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INTRODUCTION

Linear Programming (LP) problem represents one of the most widely used class of computational models, for which any possible improved solution technique would certainly be highly desirable. Of course, there has been several alternative solution strategies suggested including the classical simplex method of Dantzig [START_REF] Dantzig | Linear Programming and Extensions[END_REF] and several variations thereof, followed by recent polynomial time algorithms, namely the Ellipsoid Method of Khachiyan [START_REF] Khachiyan | A Polynomial algorithm in linear programming[END_REF] [3] and the Karmarkar Algorithm [START_REF] Karmarkar | A new polynomial Algorithm for linear programming[END_REF] both classified now as belonging to Interior Point Algorithms. Terlaky [START_REF] Terlaky | Pivot rules for linear programming: A survey on recent theoretical developments[END_REF] Todd [START_REF] Michael | The Many Facets of Linear Programming[END_REF] and Adler et al [START_REF] Adler | On Simplex Pivoting Rules and Complexity Theory[END_REF] present a summary view of the various developments as well as a projected futuristic view of the overall situation. Let us not get diverted much into the historical developments etc.

The simplex pivoting operation of Dantzig represents a move from one basis/tableau to another basis/tableau, by/through a single exchange between an entering infeasible non-basic variable and a leaving feasible basic variable. For a chosen entering infeasible non-basic variable, the leaving feasible basic variable is to be selected so as to meet certain restrictive criteria in terms of the corresponding limitation of moving only between two neighboring extreme/vertex points of the polytope defined by the set of linear system of inequalities -so as to maintain feasibility while improving the objective function value by moving further towards the optimum.

The proposed spdspds approach can be considered as a novel generalization of the simplex method of Dantzig, in terms of lifting all of such restrictions and providing a wider scope for the selection of the pivots -any nonzero element of the coefficient matrix in the tableau can be a potential candidate pivot element. It is indeed true that the very term simplex pivot has been redefined here -as a simple/single exchange between an entering non-basic variable and a leaving basic variable -maintaining only the combinatorial/structural property of being a simple/single exchange between a selected pair -that being the justification for renaming it as symplex pivot -emphasizing the primal-dual symmetry therein. The symplex pivot of spdspds need not necessarily correspond to a pair consisting of an entering infeasible non-basic variable and a leaving feasible basic variable; also it does not require to be limited to a move between neighboring extreme/vertex points of the associated polytope -although the move does indeed correspond to one between a pair of intersection points defined by the set of linear system of inequalities.

The actual selection of a spdspds pivot element is governed by an analysis of the associated measure of goodness of such a pivot choice. A global measure of goodness or a global effectiveness measure (gem) for pivot selection is defined, utilizing the novel concept of infeasibility index associated with a symplex tableau -defined as the sum of the number of primal variables and the number of dual variables that are infeasible. The change in the infeasibility index associated with a symplex pivot element can be determined by a thorough analysis of the tableau data. To guarantee the best computational performance, it is proposed to select a pivot element corresponding to the best possible decrease in the infeasibility index.

It will be shown that the spdspds algorithm passes through a non-repeating sequence of CST tableaus and reaches a terminal tableau wherefrom no further reduction in the infeasibility index is possible. The length of such sequence is limited by the infeasibility index of the initial tableau, except for cases of degeneracies that may possibly cause certain elongated sequence. An analysis of the data pattern in the terminal tableau can be used to classify the problem into one of the possible six categories -an infeasibility index of zero indicates optimum solution. Even in the absence of an optimum solution, the spdspds algorithm allows one to explore/determine the most suitable alternative solutions, including a comprehensive parametric analysis, etc. 

GOLDMAN-TUCKER COMPACT-SYMMETRIC-TABLEAU

We will go through some well-known preliminaries for the sake of establishing the notational conventions used in this report, as used in our earlier reports [START_REF] Prasad | Symmetric Primal-Dual Simplex Algorithm for Linear Programming[END_REF] and [START_REF] Muthuvel Murugan | An Implementation of Symmetric Primal-Dual Simplex Algorithm for LP[END_REF].

The Symmetric Primal-Dual Pair of LP in the Standard Canonical Form [START_REF] Goldman | Theory of Linear Programming[END_REF] is as follows:

Primal Problem:

maximize c.x = f s.t. A.x ≤ b (1) x ≥ 0 Dual Problem: minimize v.b = g s.t. v.A ≥ c (2) v ≥ 0
The descriptions for each of the problem parameters in ( 1) & (2) above are as follows:

x Primal decision variables n x 1 vector c Primal objective function coefficients We introduce the m x l vector y of slack variables to (1) and the 1 x n vector u of surplus variables to (2) to write the symmetric primal-dual pair in canonical form as follows:

Primal Problem: 

maximize c.x + 0.y = f s.t. A.x + Im.y = b (3) x, y ≥ 0 Dual Problem: minimize v.b + u.0 = g s.t. v.A -u.In = c ( 
f + u.x = v.A.x = g -v.y (6) 
For any feasible (basic or non-basic) solution to the P-D pair, u,

and therefore, (gf) = (u.x + v.y) ≥ 0 [START_REF] Prasad | Symmetric Primal-Dual Simplex Algorithm for Linear Programming[END_REF] For any basic solution (feasible or infeasible) to the P-D pair, the non-basic variables are set to zero; that is, u, y = 0 [START_REF] Muthuvel Murugan | An Implementation of Symmetric Primal-Dual Simplex Algorithm for LP[END_REF] and therefore, (gf) = (u.x + v.y) = 0 [START_REF] Goldman | Theory of Linear Programming[END_REF] The entries in the Goldman-Tucker Compact-Symmetric-Tableau (CST) directly correspond to the associated basic solution to the P-D pair, thus establishing a one-to-one correspondence between a solution basis and the associated Goldman-Tucker Compact-Symmetric-Tableau (CST).

A pivoting operation on the CST tableau corresponds to the associated move from one basis to another.

For the LP problem P-D pair Primal Problem:

 aij . xj -bi = -yi , i  R (row index) jC (11) 
 cj . xj -0 = f (function to be maximized) jC Dual Problem:

 vi . aij -cj = uj , j  C (Column index) iR (12) 
 vi . bi -0 = g (function to be minimized) iR wherein the variables xj, yi, vi, uj are all considered to be non-negative.

ALGEBRA (ARITHMETIC) OF SYMPLEX PIVOTING PROCESS

With the Goldman-Tucker Compact-Symmetric-Tableau (CST) representation for linear programming, in its standard/canonical form, one can observe that once a pivot element is selected, the actual pivoting process (the algebra and hence the arithmetic operations) is the same irrespective of the pivot selection; for example whether it is a primal pivot or a dual pivot. Hence it suffices to present here a single (common) set of operations representing the actual pivoting process -be it primal or dual. This expressional elegance and computational efficiency along with the convenience and the versatility (as will be evident later) are the reasons why the above representation has been selected for the purpose of our study.

For the sake of generality, let us imagine that we are somewhere in the middle of solving a LP problem (say after the k th iteration), and have the system model represented by a tableau (Tk) as shown in Figure -2.

By the nature of the sequence of elementary row (column) operations being performed during any pivoting process, the system model represented in The effect of a pivoting operation on ( 13) & ( 14) performed with a chosen pivot element αIJ is exactly to affect an exchange between the P-D variable pairs indicated by I and J in ( 13) and [START_REF] Smale | Mathematical Problems for the Next Century[END_REF]. That is, zJ N is entered into primal basis in exchange for zI B in [START_REF] Gerald L Thompson | Techniques for Removing Non-Binding Constraints and Extraneous Variables from Linear Programming Problems[END_REF], and wI N is entered into dual basis in exchange for wJ B in [START_REF] Smale | Mathematical Problems for the Next Century[END_REF]. Suppose we have chosen the pivot element αIJ using some appropriate pivot selection scheme, and we would like to derive the resulting tableau (Tk+1). Let the resulting tableau (Tk+1) be indicated in Figure -3. (αIJ)' ← (αIJ) -1 (αIj)' ← (αIJ) -1 αIj (βI)' ← (αIJ) -1 βI

(αiJ)' ← -αiJ(αIJ) -1 (αij)' ← αij -αiJ(αIJ) -1 αIj (βi)' ← βi -αiJ(αIJ) -1 βI (γJ)' ← -γJ (αIJ) -1 (γj)' ← γj -γJ (αIJ) -1 αIj (δ)' ← δ -γJ (αIJ) -1 βI
along with an exchange of labels associated with row I and column J; that is effectively:

(zJ N )' ← zI B ; (zI B )' ← zJ N ; (wJ B )' ← wI N ; (wI N )' ← wJ B ; while retaining the very same labels for all the other rows and columns; that is:

(zj N )' ← zj N ; (zi B )' ← zi B ; (wj B )' ← wj B ; (wi N )' ← wi N ;
for i є R\{I} and j є C\{J}.

It is to be noted here that the Goldman-Tucker Compact-Symmetric-Tableau (CST) is a unique symmetric representation common to both the primal as well as the dual of a linear programming problem in its standard canonical form. Also, the tableau evolves from T0 as the initial tableau representing the problem in its standard canonical form, while following the sequence of symplex iterations all the way to the final terminal tableau T*, while always being a tableau representation of an equivalent system of linear inequalities along with the corresponding objective function.

From ( 13) & ( 14) above, we can get:

(f+δ) +  wj B . zj N =   wi N . αij . zj N = (g+δ) - wi N . zi B [START_REF] Smale | Mathematical Problems for the Next Century[END_REF] and therefore,

(g -f) =  wi N . zi B +  wj B . zj N (16) (zj N )' -1 (wi N )' (αij)' (βi)' = -(zi B )' -1 (γj)' (δ)' = f = = (wj B )' g s-p-d-s-p-d-s © Dr.(Prof.) Keshava Prasad Halemane Page 8 of 24
The values of the primal and the dual basic variables as well as (the primal & the dual) objective function value corresponding to a basis/tableau can be directly read from the entries of the tableau -the primal objective function value being always the same as the dual objective function value for every basis/tableau all along the sequence of symplex iterations -each of the summation terms in both [START_REF] Smale | Mathematical Problems for the Next Century[END_REF] 

A TYPICAL SYMPLEX PIVOT SELECTION

A typical symplex pivot selection scheme can include four (two pairs) fundamental types of symplex pivot selections -the Primal Standard Pivot (PSP), Dual Standard Pivot (DSP) are the classical pair defined by Dantzig [START_REF] Dantzig | Linear Programming and Extensions[END_REF]. Here, we define a new pair of pivots -Primal Tricky Pivot (PTP) and Dual Tricky Pivot (DTP). The algebra of these pivot selections is given in Figure -4, along with a schematic representation of the Tableau Data Pattern that leads to such pivot selection.

EFFECT OF A TYPICAL PIVOTING OPERATION

It is useful at this point to make a few observations regarding the effect of pivoting operation, in each of the above pivot selections.

DSP {poxidixi} brings about an immediate improvement in the primal feasibility w.r.t. the pivot row, without deterioration of dual feasibility. The extent of this improvement in primal feasibility can be measured by the corresponding improvement (decrease) in the value of the dual objective function, given by a local effectiveness measure lem(I, J) = abs{γJ(αIJ) -1 βI} [refer Section-8].

PSP {doxipixi} brings about an immediate improvement in the dual feasibility w.r.t. the pivot column, without deterioration of primal feasibility. The extent of this improvement in dual feasibility can be measured by the corresponding improvement (increase) in the value of the primal objective function, given by the same local effectiveness measure as mentioned here above.

PTP {poxidoxo} brings about an immediate improvement in the primal feasibility w.r.t. the pivot row, without any concern to the dual feasibility. The extent of this improvement in primal feasibility can be measured by the corresponding improvement (increase) in the value of the primal objective function, given by the same local effectiveness measure as mentioned here above.

DTP {doxipoxo} brings about an immediate improvement in the dual feasibility w.r.t. the pivot column, without any concern to the primal feasibility. The extent of this improvement in dual feasibility can be measured by the corresponding improvement (decrease) in the value of the dual objective function, given by the same local effectiveness measure as mentioned here above. 

I  { i  R │βi < 0}; JDSP(I) ← arg-min {(γj / αIj) │ γj ≤ 0; αIj < 0}; j  C (b) Primal Standard Pivot, PSP: {doxipixi} J  { j  C │ γj > 0}; IPSP(J) ← arg-min {( βi / αiJ) │ βi ≥ 0; αiJ > 0}; i  R (c) Primal Tricky Pivot, PTP: {poxidoxo} I  { i  R │ βi < 0}; JPTP(I) ← arg-max {abs( γj / αIj) │ αIj < 0; γj > 0}; j  C (d) Dual Tricky Pivot, DTP: {doxipoxo} J  { j C │ γj > 0}; IDTP(J) ← arg-max {abs( βi / αiJ) │ αiJ > 0; βi < 0}; i  R

Figure-4:. Four Types of Typical Symplex Pivot Selections

-negative; 0 zero; + positive; Ө non-positive; * any value;  non-negative; • un-analyzed

CHARACTERIZATION OF A PIVOT ELEMENT/CELL

Each potential pivot element/cell in the Compact Symmetric Tableau (CST) is characterized by a "cell-type". The cell type of a cell in I th row and J th column consists of three components. They are the sign of αIJ (either '0', '+' or '-'), the sign of βI (either 'Z', 'P' or 'N') and the sign of γJ (either 'z', 'p' or 'n'). Hence there will be a total of 27 different cell types. However, if α is zero or numerically near-zero, it will not be a potential pivoting cell, since pivoting will not be performed on such cells. Hence the nine cell types with α ≈ 0 are combined together and the new cell type given is 0**. Thus there are 19 cell types for our consideration.

It will be clear from the foregoing discussion (Section-9) that any specific pivoting operation will affect/change the feasibility of a primal-basic-variable [dual-basic-variable] if the ratio βi/αiJ is closer to zero than the pivoting-ratio βI/αIJ [if the ratio γj/αIj is closer to zero than the pivoting-ratio γJ/αIJ]: the feasibility/infeasibility of those rows [columns] with the associated ratios farther away from zero beyond (relative to) the corresponding pivoting-ratio will not get affected by such pivoting operation.

•

--← • •  + Ө • ↓ • • - + •  → + Ө • ↑ - • -← • •  + Ө • ↓ + • -→ • •  + Ө • ↑ s-p-d-s-p-d-s s-p-d-s-p-d-s © Dr.(Prof.
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TYPICAL SYMPLEX PIVOT DECISION STRATEGY

The four distinct types of typical pivot selections mentioned above may be considered for designing a pivoting strategy. It is to be noted here that the pivot selection as well as the pivoting operation is symmetrical w.r.t. the primal problem and the dual problem, both represented in the very same CST representation of a linear programming problem.

The four distinct types of typical pivot selections may be considered in the following default preference order: {{DTP,PSP},{PTP,DSP}} to drive towards dual feasibility first; or alternatively {{PTP,DSP},{DTP,PSP}} to drive towards primal feasibility first.

At every iteration, an attempt is made to select a pivot element/cell, by checking the possible pivot selections belonging to one of the above four types of pivot selections in the default preference order as specified above. It is to be noted that depending upon the actual data in the Tableau, a pivot selection of specific type which was not possible in an earlier iteration, can become possible in a later iteration, sometimes even in the very next following iteration. That is why it is a crucial part of an algorithm to check in each (and every) iteration, for each of the four types of possible pivot selections preferably (although not necessarily) in a pre-specified preference order. At each step mentioned above, if there is more than one pivot element of that particular cell type, then the choice can be narrowed by utilizing some measure of goodness for the pivot selection, appropriately defined.

MEASURE OF GOODNESS FOR PIVOT SELECTION

From the earlier discussion above, one can observe that the absolute value of the change in the objective function, namely, can possibly be utilized as a local effectiveness measure (lem) of the pivoting operation -applicable for any and every iteration, for both primal and dual -given by lem(I, J) = abs{γJ(αIJ) -1 βI}.

Although it is not specifically suggested here, one can opt to choose a pivot, possibly to maximize this local effectiveness measure (lem) in every iteration, either among the possible pivots of a particular type or subtype, or even among of all the possible pivots of all the four possible types. Even, if done so, it cannot be guaranteed (needs further research?) to minimize the overall number of symplex iterations required for reaching an optimum solution.

It requires further research work to thoroughly understand, analyze and incorporate the concept of any "local effectiveness measure" (lem) for a single symplex pivoting operation to the fullest extent, that would in effect achieve a guaranteed improvement in some corresponding "global effectiveness measure" (gem) defined appropriately for the given LP problem; in developing a efficient & robust solution strategy. For now, let us come to the main algorithm itself.

In order to achieve a guaranteed performance efficiency, we propose to utilize a global effectiveness measure (gem) that characterizes a CST tableau with a number indicating the largest possible decrease in the infeasibility index. 

INFEASIBILITY INDEX : A GLOBAL EFFECTIVENESS MEASURE

As an inverse measure of goodness, the infeasibility index λ of a given CST tableau is defined as the sum of the primal infeasibility index μ and the dual infeasibility index ν. It corresponds to the number of basic variables in primal & dual which are infeasible in the given tableau. That is, we define λ = μ + ν; and thereforeλ = (μ, number of rows with β < 0) + (ν, number of columns with γ > 0); or λ = (μ, number of rows with zi B < 0) + (ν, number of columns with wj B < 0).

If the infeasibility index λ of the given tableau equals to zero then it indicates that the tableau is the terminal tableau which is feasible and optimal. By the definition of the infeasibility index, it can never be negative, nor can it be more than the sum of the number of columns and the number of rows in the Compact Symmetric Tableau. That is,

0 ≤ λ = {(0≤μ≤m) + (0≤ν≤n)} ≤ (m + n).
Given a tableau, the change in the infeasibility index (τ = Δλ) can be associated with each cell that can be a potential candidate pivot element (i.e. α ≠ 0). This change in the infeasibility index consists of two components, one is the change in the primal infeasibility index (σ = Δμ) and the other is the change in the dual infeasibility index (ρ = Δν). That is, Change in the infeasibility index τ = Δλ = (Δμ + Δν) = σ + ρ. Global Effectiveness Measure, gem = -τ.

Calculation of the change in the primal infeasibility index (σ = Δμ)

For each column j, the ratio Rij = i/ij is calculated for all rows i = 1, 2, …, m.

The ratio can either be positive, zero or negative. It can be represented as in Figure -5.

Let αIJ be the chosen pivot element, then after pivoting, the values of β are given by RIJ = βI/αIJ and (βI)' ← (βI/αIJ) and (βi)' ← βi -(βI/αIJ)αiJ

The calculation of σ can be divided into three different cases depending upon the value of RIJ. β = 0 is considered as feasible.

(i) RIJ = 0 (βI = 0, αIJ ≠ 0)

Here, there will not be any change in the β values, and therefore there will not be any change in the infeasibility index. Hence, σIJ = 0.

(ii) 0 < RIJ (0 ≤ βI , 0 < αIJ : pixi -or-βI < 0, αIJ < 0 : poxi) : b-q RiJ < 0 will not affect the change in the infeasibility index. RiJ < 0 can occur in two situations. One of them is when βi < 0 and αiJ > 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be negative; hence the change in the infeasibility index is not affected.

The other is when βi > 0 and αiJ < 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be positive; hence the change in the infeasibility index is not affected.

RiJ > 0 will affect the change in the infeasibility index. RiJ > 0 can occur in two situations.

One is when βi ≥ 0 and αiJ > 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be positive for the ratios RiJ > RIJ, (βi)' will be zero for the ratios RiJ = RIJ, (βI)' will continue to be positive, and (βi)' will become negative for the ratios RiJ < RIJ. Hence the change in the infeasibility index is increased by the number of ratios RiJ which are less than RIJ and greater than or equal to zero.

The other is when βi < 0 and αiJ < 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be negative for the ratios RiJ > RIJ, (βi)' will become zero for the ratios RiJ = RIJ, (βI)' will become positive, and (βi)' will become positive for the ratios RiJ < RIJ. Hence the change in the infeasibility index is decreased by the number of ratios RiJ which are less than or equal to RIJ and strictly greater than zero.

Therefore, b = Σ No. of rows i with 0 ≤ βi , 0 < αiJ and 0 ≤ RiJ < RIJ : {pixi} q = Σ No. of rows i with βi < 0 , αiJ < 0 and 0 < RiJ ≤ RIJ : {poxi} and σIJ = bq : {pixi-poxi} RiJ > 0 will not affect the change in the infeasibility index. RiJ > 0 can occur in two situations.

One of them is when βi ≥ 0 and αiJ > 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be positive; hence the change in the infeasibility index is not affected.

The other is when βi < 0 and αiJ < 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be negative; hence the change in the infeasibility index is not affected.

RiJ <0 will affect the change in the infeasibility index. RiJ < 0 can occur in two situations.

One is when βi ≥ 0 and αiJ < 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be positive for the ratios RiJ < RIJ, (βi)' will be zero for the ratios RiJ = RIJ, (βI)' will become negative, and (βi)' will become negative for the ratios RiJ > RIJ. Hence the change in the infeasibility index is increased by the number of ratios RiJ which are greater than RIJ and less than or equal to zero (one more, if βI is positive, since it will become negative).

The other is when βi < 0 and αiJ > 0. In this case, it can be seen from the expression for (βi)' given above, that (βi)' will continue to be negative for the ratios RiJ < RIJ, (βi)' will become zero for the ratios RiJ = RIJ, (βI)' will become negative, and (βi)' will become positive for the ratios RiJ > RIJ.

Hence the change in the infeasibility index is decreased by the number of ratios RiJ which are greater than or equal to RIJ and strictly less than zero (one less, if βI is negative, since it will continue to be negative).

Therefore, q = Σ No. of rows i with 0 ≤ βi , αiJ < 0 and RIJ < RiJ ≤ 0 : {pixo} b = Σ No. of rows i with βi < 0 , 0 < αiJ and RIJ ≤ RiJ < 0 : {poxo} and σIJ = (q + 1)b if (βI > 0) or σIJ = q -(b -1) if (βI < 0) Hence we get, σIJ = 1 + qb : {1pixo-poxo}

Calculation of the change in the dual infeasibility index (ρ = Δν)

For each row i, the ratio Rij = γj/ij is calculated for all columns j = 1, 2, …, n.

The ratio can either be positive or negative. It can be represented as in The calculation of ρ can be divided into three different cases depending upon the value of RIJ. γ = 0 is considered as feasible.

(i) RIJ = 0 (γJ = 0, αIJ ≠ 0)

Here there will not be any change in the γ values, and therefore there will not be any change in the infeasibility index. Hence, ρIJ = 0. One of them is when γj < 0 and αIj > 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be negative; hence the change in the infeasibility index is not affected.

The other is when γj > 0 and αIj < 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be positive; hence the change in the infeasibility index is not affected.

RIj > 0 will affect the change in the infeasibility index. RIj > 0 can occur in two situations.

One is when γj ≤ 0 and αIj < 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be negative for the ratios RIj > RIJ, (γj)' will be zero for the ratios RIj = RIJ, (γJ)' will continue to be negative, and (γj)' will become positive for the ratios RIj < RIJ. Hence the change in the infeasibility index is increased by the number of ratios RIj which are less than RIJ and greater than or equal to zero. The other is when γj > 0 and αIj > 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be positive for the ratios RIj > RIJ, (γj)' will become zero for the ratios RIj = RIJ, (γJ)' will become negative, and (γj)' will become negative for the ratios RIj < RIJ. Hence the change in the infeasibility index is decreased by the number of ratios RIj which are less than or equal to RIJ and strictly greater than zero.

Therefore, p = Σ No. of columns j with γj ≤ 0 , αIj < 0 and 0 ≤ RIj < RIJ : {dixi} d = Σ No. of columns j with 0 < γj , 0 < αIj and 0 < RIj ≤ RIJ : {doxi} and ρIJ = pd : {dixi-doxi} (iii) RIJ < 0 (γJ ≤ 0, αIJ > 0 : dixo -or-γJ > 0, αIJ < 0 : doxo) : 1+d-p RIj > 0 will not affect the change in the infeasibility index. RIj > 0 can occur in two situations.

One of them is when γj < 0 and αIj < 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be negative; hence the change in the infeasibility index is not affected.

The other is when γj > 0 and αIj > 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be positive; hence the change in the infeasibility index is not affected. RIj <0 will affect the change in the infeasibility index. RIj < 0 can occur in two situations.

One is when γj ≤ 0 and αIj > 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be negative for the ratios RIj < RIJ, (γj)' will be zero for the ratios RIj = RIJ, (γJ)' will become positive, and (γj)' will become positive for the ratios RIj > RIJ. Hence the change in the infeasibility index is increased by the number of ratios RIj which are greater than RIJ and less than or equal to zero (one more, if γJ is negative, since it will become positive).

The other is when γj > 0 and αIj < 0. In this case, it can be seen from the expression for (γj)' given above, that (γj)' will continue to be positive for the ratios RIj < RIJ, (γj)' will become zero for the ratios RIj = RIJ, (γJ)' will become positive, and (γj)' will become negative for the ratios RIj > RIJ.

Hence the change in the infeasibility index is decreased by the number of ratios RIj which are greater than or equal to RIJ and strictly less than zero (one less, if γJ is positive, since it will continue to be positive).

Therefore, d = Σ No. of columns j with γj ≤ 0 , 0 < αIj and RIJ < RIj ≤ 0 : {dixo} p = Σ No. of columns j with 0 < γj , αIj < 0 and RIJ ≤ RIj 

CST-SIGNATURE OF A COMPACT SYMMETRIC TABLEAU

We have designed a unique CST-signature that distinctly identifies any specific Goldman-Tucker Compact Symmetric Tableau associated with a given Linear Programming Problem. It is a string of length n+m (number of columns + number of rows). The first n entries are chosen from the character set {n, z, p} depending upon whether the γ value is negative, zero or positive respectively; the next m entries are chosen from the character set {P, Z, N} depending upon whether the β value is positive, zero or negative respectively. The positions of these entries in the signature string are fixed conveniently with respect to the initial tableau, as in considering the lexicographic ordering of these n+m parameters. As part of the pivot selection process, during the infeasibility analysis, corresponding to a specific possible choice of the pivot element, the CST-signature string can be generated for the anticipated resultant tableau. It can be compared with the signatures of all the previous tableaus stored in a dictionary, to facilitate the detection of any possible imminent cycle, since each CST-tableau has a unique CST-signature and each CST-signature uniquely identifies a CST-tableau. If&when an imminent cycle is detected, such pivot choice can be avoided and possible alternative pivot choice may be considered for actual pivoting operation. This methodology will be useful especially in situations of redundancy. Note that an alternative binary string CST-signature may be defined by mapping the alphabet symbols {n,z,p} to 0 indicating the primal non-basic status, and mapping the alphabet symbols {p,Z,N} to 1 indicating primal basic status, of the corresponding parameters, as a framework to represent only the combinatorial information without any reference to the feasibility information.

REDUNDANCY

When no further decrease in the infeasibility index is indicated by every/all possible pivot selections (the best pivot choice corresponding to the largest possible decrease -non-increase -in the infeasibility index is itself a case of no change in the infeasibility index) the situation may correspond to either of the two cases: (1) the tableau is indeed the terminal tableau, or (2) the best possible choice of the pivot element is in some redundant row/column. In the first case, the spdspds algorithm terminates and the tableau may be analyzed to classify it into one of the six possible categories as described later. The presence of primal/dual redundancy (either in the terminal tableau itself, as in the first case, or may even be some temporary intermediate redundancy encountered enroute towards the optimum/terminal tableau, as in the second case) may be identified by the presence of zero in some row/column. The situation wherein the best pivot choice is itself in some redundant row/column, requires further analysis, before declaring that the tableau is indeed the terminal tableau -it may indeed be either a case of temporary/intermediate redundancy or a case of redundancy in a non-optimum but terminal tableau.

A pivot selection on any redundant row/column with primal/dual redundancy doesn't lead to any change in the primal/dual feasibility (refer to the algebra/arithmetic of the pivoting process presented in Section-3) although the coefficient matrix entries will surely be changed in the resulting tableau. Therefore, the infeasibility analysis needs to be carried out for the resulting tableau so as to check & confirm whether any further reduction in the infeasibility index is now attainable -if so, the usual iteration process continues; if not, then further pivoting on the redundant rows/columns needs to be continued (as per a predetermined lexicographically ordered sequence of the problem parameters) among those possible pivot options while also keeping track of the CST-signature of the tableaus to detect & avoid possible impending cycling. 

ALGORITHM TERMINATION -TERMINAL TABLEAU TYPES

When further reduction in the infeasibility index is not possible, the tableau is checked & confirmed to be the terminal tableau. The possible terminal tableau types as shown in Figure -7 belong to one of the six possible categories listed here. Label F is for feasible-basic-finite, ∞ for feasible basicfinite/non-basic-infinite and Φ for infeasible -corresponding to both primal and dual variables. This classification into six categories as presented here is a refinement over the well-known classical approach; one that enables to distinctly identify the case wherein primal (dual) has a feasible basic-finite/non-basic-infinite optimum with finite value for the objective function, while the dual (primal) has a feasible-basic-finite optimum. This distinction from the classical approach arises because we give primary emphasis on the classification based on the nature of the decision variables at termination, and give secondary emphasis on the finiteness (or otherwise) of the objective function value. The set of criteria for this classification scheme, to be used after ensuring that the tableau is indeed the terminal tableau, is given along with Figure -7.

Note that the situations corresponding to primal/dual degeneracy with the resultant dual/primal multiplicity and also that of infinite rays are all easily discernible in this classification scheme. In case of terminal infeasibility, a judicious use of either the change in primal infeasibility index (σ=Δμ) or change in dual infeasibility index (ρ=Δν) instead of the change in overall infeasibility index (τ=Δλ) can be utilized to arrive at an almost primal feasible or an almost dual feasible tableau, if one requires such an output for further problem analysis etc. This maneuverability can be adapted to the needs of the problem and that shows the versatility of the spdspds approach.

• P=F :

(μ = 0) & [∀(IR,JC):{0 ≤ σIJ}] & [∄(iR,jC):{(αij <0)(βi ≥0)(γj ≥0)}]; • P=∞ : (μ = 0) & [∀(IR,JC):{0 ≤ σIJ}] & [∃(iR,jC):{(αij <0)(βi ≥0)(γj ≥0)}]; • P=Φ : (μ > 0) & [∀(IR,JC):{0 ≤ σIJ}]; • D=F : (ν = 0) & [∀(JC,IR):{0 ≤ ρIJ}] & [∄(jC,iR):{(αij >0)(βi ≤0)(γj ≤0)}]; • D=∞ : (ν = 0) & [∀(JC,IR):{0 ≤ ρIJ}] & [∃(jC,iR):{(αij >0)(βi ≤0)(γj ≤0)}]; • D=Φ : (ν > 0) & [∀(JC,IR):{0 ≤ ρIJ}];

SYMMETRIC PRIMAL DUAL SYMPLEX PIVOT SELECTION STRATEGY

(1) The proposed spdspds approach can be used to solve any LP problem, by first converting it into the standard/canonical form before proceeding further. In performing such transformation, it is possible to enhance the overall efficiency by the following approach: (a) Free/bounded variables can be replaced by non-negative variables not double in number, but only just one extra in number. Equations can be replaced by inequalities not double in number, but only just one extra in number. (b) No need for use of artificial variables; the initial basic solution need not necessarily be feasible; and therefore no need to rely on two-phase method or big-M method, etc.

(2) Any nonzero element of the coefficient matrix in the tableau can be a potential pivot element. The earlier defined typical symplex pivot selection scheme and the associated set of four types of pivot candidates {{DTP, PSP},{PTP, DSP}} is a typical sample, presented (refer Sections 4-to-8) only for pedagogical reasons, to eventually take the reader towards the proposed spdspds. Note that the classical PSP (doxipixi pivot) with cell-type +Pp and DSP (poxidixi pivot) with cell-type -Nn are the most often encountered ones simply because of their classical appeal. Although a doxopixo pivot with cell type -Pp or a poxodixo pivot with cell-type +Nn may usually seem to be simply unacceptable or extremely unlikely, it may indeed turn out that such a pivot choice can yield a surprisingly large decrease in the infeasibility index, depending on the tableau data entries, especially as an intermediary pivoting iteration, and therefore worth the consideration. The versatility of our spdspds algorithm allows for such pivot selection decisions.

(3) The proposed concept of infeasibility index along with the use of a measure of goodness for the pivot selection determined as/by the anticipated decrease in the infeasibility index considered as a global effectiveness measure (gem = -τ) arising due to the specific pivot selection, turns out to be a great grand breakthrough in achieving the ultimate performance challenge in the use of symplex method for solving linear programming problems. One can use either σ (if m ≤ n) or ρ (if n ≤ m) as a tie-breaking measure to choose among alternatives having the same value for τ. Also note that the entire infeasibility analysis is independent of and unaffected by any scaling of rows/columns. (4) Problem of cycling en-route towards the terminal tableau, possibly caused by some intermediate degeneracy will get prevented because of the very nature of the spdspds pivot selection strategy, seeking the best possible decrease of the infeasibility index through a non-degenerate pivot. If and when encountered with a possible degeneracy that seems to block further progress in decreasing the infeasibility index, the lexicographic ordering of the variables may be used as a tie-breaking mechanism to guide the choice of pivot element, thus coursing through a part of the cycle, until a point is reached wherefrom spdspds finds a step down the infeasibility path again, unless it happens to be the terminal tableau. So, spdspds is effectively immune to problem of cycling caused by any possible intermediate degeneracy.

(5) Potential possibility of numerical instability can be avoided by careful elimination of poor choices of the pivot element, using appropriate filters -even if it requires going for a next-best pivot choice in terms of gem (decrease in the infeasibility index) -in order to avoid such treacherous pathways leading to numerically disastrous computational behavior -that is effectively like first exchanging I for K followed by an exchange of K for J in order to achieve an exchange of I for Jequivalent to using an appropriate pre-conditioner without actually doing so.

COMPUTATIONAL COMPLEXITY

For a linear programming problem represented in its standard canonical form using the CST of size (m)x(n) the size(length) of the input data (problem size) L can be taken as ~ [(m+1)*(n+1)].

In the worst-case, the infeasibility index of the initial tableau will at most be {(m)+(n)} and at each spdspds symplex pivoting iteration the infeasibility index gets reduced by at least one so that it takes at most {(m)+(n)} spdspds symplex pivoting iterations to reach the optimum solution if one exists; or may even be well before that in order to report the infeasibility status of the given problem. Therefore, the number of spdspds symplex pivoting iterations required to solve the linear programming problem is, O(L 1/2 ) in the worst-case. However, the expected number of spdspds symplex pivoting iterations is ≤min{(m),(n)} because every symplex pivot choice corresponds to a decrease in the infeasibility index and also that the basic/non-basic status of each variable is not expected to switch around much except in rare instances of potential numerical instability etc.

Each spdspds symplex pivoting operation requires a complete analysis of the infeasibility status before performing the actual pivoting operation, and that itself requires -that is super-linear sub-quadratic polynomial time complexity bound. We assert that this is indeed the lower limit in worst-case computational complexity for any symplex/simplex based algorithm for LP problem and that in fact it represents the computational complexity of LP problem itself.

It can be shown easily that the space complexity is only O(L) -that is, linear complexity bound.

Note that spdspds has finite termination and provides a definite output, that is, either the optimum solution if & when one exists, or a point of minimal infeasibility beyond which no further spdspds symplex pivoting is possible towards any improvement in the feasibility of the given problemwhich itself may provide insight as to the possible refinements in the problem formulation itself.

DIRECTIONS FOR FUTURE RESEARCH

0: The spdspds algorithm provides a scope for future research work with a motivation to further enhance the computational efficiency -by exploiting the complete information content that is made available through the infeasibility analysis of initial tableau.

1: Analyze the entries in the initial tableau T0 and make a statement regarding the basic/non-basic status of each of the variables in the optimum tableau T*. This question is conceptually equivalent to asking, in the context of non-linear programming [START_REF] Olvi | Nonlinear Programming[END_REF] as to whether a constraint will be active (non-basic) or otherwise at the optimum -although of course expecting an answer in that context may certainly not be practical. However, the situation with linear systems can be more promising so as to expect a possible attempt in answering that question -based only on a thorough analysis of either the initial tableau T0, or equivalently, any tableau Tk en-route towards the optimum -using a radically redefined concept of binding/nonbinding [8][12][13] constraints -implicitly achieved by the spdspds algorithm as explained herein below:

2: For any column JC the set of rows {inegτ(J)} with τiJ < 0 that is {(iR):(τiJ<0)]} along with the associated set of ratios {Rinegτ(J)} that is {βinegτ(J)/αinegτ(J).J} may be determined. Suppose there exists a row IR having its ratio βI/αIJ for every column JC that is farther away from zero beyond (relative to) the set of ratios {Rinegτ(J)}.

(∃IR)(∀JC)[{αIJ=0}(∀iR\I)[(0≤{βinegτ(J)/αinegτ(J).J}<βI/αIJ)(βI/αIJ<{βinegτ(J)/αinegτ(J).J}≤0)]] Note that the feasibility/infeasibility of such a row (non-binding?row) will not be affected by any of our symplex pivoting operation.

Exactly on the same lines, for any row IR the set of columns {jnegτ(I)} with τIj < 0 that is {(jC):(τIj<0)]} along with the associated set of ratios {Rjnegτ(I)} that is {γjnegτ(I)/αI.jnegτ(I)} may be determined. Suppose there exists a column JC having its ratio γJ/αIJ for every row IR that is farther away from zero beyond (relative to) the set of ratios {Rjnegτ(I)}.

(∃JC)(∀IR)[{αIJ=0}(∀jC\J)[(0≤{γjnegτ(I)/αI.jnegτ(I)}<γJ/αIJ)(γJ/αIJ<{γjnegτ(I)/αI.jnegτ(I)}≤0)]] Note that the feasibility/infeasibility of such a column (non-binding?column) will not be affected by any of our symplex pivoting operation.

This explains how spdspds algorithm effectively avoids any unnecessary swapping back and forth of the basic/non-basic status of each variable (that has been indeed the root cause of the severe computational inefficiency in the classical simplex method and all its variants -that has never been effectively addressed till now) by the very choice of the spdspds symplex pivot corresponding to the largest possible decrease in the infeasibility index at each symplex iteration.

Q: is there any further improvement possible beyond this? Suppose there exists a row iR having its ratio βi/αij for every column jC that is closer to (no farther from) zero relative to the set of ratios {Rinegτ(j)} -can we say that such a row (binding?row) will certainly be pushed to primal non-basic status by some pivoting operation? Suppose there exists a column jC having its ratio γj/αij for every row iR that is closer to (no farther from) zero relative to the set of ratios {Rjnegτ(i)} -can we say that such a column (binding?column) will certainly be pushed to primal basic status by some pivoting operation? 3: The combined effect of a simultaneous application of more than one symplex pivot (rather than a sequence of symplex pivoting operations) is indeed worth further detailed study, and can possibly lead to what may be called as the general "spdspds omniplex pivoting" operation.

4:

The versatility of the spdspds algorithm allows for extensive combinatorial analysis along with numerical experimentation to explore further possibilities, including possible applications in polyhedral combinatorics, network optimization, etc. Also, for example, as in the classical approaches, one can possibly seek to first achieve primal or dual feasibility, more efficiently, by utilizing the best possible decrease in the corresponding component -either σ or ρ rather than τ, before going further with later iterations.

A POSER TO THE COOL-HEADED BRAVE-HEARTS

Here, we present a poser to you, our cool-headed brave-heart counter-part:

Refer to the notation used in A careful reading of this entire report will convince you that the spdspds algorithm has been designed with strong/rigorous logical/mathematical justification at every step.

CONCLUSION

The proposed concept of infeasibility index is an inverse measure of goodness associated with a CST tableau. The decrease in the infeasibility index as a global effectiveness measure (gem) associated with each potential pivot element forms the basic foundation for the proposed spdspds algorithm. Also note that the entire infeasibility analysis is independent of and unaffected by any scaling of rows/columns. for the reason -"the content is not sufficient for the report to appear in MPA" -therefore making me acknowledge the view-point : "rejection can indeed be turned around towards perfection"! I must necessarily confess that the core idea behind 'spdspds' is so stunningly & elusively simple, that one may simply be taken aback in a profound wonder-struck jaw-drop-silence, possibly with an after-thought : "oh my goodness, how could it be that it never flashed on me any time earlier"! I acknowledge that this report was not accepted (2020JUN01) for uploading onto the Optimization Online E-print Repository; the reason given was: "The report seems wrong"! On the auspicious vidyaa(vijaya)daSami day [2020OCT25] I wish to share my pleasure in giving a new name as 'symplex pivot' to the now redefined simplex pivot, emphasizing the primal-dual symmetry therein, along with the expanded scope in terms of the far wider range of choices available in the selection of such pivot element, while maintaining the minimal combinatorial/structural requirement of being simply an exchange between a basic (dependent) variable and a non-basic (independent) variable, in the Goldman-Tucker Compact Symmetric Tableau (CST) which is a unique symmetric representation common to both the primal as well as the dual of a linear programming problem in its standard canonical form. This renaming acknowledges that our 'symplex' is indeed a rebirth of the classical simplex defined by Dantzig, although after well over seven decades, now as a new avataar in the twenty first century.

DEDICATION

To To all the cool-headed brave-hearts, eagerly awaited but probably yet to be visible among the world optimization professionals, who would be attracted to and certainly capable of effectively understanding without any prejudice and appreciating the deeper details enshrined in 'spdspds', who may opt for 'symplex' over 'simplex' and 'spdspds' over any other strategy for solving linear programming problems.

ॐतत्सत ्
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Figure- 1 :

 1 Figure-1: Initial Compact Symmetric Tableau (T0)

  (1) & (2) or equivalently (3) & (4) the above tableau in Figure-1 represents the initial tableau indicating the initial basic solution (IBS) wherein yi are the primal basic variables associated (one-to-one permanent association) with vi the dual non-basic variables, whereas xj are the primal non-basic variables associated (one-to-one permanent association) with uj the dual basic variables. Note that the column-labels xj (along with the label -1 for the RHS column) and the row-labels vi (along with the label -1 for the objective function row) play a significant role in the CST tableau, and the way to interpret (read) the CST tableau is as follows: -d-s-p-d-s © Dr.(Prof.) Keshava Prasad Halemane Page 5 of 24

Figure- 2 Figure- 2 :

 22 Figure-2: Compact Symmetric Tableau (Tk) after k iterations

Figure- 3 :

 3 Figure-3: Compact Symmetric Tableau (Tk+1) after (k+1) iterations

s

  -p-d-s-p-d-s © Dr.(Prof.) Keshava Prasad Halemane Page 9 of 24 (a) Dual Standard Pivot, DSP: {poxidixi}

Figure- 5 :

 5 Figure-5: Ordered Pattern of (βi / αiJ) Values for i = 1, 2, …, m * => ('P', 'N' or 'Z')

Figure- 6 .

 6 Let αIJ be the chosen pivot element, then after pivoting, the values of γ are given by RIJ = γJ/αIJ and (γJ)' ← -(γJ/αIJ) and (γj)' ← γj -(γJ/αIJ)αIj s-p-d-s-p-d-s © Dr.(Prof.) Keshava Prasad Halemane Page 14 of 24

Figure- 6 :

 6 Figure-6: Ordered Pattern of (γj / αIj) Values for j = 1, 2, …, n * => ('p', 'n' or 'z')
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  Hence we get, ρIJ = 1 + dp :{1dixo-doxo} s-p-d-s-p-d-s © Dr.(Prof.) Keshava Prasad Halemane Page 16 of 24

( 1 )Figure- 7 .

 17 Figure-7. Six Categories for Terminal Tableau Data Pattern.negative; 0 zero; + positive; Ө non-positive; * any value;  non-negative; • un-analyzed

s
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  ≤[2*(m)*(n)] floating point operations, that is O(L). Each spdspds symplex pivoting operation requires ≤[3*(m+1)*(n+1)] floating point operations, which is again O(L). Thus, the total computational work involved in solving the linear programming problem is ≤{(m)+(n)}*[5*m*n + 3*m + 3*n] floating-point arithmetic operations, which is of course O(L 1.5 )

Figure- 4

 4 and consider the two scenarios described below: [∀IR]:[∄JC{{I=IPSP(J)}˅{I=IPTP(J)}}]; & [∀JC]:[∄IR{{J=JDSP(I)}˅{J=JDTP(I)}}]; or the scenarios described below: [∀IR]:[∄JC{∀iR{(βI≥0)˄((0≤βI/αIJ<βi/αiJ)˅(βi/αIj<βI/αIJ≤0))}˅{(βI<0)˄((0≤βi/αiJ<βI/αIJ)˅(βI/αIJ<βi/αiJ≤0))}}]; & [∀JC]:[∄IR{∀jC{(γJ≤0)˄((0≤γJ/αIJ<γj/αIj)˅(γj/αIj<γJ/αIJ≤0))}˅{(γJ>0)˄((0≤γj/αIj<γJ/αIJ)˅(γJ/αIJ<γj/αIj≤0))}}]; and then may even possibly consider the scenarios described below: [{(∀IR)(∄JC)}:{(∀iR)(σIJ < σiJ ≤ 0)}] & [{(∀JC)(∄IR)}:{(∀jC)(ρIJ < ρIj ≤ 0)}]; A careful reading of the above will reveal that the underlying reasoning here is what leads to the concept of infeasibility index as a global effectiveness measure for a symplex pivoting operation that form the conceptual foundation for the design of spdspds expressed by the following: ¬[(∃IR)(∃JC)]:[{(∀iR)(∀jC)(i≠I)(j≠J){τIJ < τij ≤ 0}]

s
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The proposed spdspds algorithm provides a novel viewpoint to the very same classic framework of Goldman-Tucker Compact-Symmetric-Tableau representation for LP -with a newly defined concept of symplex pivot; leading to an efficient, robust and versatile iterative solution strategy passing through a non-repetitive sequence of symplex tableaus requiring minimum number of symplex iterations, with a worst-case computational complexity of O(L 1.5 ).

The proposed concept of the CST-signature can be utilized to keep track of the computational path from the initial tableau to the terminal tableau, and for advance detection of possible cycling before it actually occurs -even though of course the spdspds algorithm is effectively immune to any cycling caused by possible intermediate degeneracy.

For the first time in the history of Linear Programming, we have achieved -(0.0) effective utilization of the Goldman-Tucker Compact-Symmetric-Tableau (CST) which is a unique symmetric representation common to both the primal as well as the dual of a linear programming problem in its standard canonical form, and in which the algebra/arithmetic of the pivoting operation also gets represented by a unique single set of operations irrespective of whether it is a primal pivot or a dual pivot;

(1.0) with 'symplex' -a new avataar of 'simplex' in the 21st century, the concept of (2.0) infeasibility-index for a P-D pair has been defined and effectively used as a (3.0) global-effectiveness-measure, in the design of 'spdspds' algorithm, to guide the pivoting process, with five guarantees -(3.1)* improvement of the overall P-D feasibility at every iteration, (3.2)* immunity against cycling, (3.3)* finite termination, (3.4)* minimum number of spdspds symplex pivoting iterations, (3.5)* worst case computational complexity of O(L 1.5 ) -(4.0) with a re-defined concept of binding / non-binding constraints implicitly incorporated -(5.0) by this Game-Changer 'spdspds' Algorithm, claiming to be the Great Grand Breakthrough, having successfully resolved-&-reposed the Linear Programming Performance Challenge of the millenniumrefer to the 9th among the 18 "Mathematical Problems for the Next Century" [START_REF] Smale | Mathematical Problems for the Next Century[END_REF][15] -(6.0) with consequent immediate as well as lasting, deep as well as far-reaching impact on the study, teaching and application of Linear Programming and Algorithms in particular as well as Computational Complexity Analysis in general.

The Linear-Programming Grand-Master reads 'spdspds' as 'yes-speedy-yes-speedy-yes' (yes! -why silent?) while rejoicing its 180-degree rotational symmetry as a string symbol.