IGBP should be designed to provide scientific knowledge that was more immediately policy 

relevant, generating some initial disagreement about the degree of policy relevance that was 

appropriate for IGBP research49. However, a more policy-relevant international research 

effort would have to wait until the 1990s.  

 



 

 

By the end of the 1980s, ESS had emerged as a powerful new scientific endeavour, triggered 

by the growing recognition of global change and built on the rapid development of 

interdisciplinary research methods. 

 

 

[H2]: Going global (1990s-2000s) 

  

The formal launch of IGBP in 1990 and the widespread use of the Bretherton diagram 

(Figure 2) powered the ongoing development of ESS. Nevertheless, despite the rapidly 

increasing use of resources and the emerging impacts of climate change, the underlying 

human drivers of global change, as well as population and community ecology, were not a 

strong focus of ESS. Motivated by a suite of studies that illustrated the importance and 

relevance of ecological research to climate change, biodiversity, and sustainability more 

broadly50-51, the international research programme DIVERSITAS was created in 1991 to 

study the loss of, and change in, global biodiversity52, thus complementing IGBP’s research 

on the functional aspects of terrestrial and marine ecosystems. The quantification of human 

impacts on the planet from climate change, fixed nitrogen, biodiversity loss and fishery 

collapses brought the reality of a human dominated planet into focus.53  

 

In1996 the International Human Dimensions Programme on Global Environmental Change 

(IHDP) was founded, providing a global platform for social science research that explored 

both the human drivers of change to the Earth System and the consequences of a rapidly 

changing Earth System for human and societal well-being 54.  This global system of 

international research programmes, including WCRP, IGBP, DIVERSITAS and IHDP, 

provided “work spaces” for international scientists of different disciplines to come together, 

which was critical for the development of ESS. In the early 2000s, this more complete suite 

of global change programmes, along with the emerging concept of sustainability55, would 

give birth to sustainability science56. 

 

In the late 1990s, H-J. Schellnhuber introduced and developed two concepts that were 

fundamental for ESS57,58: the dynamic, co-evolutionary relationship between nature and 

human civilisation at the planetary scale, and the possibility of catastrophe domains in the co-

evolutionary space of the Earth System. The first provided the conceptual framework for 

fully integrating human dynamics into an Earth System framework (cf. Figure 3).  The 

second introduced the risk that global change may not unfold as a linear change in Earth 

System functioning, but rather that human pressures could trigger rapid, irreversible shifts of 

the system into states that would be catastrophic for human well-being.  Indeed, the discovery 

of the stratospheric ozone hole showed that humanity, by luck rather than design, has already 

narrowly escaped the creation of a catastrophe domain 59.  

 

Over a critical five-year period from 1999 through 2003, the IGBP accelerated its transition 

from a collection of individual projects to a more integrated ESS programme with the 1999 

IGBP Congress being the key to achieving the required integration. Schellnhuber, who had 

just become the chair of the GAIM task force, challenged the Congress with his call for a 

deep integration of human activities into ESS and for more emphasis on nonlinear dynamics 

in the Earth System. The Congress rose to the challenge, launching both the IGBP synthesis 

project and a major international conference in 2001. The synthesis project resulted in the 

publication of Global Change and the Earth System60, an integrator of not only the 

considerable amount of global change research within IGBP but also a vast amount of 

relevant research carried out elsewhere. It also provided the scientific basis for the 



 

 

Amsterdam Declaration (Box 1) and emphasised research that would underpin the new 

concept of the Anthropocene (Box 2).  

 

The 2001conference, “Challenges of a Changing Earth” was truly international, attracting 

1400 participants from 105 countries, 62 of which were developing countries.  The 

conference, co-sponsored by the four international global change programmes (IGBP, 

WCRP, IHDP, DIVERSITAS), introduced the Amsterdam Declaration (Box 1), which arose 

from the synthesis project, and triggered the formation of the Earth System Science 

Partnership (ESSP) to connect fundamental ESS with issues of central importance for human 

well-being: food, water, health and carbon/energy61. The emphasis of J. Lubchenco, who 

became president of the ICSU in 2002, on science for sustainability strengthened the 

integration of the ESS and global sustainability communities.  

 

This integration led the IGBP to define the term “Earth System” as the suite of interlinked 

physical, chemical, biological and human processes that cycle (transport and transform) 

materials and energy in complex dynamic ways within the system60. This definition 

emphasised two points: first that forcings and feedbacks within the system, including 

biological processes, are as important to it functioning as external drivers; and second that 

human activities are an integral part of system functioning62.  

 

The 1990-2015 period was critical for ESS as it moved from a challenging vision to a 

powerful new science capable of effectively integrating a wide array of disciplines towards 

understanding our home planet in all its complexity. 

 

 

[H2] 2015 and beyond 

 

By 2015, ESS was well established, and the time was right for a major institutional 

restructure built on a higher level of integration. Indeed, IGBP, IHDP and DIVERSITAS 

were merged in 2015 into the new programme, Future Earth, while WCRP continued along 

with some IGBP core projects such as IGAC (International Global Atmospheric Chemistry), 

PAGES (Past Global Changes) and the ESSP Global Carbon Project. Future Earth aims to 

accelerate the transformation to global sustainability through research and innovation. It 

builds on the research of the earlier global change programmes but works more closely with 

the governance and private sectors from the outset to co-design and co-produce new 

knowledge towards a more sustainable future (www.futureearth.org).   

 

A broad range of research centres now directed their work towards ESS and global 

sustainability research: for example, the Potsdam Institute for Climate Impact Research 

(PIK), the US National Center for Atmospheric Research (NCAR), the Stockholm Resilience 

Centre (SRC), and the International Institute for Applied System Analysis (IIASA). Although 

universities maintained their traditional discipline based faculties, as the emphasis on 

interdisciplinarity and global-level studies grew, interdisciplinary ESS programs also 

emerged in many universities around the world. The revolution in digital communication 

links these, and many other research bodies, in an expanding global ESS effort.  

 

 

[H1] ESS tools and approaches  

 



 

 

Supporting the evolutionary development of ESS are three interrelated foci that drive science 

forward:  observations of a changing Earth System; computer simulations of system 

dynamics into the future; and high-level assessments and syntheses that initiate the 

development of new concepts.  

 

 

[H2] Observations and experiments  

 

The transdisciplinary research required to understand the Earth System requires past and 

contemporary changes in the system to be considered at a wide range of spatial (for example, 

top down and bottom up) and temporal (for example, looking forward and backwards) scales. 

Perhaps the most iconic ‘top-down’ observation is the ongoing measurement of atmospheric 

CO2 concentration at the Mauna Loa Observatory, Hawaii, which was started in 1958 by 

C.D. Keeling63. The Keeling Curve – as it is commonly known –underpins our understanding 

of how humans are influencing the climate, depicting continuously increasing CO2 

concentrations64.  

 

The development of space-based observations at ever higher spatial and temporal resolutions 

has also revolutionised our ability to repeatedly and consistently observe the Earth System in 

near real time. Remote sensing systems now monitor a wide range of processes and 

indicators, including climatic variables, land-cover change, atmospheric composition, the 

surface ocean and urban development65-67. These ‘top down’ approaches – along with the 

ability to rapidly process, analyse and visualise large amounts of data - build a compelling, 

globally coherent picture of the rate and magnitude of changes in the structure and 

functioning of the Earth System at the planetary level30.  

 

Bottom-up observations of Earth System processes are challenged by the heterogeneity of the 

planet but have provided valuable insights into these processes. A classic example is Global 

Ocean Observations System (GOOS), built around a growing fleet of autonomous platforms 

such as the Argo floats that continuously collect and transmit ocean data. On land, global 

networks of long-term sites, such as FLUXNET, measure the fluxes of energy and gases 

between the land surface and the atmosphere and rooting depths in the soils of major 

ecosystems68. Such process-level studies complement remote sensing observations by 

providing critical insights into the underlying dynamics that generate the patterns of a 

changing Earth System observed from space. 

 

Large-scale observational campaigns bring together interdisciplinary teams of researchers to 

provide a crucial scaling link between local observations and experiments and the planetary 

level. For example, the NASA Advanced Global Atmospheric Gases Experiment and the 

NOAA ESRL Global Monitoring Division have tracked how human activities have changed 

the composition of the atmosphere for over 40 years by tracking not only the increase of 

greenhouse gases such as CO2 but also the stabilization of some ozone-depleting gases69. The 

Asian brown cloud study over the Indian subcontinent measured the concentration of 

atmospheric aerosol particles, their seasonal variation, their atmospheric lifetimes and their 

transport by atmospheric circulation, important for estimating the risk that the South Asian 

monsoon could be destabilised by local and regional pollutants70. The Large-scale Biosphere-

Atmosphere study in the Amazon (LBA) used both ground-based and remote sensing 

approaches to study the atmosphere-biosphere-hydrosphere dynamics of the Amazon 

rainforest71, yielding insights into where a tipping point might lie for the conversion of the 

forest into a savanna. In the ocean, the GEOSEC programme (1972–1978) studied the 



 

 

distribution of man-made geochemical tracers (from the atmospheric testing of nuclear 

weapons) in the world’s oceans, enabling the estimation the timing and pattern of global 

cycling of carbon in the oceans72.  

 

Looking back at the past Earth System is important to understand its present dynamics. The 

Vostok ice core data73 marked a major advance by showing the regularity and synchronicity 

in the temperature–CO2 relationship through the late Quaternary. Studies of past interglacial 

periods74 and the long-term dynamics of the climate system75, for example, have provided a 

rich background against which contemporary changes in the Earth System, in both 

magnitudes and rates, can be analysed. Palaeo studies of the more recent past (tens, hundreds 

and a few thousand years) are particularly useful in providing insights into future risks. As 

human forcings drive even more profound changes to the Earth System, time intervals further 

back in time come into focus as potential analogues, such as the Palaeocene-Eocene Thermal 

Maximum (PETM) about 56 million years ago, when a rapid release of greenhouse gases 

triggered a global temperature rise of 5-6C76.  

 

Looking ahead, large-scale experiments can explore how parts of the Earth System may 

respond to future levels of human forcing or interventions. For example, numerous studies 

have examined the efficacy of iron fertilisation to stimulate oceanic draw-down of CO2 from 

the atmosphere as a potential mitigation strategy77. On land, Free-Air Carbon dioxide 

Enrichment (FACE) experiments, in which ecosystems are fumigated over many years with 

high levels of CO2, explore ecosystem responses to future atmospheric conditions78, and 

ecosystem warming experiments explore responses to the future climate79. These, and other 

similar studies, complement modelling approaches and palaeo studies, enhancing our 

understanding of how the Earth System could evolve in the coming decades and centuries, 

and the risks for humanity that changes in the system could bring. 

 

 

[H2] Modelling the Earth System  

 

Mathematical models are key components of ESS research, starting with conceptual or toy 

models which elucidate key processes, features or feedbacks in the Earth System, often 

drawing on the principles of complexity science80-82. In the 1960s, for example, simple 

energy balance models described how the ice-albedo feedback could potentially drive the 

Earth into an alternative “snowball” stable state83,84. The Daisyworld model in the 1980s 

further showed how feedback processes between life and its environment could lead to 

global-scale temperature regulation85.  

 

More complex models of the Earth System — General Circulation Models (GCMs) — have 

since developed. GCMs are based on the fundamental physics and chemistry of the climate 

system, including the exchange of energy and materials between the Earth’s surface (land, 

ocean, ice and, increasingly, the biosphere) and the atmosphere86,87. They are forced by 

scenarios of human greenhouse gas and aerosol emissions, providing possible trajectories of 

the future climate, and the impacts and risks of these trajectories, that can be assessed by the 

Intergovernmental Panel on Climate Change (IPCC) and used to inform policy and 

governance. However, there is considerable uncertainty in long-term GCM projections, 

influenced by parameterisations and omitted or inadequate constraints on feedback processes 

and interactions between the geosphere and biosphere88,89. In addition, GCMs lack human 

dynamics as an integral, interactive part of the model, instead treating them as an outside 

force that perturbs the biogeophysical Earth System.  



 

 

 

Human dynamics are the domain of Integrated Assessment Models (IAMs), which typically 

couple economic models of varying complexity to climate models of reduced complexity90-93. 

IAMs have a number of uses, for example: simulating costs of specific climate stabilisation 

policies, exploring climate risks and uncertainties based on a range of potential policies, 

identifying optimal policies for a specific climate target, and providing more general insights 

into feedbacks within the coupled system94. In addition, IAMs provide critical information on 

future greenhouse gas and aerosol emission scenarios, which are used to force the GCM 

simulations. However, the economic components of IAMs are rarely interactively coupled 

with GCMs to build a completely integrated ESM. An early exception to this generalisation is 

the MIT Integrated Global System Model, which coupled a general equilibrium economics 

model (CGE) to a detailed GCM95,96. 

 

Arguably the most powerful tools for exploring the complex dynamics of the Earth System, 

particularly at long time scales, are Earth system Models of Intermediate Complexity 

(EMIC)97. EMICs include the same main processes as GCMs, but have a lower spatial 

resolution and greater number of parameterised processes, allowing them to run longer 

timescale simulations that include nonlinear forcings and feedbacks among components of 

the Earth System. EMICs, for example, can be run at timescales of up to hundreds of 

thousands of years, allowing the models to be tested against palaeo observations and to 

explore possible climates of the far future98,99. Taken together, GCMs, IAMs and EMICs 

create powerful ways to explore Earth System dynamics at numerous space and time scales.  

 

The diversity of modelling tools available to the ESS community plays a central role in the 

research effort. Although best known for their capability to simulate potential future 

trajectories of the Earth System, models are probably most valuable as knowledge integration 

tools: they bring our rapidly growing understanding of individual processes into an internally 

consistent framework; they generate new ideas and hypotheses; and, most importantly, the 

model–observation interface is the ultimate test of our understanding of how the Earth 

System works.  

 

 

[H2] Assessments and syntheses  

 

In addition to observations and modelling, assessments and syntheses have themselves 

become essential tools within ESS research. Syntheses build new knowledge at a 

fundamental level, yielding new insights, concepts and understanding that are central to the 

scientific process. In contrast, the global assessment architecture acts as a broker between the 

scientific and policy communities, facilitating new directions in research following feedback 

from the policy sector. Perhaps the best-known example of the latter is the IPCC, where 

science has clearly influenced policy development, but the policy sector has also prompted 

new research approaches. For example, the IPCC Special Report on the 1.5C target, 

mandated by the policy sector as part of the Paris climate agreement, assessed the significant 

difference in risks and impacts between the 1.5C and 2C Paris targets100. The IPCC 

provided the first targeted assessment of climate change impacts on the ocean and 

cryosphere101 and triggered the first quantification of ocean-based mitigation options102.   

 

A synthesis project was the 2001–2005 Millennium Ecosystem Assessment (MEA), a major 

effort to document the state of the biosphere, with an emphasis on human-driven pressures 

and potential future scenarios for the biosphere103. That pioneering, interdisciplinary 



 

 

scientific synthesis led directly to the creation of the Intergovernmental Science-Policy 

Platform on Biodiversity and Ecosystem Services104, which provides broad science-policy 

interfaces on environment, conservation and sustainability across scales, and has recently 

published a major assessment following on from the MEA104.  

 

Syntheses were also an important part of the IGBP and other global change research efforts 
60,105-113. For example, the Global Carbon Project provides an annual carbon budget that 

integrates our growing knowledge base on the carbon cycle and how it is influenced by 

human activities64.  

 

 

[H1] New concepts arising from ESS  

 

ESS, facilitated by its various tools and approaches, has introduced new concepts and 

theories that have altered our understanding of the Earth System, particularly the 

disproportionate role of humanity as a driver of change53,114,115. The most influential concept 

is that of the Anthropocene, introduced by P. Crutzen to describe the new geological epoch in 

which humans are the primary determinants of biospheric and climatic change (Box 2). The 

Anthropocene has become an exceptionally powerful unifying concept that places climate 

change, biodiversity loss, pollution and other environmental issues as well as social issues 

such as high consumption, growing inequalities and urbanisation within the same 

framework116,117. Importantly, the Anthropocene is building the foundation for a deeper 

integration of the natural sciences, social sciences and humanities, and contributing to the 

development of sustainability science through research on the origins of the Anthropocene 

and its potential future trajectories118,119.  

 

Tipping elements are a further concept stemming from ESS. They describe important features 

of the Earth System that are not characterised by linear relationships, but can instead show 

strongly nonlinear, sometimes irreversible, threshold-abrupt change behaviour81,120-122. 

Tipping elements include important biomes such as the Amazon rainforest and boreal forests, 

major circulation systems such as the Atlantic Meridional Overturning Circulation, and large 

ice masses such as the Greenland Ice Sheet81. In the latter example, a reinforcing feedback 

occurs because as the ice sheet melts, its surface lowers into a warmer climate, increasing the 

melting rate. Beyond a critical point of self-reinforcement, the feedback loop leads to an 

irreversible loss of the Ice Sheet81. More recent research has focussed on the causal coupling 

between tipping elements – via changes in temperature, precipitation patterns and oceanic 

and atmospheric circulation – and their potential to form cascades122-124. Tipping cascades 

could provide the dynamical process that drives the transition of the Earth System from one 

state to another, effectively becoming a planetary-level threshold125.  Research on tipping 

elements and cascades highlights the ultimate risks of not only climate change, but also of 

biosphere degradation and the destabilisation of the Earth System as a whole 126. 

 

A final example is the Planetary Boundaries (PB) framework, which links biophysical 

understanding of the Earth (states, fluxes, nonlinearities, tipping elements126) to the policy 

and governance communities at the global level127. Built around nine processes which 

collectively describe the state of the Earth System (including climate change, biodiversity 

loss, ocean acidification and land use change), the PB framework guides the levels of human 

perturbations that can be absorbed by the Earth System whilst maintaining a stable, 

Holocene-like state - a ‘safe operating space’ for humanity - the only state that we know for 

certain can support agriculture, settlements and cities, and complex human societies.  



 

 

Although the present framework is static in that boundaries are considered in isolation, the 

next conceptual advance aims to simulate interactions among individual boundaries, 

integrating the dynamics of the Earth System as a whole into the PB framework.  

 

 

[H1] Future directions  

 

ESS emerged in the early-mid 20th century from conceptualisations of the Earth that 

emphasised its systemic nature, such as Vernadsky’s observation that life has a strong 

influence on the chemical and physical properties of Earth; and the Gaia hypothesis of 

Lovelock and Margulis that Earth functions as a single organism, with self-regulating 

processes and feedbacks that maintain homeostasis. ESS then developed rapidly, from the 

‘new science of the Earth’ movement in the 1980s to the global research efforts of 

international programmes such as IGBP. Observational campaigns, Earth System models, and 

periodic syntheses powered the science forward. In the 21st century the concept of the 

Anthropocene, which arose in ESS, challenges not only the scientific community, but 

humanity itself. ESS now faces two critical research challenges:  

 

1. How stable and resilient is the Earth System? Can tipping cascades generate a planetary 

tipping point? Are there accessible states of the system that would threaten human well-

being? 

 

2. How can we better understand the dynamics of human societies? What can ESS contribute 

to understanding - and perhaps to steering - the integrated geosphere-biosphere-

anthroposphere trajectory of the Anthropocene?   

 

The first of these challenges is being addressed by a rapidly increasing effort within the 

biogeophysical research community on nonlinearities in the Earth System101,128, tipping point 

interactions and cascades123,129, and potential planetary thresholds and state shifts125. The 

second challenge, however, requires a much greater effort as our understanding of the Earth 

System is still largely constrained to its biogeophysical components. The big challenge is to 

fully integrate human dynamics, as embodied in the social sciences and humanities, with 

biophysical dynamics to build a truly unified ESS effort.  Figure 3 highlights this challenge, 

with its inclusion of the anthroposphere as a fully integrated, interactive component of the 

Earth System, along with the geosphere and biosphere. Forcings and feedbacks among the 

spheres, included psycho-social feedbacks involving the anthroposphere130, describe the 

functioning of the Earth System as a whole.  

 

The human dimensions of ESS must therefore go well beyond economic models (IAMs), and 

incorporate the deeper human characteristics that capture our core values and how we view 

our relationship to the rest of the Earth System. Whether these fundamental human 

characteristics be included in large-scale computational models is difficult to assess, but 

EMICs may offer the first framework in which this computational ‘grand integration’ could 

be attempted. 

 

Other approaches are also useful in exploring the future of the Earth System. The concept of 

complex adaptive systems80 can build understanding of and simulation tools for the co-

evolution of the biosphere and human cultures as social-ecological systems131. These 

approaches can also provide vital guidance for formulating policy and management in the 

Anthropocene132. Although long-ignored by the physical perspectives that have dominated 



 

 

ESS, understanding these human dynamics is essential for the effective guidance systems 

required for steering the future trajectory of the system 123,133,134.  

 

Technology will also be important for ESS in the future. The emergence of high-speed 

computing, digitisation, big data, artificial intelligence and machine learning - the tools of the 

technosphere135 - has generated a step change in our ability to sense, process and interpret 

masses of data in near real-time. This new capability underpins our growing understanding of 

the key Earth System processes, their interactions and nonlinear behaviours, particularly the 

the influence of the anthroposphere on the entire system. As these tools develop further, they 

will allow us to not only learn more about the planet, but also to learn much more about 

ourselves, our social and governance systems, and our core values and aspirations. 

 

More than technology, however, is required to understand human dynamics. The ESS of the 

2020s can draw upon a rapidly expanding portfolio of innovative research and policy ideas to 

improve our understanding of the anthroposphere. For example, projections of the trajectory 

of the Earth System – ranging from the biophysical dimensions (for example, climate) to the 

social sciences and humanities – provide a very wide range of perspectives on the 

future90,116,136. In the policy arena, the earlier Millennium Development Goals, which were 

strongly human-centric, have now been replaced by the Sustainable Development Goals, 

which retain a strong human focus on development, equity and other human issues but embed 

them in a broader Earth System context. One of the most innovative of all new approaches is 

the Common Home of Humanity, which proposes formal legal recognition of a stable and 

accommodating state of the Earth System itself (i.e., a Holocene-like state, as defined by the 

PBs) as the intangible, natural heritage of all humanity137.  

 

To meet these challenges, ESS must achieve an even deeper integration of the wealth of 

research tools, approaches and insights that the wide range of research communities offer. 

Underpinning this broad, global ESS effort is one fundamental, unavoidable truth: Humans 

are now the dominant force driving the trajectory of the Earth System: we are no longer “a 

small world on a big planet” but have become “a big world on a small planet” 138. 
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Figures:  

 

Figure 1.  Timeline illustrating the development of ESS from the mid-20th century. The 

figure shows the key orgnisations, pivotal papers and figures, and major events that have 

helped to define and develop Earth System science.  
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Figure 2. The NASA Bretherton diagram of the Earth System. The classical simplified 

depiction of the Earth System and its interactions. The focus is on the interactions between 

the geosphere and the biosphere, with human forcings represented as an outside force 

affecting the geosphere-biosphere system. Reproduced, with permission from NASA, from 

ref 4.  

 

Figure 3. An updated conceptual model of the Earth System. A detailed systems diagram 

of the Earth System, inspired by the original Bretherton diagram (Figure 2), but with humans 

(the anthroposphere) as a fully integrative, interacting sphere. The internal dynamics of the 

anthroposphere are depicted as a production/consumption core driven by energy systems and 

modulated by human societies, as influenced by their cultures, values, institutions, and 

knowledge. Interactions between the Anthropocene and the rest of the Earth System are two-

way, with human greenhouse gas emissions, resource extraction and pollutants driving 

impacts that reverberate through the geosphere-biosphere system. Feedbacks to the 

anthroposphere are also important, including direct impacts of climate change and biosphere 

degradation but also psycho-social feedbacks from the rest of the Earth System and within 

the anthroposphere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Boxes:  

 

[b1] Box 1: The Amsterdam Declaration 

The Amsterdam declaration, signed by the Chairs of IGBP (Berrien Moore III), IHDP (Arild 

Underdal), WCRP (Peter Lemke) and DIVERSITAS (Michel Loreau) at the 2001 

‘Challenges of a Changing Earth’ conference, described the key findings of a decade of ESS`. 

The focus was on recognising the Earth as a single system with its own inherent dynamics 

and properties at the planetary level, all of which are threatened by human-driven global 

change.  The declaration concluded that:  

 

• The Earth System behaves as a single, self-regulating system comprised of physical, 

chemical, biological and human components with complex interactions and feedbacks 

among the component parts. 

 

• Global change is real and it is happening now. Human-driven changes to Earth’s land 

surface, oceans, coasts and atmosphere, and to biological diversity, are equal to some 

of the great forces of nature in their extent and impact.  

 

• Global change cannot be understood in terms of a simple cause-effect paradigm. 

Human-driven changes cause multiple, complex effects that cascade through the Earth 

System. 

 

• Earth System dynamics are characterised by critical thresholds and abrupt changes. 

Human activities could inadvertently trigger such changes and potentially switch the 

Earth System to alternative modes of operation that may prove irreversible and less 

hospitable to humans and other forms of life.  

 

• The nature of changes now occurring simultaneously in the Earth System, as well as 

their magnitudes and rates of change, are unprecedented. The Earth System is 

currently operating in a no-analogue state. 

 

On the basis of these insights, the declaration called for a new system of global science, 

which not only intensified the interdisciplinary approach that had been developed by the four 

programmes during the previous decade, but also transcended the divide between 

environment and development. The document ended with a call to the ESS research 

community to work “…with other sectors of society and across all nations and cultures to 

meet the challenge of a changing Earth.  

 

Source: Based on ref 60, Box 6.11 (p. 298)   

 

 

 

 

[b2] Box 2: The Anthropocene 

 

The term “Anthropocene” was originally introduced by E. Stoermer in the early 1980s but in 

a specific context in the freshwater limnology research community. It was not until 2000, 



 

 

when the phrase was independently re-introduced by P. Crutzen139,140, that it spread rapidly 

throughout the natural and social science communities and the humanities. The Anthropocene 

as proposed in 2000 had two meanings. In a geological context, Crutzen proposed the 

Anthropocene as a new epoch to follow the Holocene in the Geological Time Scale (GTS)140. 

In an Earth System context, the Anthropocene was proposed as a very rapid trajectory away 

from the 11,700-year, relatively stable conditions of the Holocene60. The two definitions, 

although not identical, have much in common141. 

 

The primary evidence for the Anthropocene were the Great Acceleration graphs, which arose 

from the IGBP synthesis project and highlight trends in socio-economic and Earth System 

metrics60,117,143. They demonstrated that the rapid exit of the Earth System from the Holocene 

was directly related to the explosive growth of the human enterprise from the mid-20th 

century onwards. Although new to the ESS community, the Great Acceleration had already 

been extensively explored by the historian J. McNeill144.  

 

In response to Crutzen’s (2002) proposal that the Anthropocene be formally included in the 

GTS140, the Anthropocene Working Group was established in 2009 by the Subcommission on 

Quaternary Stratigraphy In 2019, following a decade of research, publications, discussion and 

robust debate, the AWG formally recommended that: the Anthropocene be treated as a 

formal chronostratigraphic unit defined by a Global boundary Stratotype Section and Point 

(GSSP), and the primary guide for the base starting date of the Anthropocene should be a 

stratigraphic signal around the mid-20th century145-147.  

 

In the social sciences and humanities, the Anthropocene is viewed as a novel, holistic 

framing that captures complex human dynamics and their interactions with natural 

systems148. It has generated considerable discussion around the importance of the unequal 

responsibilities of different countries and people for the Anthropocene114,149, and highlights 

not only humanity’s geological-scale impacts but its challenge to achieve global 

sustainability150. 
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