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Abstract	
	

Protein	misfolding	and	aggregation	of	amyloid	proteins	is	the	fundamental	
cause	 of	 more	 than	 twenty	 diseases.	 Molecular	 mechanisms	 of	 the	 self-
assembly	 and	 the	 formation	 of	 the	 toxic	 aggregates	 are	 still	 elusive.	
Computer	simulations	have	been	intensively	used	to	study	the	aggregation	
of	 amyloid	 peptides	 of	 various	 amino	 acid	 lengths	 related	 to	
neurodegenerative	 diseases.	 We	 review	 atomistic	 and	 coarse-grained	
simulations	of	short	amyloid	peptides	aimed	at	determining	their	transient	
oligomeric	structures	and	the	early	and	late	aggregation	steps.	
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1.	Introduction	
	

Numerous	diseases	affecting	either	the	central	nervous	system	or	a	variety	
of	peripheral	tissues	result	from	the	self-assembly	of	amyloid	proteins.	Disorders	
range	 from	Alzheimer’s	 disease	(AD,	 implication	 of	Aβ	proteins	 of	 39-43	 amino	
acids	and	tau	protein	of	441	amino	acids),	Parkinson	(α-synuclein	protein	of	140	
amino	acids)	to	amyotrophic	lateral	sclerosis	or	ALS	(superoxide	dismutase,	SOD	
of	154	amino	acids)	and	type	II	diabetes	(IAPP	or	islet	amyloid	polypeptide	of	37	
amino	acids).	All	these	proteins	differ	in	amino	acid	sequence	and	length,	yet	they	
all	form	amyloid	fibrils	with	cross-β	structure.1	This	propensity	to	self-assembly	
into	amyloid	fibrils	under	given	conditions	is	also	observed	for	heptapeptides	(e.g.,	
Aβ16-22)2,	tetrapeptides	(e.g.,	KFFE),3	dipeptides4	and	even	by	single	amino	acids.5		

	Experimentally,	 aggregation	 kinetics	 of	 amyloid	 proteins	 display	 a	
sigmoidal	 curve	 with	 a	 lag	 phase,	 during	 which	 monomers	 self-assembly	 into	
oligomers	and	undergo	structural	rearrangements,	until	the	growth	phase	where	
fibril	 elongation	 and	 primary/secondary	 nucleation	 occur,	 followed	 by	 the	
saturation	phase	where	the	system	is	 in	equilibrium	between	fibrils	and	a	small	
concentration	of	monomers.	Note	that	our	understanding	of	amyloid	aggregation	
kinetics	goes	much	beyond	classical	nucleation	theory	where	primary	nucleation	
event	is	sufficient	to	fit	the	experimental	curves.1	

Structural	 determination	 of	 all	 species	 along	 amyloid	 fibril	 formation	
pathways	 is	 challenging	 by	 experimental	 means	 because	 of	 their	 transient	
character	despite	the	use	of	a	large	variety	of	biophysical	techniques.6	Complexity	
comes	 from	 the	 metastable	 character	 of	 each	 species	 (a	 very	 large	 number	 of	
conformations	for	each	aggregate),	but	also	from	the	sensitivity	of	the	kinetics	to	
experimental	conditions	(solution	pH,	temperature,	salt	concentration,	agitation,	
ions)	and	external	conditions	(presence	of	membrane,	crowding,	etc.).7		

To	add	further	complexity,	amyloid	aggregation	kinetics	is	also	modulated	
by	the	exact	composition	of	the	lipid	bilayers.	For	example,	although	Aβ1-40,	Aβ1-
42	and	tau	oligomers	are	key	players	in	AD,8	dietary	PUFA	(polyunsaturated	fatty	
acids)	 supplementation	 change	molecular	 phospholipids,	 and	 there	 is	 evidence	
that	increased	intake	of	omega-3	PUFA	slows	the	progression	of	AD,	while	omega-
6	PUFA	is	linked	to	higher	risk	of	AD.9	Another	example	of	the	modulation	of	the	
aggregation	 upon	 membrane	 presence	 can	 be	 taken	 from	 experiments	 on	 α-
synuclein.	 On	 the	 one	 hand,	 DPLS	 lipid	 bilayers	 significantly	 augment	 its	
aggregation	 rate,	 while	 DOPE	 lipid	 bilayers	 have	 no	 impact	 on	 its	 aggregation	
rate.10	

Simulations	on	amyloids	at	different	time	and	length	scales	can	complement	
experiment,	but	require	accurate	potential	energy	models	ranging	from	atomistic	
in	 explicit	 aqueous	 solution/lipid	 bilayer,	 coarse-grained	 with	 implicit	
solvent/membrane	 to	 mesoscopic	 or	 super-mesoscopic	 represent-tations.11-14	
Molecular	 dynamics	 (MD),	 replica	 exchange	 molecular	 dynamics	 (REMD)	
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simulations	 and	 other	 sampling	 methods	 are	 often	 used	 to	 generate	 the	
conformational	 ensemble	 of	 intrinsically	 disordered	 proteins	 (IDPs).	 These	
methods	are	described	in	Section	2	and	we	will	see	that	their	results	vary	with	the	
protein	 force	 field	 used.	 	 Section	 3	 focuses	 on	 the	 application	 of	 computer	
simulations	to	a	better	understanding	of	small	oligomers	of	short	amyloid	peptides.	
While	 an	 implicit	 solvent	 representation	 reduces	 the	 number	 of	 degrees	 of	
freedom,	 hydrodynamics,	 which	 deals	 with	 the	motion	 of	 fluids	 and	 the	 forces	
acting	on	solid	bodies	immersed	in	fluids	and	in	motion	relative	to	them,	plays	a	
significant	role	in	the	early	aggregation	steps	of	amyloids	using	simplified	models	
(Section	 4).	 	 Section	 5	 reports	 on	 the	 simulations	 aimed	 at	 understanding	 the	
primary	 nucleation	 and	 the	 surface-catalysed	 secondary	 nucleation.	 The	 final	
section	reports	on	recent	advances	in	the	determination	of	oligomer	structures	of	
Aβ40/42	 peptides	 in	 aqueous	 solution	 and	 lipid	 bilayers	 based	 on	 computer	
simulations.	 Our	 review	 will	 be	 mainly	 centred	 on	 Aβ	 peptides.	 For	 computer	
simulations	of	tau,	hIAAP	and	synuclein,	see	Ref.	14.	

2.	Computer	simulation	models	for	amyloid	protein	aggregation	
	

Numerous	 conformational	 sampling	 methods	 are	 used	 to	 study	 amyloid	
proteins.	We	will	 not	 describe	 them	 in	 detail	 but	 rather	 summarize	 their	main	
features.	Atomistic	molecular	dynamics	(MD)	simulations	in	explicit	environment	
offer	 the	 most	 detailed	 dynamic	 and	 energetic	 pictures	 of	 protein	 folding	 and	
aggregation.	 The	 longest	 simulation	 on	 the	 fastest	 computer	 (Anton)	 does	 not	
exceed,	 however,	 1	 millisecond	 in	 explicit	 solvent,	 sufficient	 for	 sampling	 the	
monomeric	 state	 of	 amyloid	 proteins,	 but	 far	 too	 short	 for	 exploring	 the	
aggregation	 during	 the	 experimental	 lag	 phase.15	 To	 overcome	 the	 multiple	
minima	problem	and	converge	faster	to	equilibrium	properties,	replica	exchange	
MD	 (REMD)	 simulations,	 which	 run	 multiple	 MD	 simulations	 at	 different	
temperatures	 in	 parallel	 and	 exchange	 consecutive	 replicas	 according	 to	 the	
Metropolis	 criterion,	 are	 commonly	 used	 as	 their	 implementations	 are	 easy.	
Interestingly,	 it	 is	possible	 to	determine	peptide	dimerization-dissociation	rates	
from	 REMD	 simulations.16	 Recent	 modeling	 methods	 based	 on	 Markovian	
descriptions	 of	 conformational	 states	 have	 also	 led	 to	 frameworks	 allowing	
accurate	 description	 of	 dynamics.	 In	 conjunction	with	REMD	 simulations,	 these	
frameworks	 allow	 systematic	 and	 accurate	 determination	 of	 transition	
probabilities	between	the	corresponding	states,	in	the	case	of	Markov	state	models,	
and	of	transition	rates,	in	the	case	of	the	corresponding	coarse	master	equations.17	

Among	 other	 sampling	 techniques,	 Monte	 Carlo,	 replica	 exchange	 MC	
(REMC),	replica	exchange	with	solute	tempering,	simulated	tempering,	discrete	or	
discontinuous	MD,	and	metadynamics	are	also	employed.		

On-lattice	(where	the	position	of	the	particles	are	limited	to	nodes)	and	off-
lattice	 Monte	 Carlo	 simulations	 of	 models	 having	 a	 small	 number	 of	 internal	
degrees	of	freedom	have	been	used	to	investigate	the	nucleation	mechanisms.18-20	
On-lattice	REMC	simulations	were	also	used	to	determine	the	free	energy	surfaces	
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of	various	oligomers	of	 the	Aβ16-22	and	Aβ35-42	peptides	21,22	and	the	nucleus	
size	of	Aβ42.23		

	A	drawback	of	REMD	is	its	sensitivity	to	the	overlap	between	the	replicas	
total	energies,	and	to	the	system	size,	the	energy	overlap	scaling	with	the	number	
of	particles	as	N−1/2.	Optimal	exchange	rate	between	replicas	is	thus limited	by	the	
number	 of	 solvent	 molecules.	 Because	 protein-protein	 and	 protein-solvent	
interactions	 are	 dominant	 in	 protein	 recognition,24	 it	 is	 interesting	 to	 focus	 on	
these	interactions	and	simulation	schemes	based	on	potential	energy	rescaling	and	
Hamiltonian	 replica	 exchange	 exploit	 this	 feature.	 Replica	 exchange	 simulation	
with	solute	tempering	(REST)	belongs	to	this	class	of	schemes.25-27	  	Smith	et	al.	
performed	REST	and	standard	REMD	simulations	to	study	the	Aβ25-35	peptide	in	
water	and	a	system	consisting	of	two	Aβ10-40	peptides	binding	to	a	DMPC	lipid	
bilayer.27	Their	study	led	to	three	conclusions.	First,	the	number	of	replicas	in	REST	
simulations	can	be	reduced	four	to	five	times.	Second,	REST	produces	much	fewer	
conformational	states	than	REMD,	but	the	number	of	unique	states	is	very	similar	
between	 the	 REST	 and	 REMD	 simulations.	 Third	 comparing	 REST	 and	 REMD	
equilibrium	 conformational	 ensembles,	 REST	 reproduces	 REMD	data	 extremely	
well	for	the	system	of	two	Aβ	peptides	bound	to	the	DMPC	lipid	bilayer,	and	REST	
demonstrates	much	better	convergence	for	the	Aβ1-40	system	bound	to	the	lipid	
bilayer	rather	than	for	the	small	unstructured	Aβ25-35	peptide	in	water.	27	
	

In	simulated	tempering,	temperature	is	a	dynamical	variable	with	discrete	
values	 Tn.	 Simulated	 tempering	 scheme	 requires	 the	 determination	 of	 a	 priori	
unknown	 weight	 parameters	 to	 ensure	 a	 random	 walk	 in	 temperature	 space,	
namely	 the	 Helmholtz	 free	 energies	 at	 Tn.	 	 We	 have	 developed	 a	 simulated	
tempering	 scheme	 with	 on-the-fly	 weight	 determination.	 The	 weights	 are	 self-
updated	via	a	trapezoid	rule	during	the	simulation,	eliminating	therefore	the	need	
for	 trial	 simulations.28	 The	 advantage	 of	 this	 simulated	 tempering	method	 over	
REMD	was	illustrated	on	the	equilibrium	states	of	Aβ16-22	trimer	using	the	OPEP	
CG	force	field	and	the	folding	of	the	20-residue	Trp-cage	using	atomistic	force	field	
starting	from	randomly	chosen	states.29	Of	interest	is	that	it	is	possible	to	include	
different	atomistic	force	fields	into	a	single	simulated	tempering	run.30 

Unlike	classical	MD	simulations,	which	integrate	the	equation	of	motion	with	
a	time	step	of	1-2	ns,	DMD	(discontinuous	MD)	is	event-driven	and	keeps	track	of	
particle	positions	and	velocities	only	at	collision	times.	As	a	result,	DMD	is	several	
orders	of	magnitude	faster	than	the	traditional	continuous	MD	if	coarse-graining	is	
used.	 	The	main	disadvantage	of	DMD	is	 that	pairs	of	particles	must	 interact	by	
means	of	spherically	symmetric	potentials	that	consist	of	square	wells.	The	DMD	
scheme	has	been	coupled	to	all-atom	model	with	implicit	solvent,31		and	various	CG	
models	such	as	PRIME20.32	

Finally	in	metadynamics,	enhanced	conformational	sampling	is	realized	by	
an	 external	 history-dependent	 bias	 potential	 affecting	 few	 selected	 degrees	 of	
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freedom,	referred	to	as	collective	variables.	The	bias	is	adaptively	constructed	as	a	
sum	of	Gaussians	deposited	along	the	system	trajectory	to	prevent	the	system	from	
revisiting	 previous	 conformational	 regions.	 Although	 metadynamics	 requires	 a	
limited	yet	effective	set	of	collective	variables,	this	is	not	a	trivial	task	even	for	the	
monomeric	 state	 of	 long	 amyloid	 peptides,33	 and	 of	 course	 for	 amyloid	 fibril	
formation.34 

There	 is	 a	 constant	 effort	 in	 improving	 atomistic	 force	 fields	 in	 explicit	
water.	 	Many	versions	of	CHARMM	and	AMBER	with	modified	water	force	fields	
have	 been	 designed	 over	 the	 years	 to	 reproduce	 experimental	 data	 on	 folded	
proteins	(early	versions)	and	both	folded	and	disordered	proteins	(CHARMM36m-
TIP3P	modified,35	and	AMBERsb99-disp,15	where	disp	is	a	variant	of	TIP4P	water	
model.	Other	current	force	fields	include	OPLS-AA	and	GROMOS	force	fields.36	We	
summarize	some	recent	results	on	short	amyloid	peptides	and	the	Aβ40	and	Aβ42	
peptides.	

Following	a	previous	study	on	Aβ16-22	dimers	and	trimers	using	three	force	
fields	 (AMBER99,	GROMOS96	 and	OPLS-AA/TIP3P),37	Nguyen	et	 al.	 studied	 the	
effects	of	17	widely	used	atomistic	molecular	 force	 fields	on	 the	 structures	and	
kinetics	 of	 the	 Aβ16-22	 dimer	 in	 aqueous	 solution,	 for	 a	 total	MD	 time	 of	 0.34	
millisecond.38	While	the	AMBER94,	AMBER99	and	AMBER12SB	force	fields	fail	to	
predict	 β-sheet,	 the	 AMBER96,	 GROMOS45a3,	 GROMOS53a5,	 GROMOS53a6,	
GROMOS43a1,	GROMOS43a2,	 and	GROMOS54a7	 force	 fields	 form	β-sheets	 very	
rapidly.	 In	 contrast,	 the	 AMBER99-ILDN,	 AMBER14SB,	 CHARMM22*	 and	
CHARMM36m	 force	 fields	 are	 the	best	 candidates	 for	 studying	 amyloid	peptide	
assembly,	as	they	provide	good	balances	in	terms	of	structures,	thermodynamics	
and	kinetics	(assembly	and	dissociation).	 

	
In	the	same	line,	Strodel	et	al.	investigated	the	effect	of	five	different	force	

fields	 (GROMOS54a7,	 OPLS-AA,	 CHARMM22*,	 AMBER99SB*-ILDN	 and	
AMBER03WS)	on	 the	hexamer	 formation	of	 the	wild-type	Aβ16-22	peptide	and	
three	 mutants:	 Aβ16-22	 (F19V,	 F20V)	 which	 do	 not	 form	 fibrils,	 and	 Aβ16-22	
(F19L)	which	forms	fibrils	faster	than	the	wild-type.39	Note	that	the	AMBER03WS	
force	field	reduces	the	over-stabilization	of	protein-protein	interactions	generated	
by	older	force	fields.36	They	found	that	the	structural	properties	are	independent	
of	the	force	field,	but	oligomer	formation	kinetics	depends	strongly	on	the	force	
field.	It	is	very	important	to	note	that	the	kinetics	generated	by	the	various	force	
fields	 differ	more	 from	each	other	 than	 the	 kinetics	 between	 amyloid	 and	non-
amyloid	peptides	simulated	with	a	single	force	field.39	

Siwy	 et	 al.	 performed	 comparative	 analysis	 of	 the	 REMD	 conformational	
ensembles	 of	 Aβ10-40	 monomer	 produced	 by	 five	 force	 fields	 combining	
CHARMM36,	 CHARMM22*,	 CHARMM22/cmap,	 and	 OPLS-AA	 and	 two	 water	
models	(standard	and	modified	TIP3P).40	As	expected,	all	force	fields	predict	that	
Aβ10-40	 remains	 unfolded	 dominated	 by	 turn	 and	 random	 coil	 structure.	 The	
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secondary	 structures	 generated	 by	 CHARMM36	 and	 CHARMM22/cmap	
simulations	 are	 qualitatively	 similar,	 but	 their	 tertiary	 interactions	 show	 little	
consistency.	 Among	 all	 force	 fields,	 CHARMM22*	 differs	 the	 most	 from	
CHARMM36,	and	based	on	the	analysis	of	3JHNHα-coupling	and	RDC	constants,	the	
CHARMM36	 force	 field	with	 standard	TIP3P	model	produces	 the	most	 accurate	
representation	of	Aβ10-40	conformational	ensemble.40		

The	 Aβ42	 peptide	 has	 also	 been	 subject	 of	 particular	 attention	 over	 the	
years.41-43	Strodel	et	al.	used	REMD	simulations	on	the	monomeric	form	with	the	
five	 OPLS,	 AMBER99SB,	 AMBER99SB*ILDN,	 AMBER99SBILDN-NMR	 and	
CHARMM22*	 force	 fields	 and	 compared	 the	 equilibrium	 ensembles	 to	 nuclear	
magnetic	 resonance	 (NMR)	 experimental	 data.	 They	 found	 that	 all	 force	 fields	
except	 AMBER99SBILDN-NMR	 reproduce	 local	 NMR	 observables,	 and	
CHARMM22*	is	slightly	better	than	the	other	force	fields.42		

Nguyen	et	al.	generated	the	Aβ42	dimer	ensembles	obtained	by	four	force	
fields	 (OPLS-AA,	 CHARMM22*,	 AMBER99sb-ildn	 and	 AMBERsb14	 with	 TIP3P	
model)	coupled	to	REMD	simulations.44	The	simulation	results	were	compared	to	
experimental	 circular	dichroism	 (CD)	and	 ion-mobility	mass-spectrometry	data.	
On	the	basis	of	144	μs,	 the	four	 force	fields	 lead	to	random	coil	ensembles	with	
cross-collision	 sections,	 hydrodynamics	 properties,	 and	 small-angle	 X-ray	
scattering	 profiles	 independent	 of	 the	 force	 field.	 Overall,	 there	 are	 significant	
differences	in	secondary,	tertiary	and	quaternary	conformations	among	the	four	
force	 fields,	 for	 example	 the	 intramolecular	 beta-hairpin	 content	 spanning	
residues	17-21	and	30-36	varying	between	1.5%	and	13%.		

Finally,	the	stability	of	tetrameric	Aβ40	and	Aβ42	β-barrel	structures	was	
studied	 considering	 four	 atomistic	 force	 field-water	 model	 combinations:	
Amber99SB-ILDN/TIP3P,	 OPLS/TIP3P,	 CHARMM36m/TIP3P-modified,	 and	
Amber99sb-disp.	For	each	force	field,	Nguyen	et	al.	found	that	Aβ42	samples	barrel	
structures	in	aqueous	solution,	while	this	is	less	the	case	for	Aβ40.	It	is	to	be	noted	
that	 the	 authors	 used	 the	 two	 latest	 force	 fields	 that	 were	 developed	 for	 IDPs	
(CHARMM36m	 and	 AMBER99SB-disp)	 and	 spent	 a	 lot	 of	 computing	 time	 to	
converge	the	sampling	by	using	REMD.45	

There	 is	 also	 a	 constant	 effort	 in	 designing	 coarse-grained	 models	 with	
implicit	solvent	for	amyloid	aggregation.		Using	a	two-state	model	for	each	peptide	
and	Langevin	dynamics,	Caflisch	et	al.	found	that	the	nucleus	size	varies	between	4	
and	35	depending	on	the	energy	difference	between	the	amyloid-competent	and	
amyloid-protected	minima.	This	simple	model	is	able	to	generate	fibril	topologies	
with	twist	and	multifilament	composition	as	observed	experimentally.46		

Shea	and	co-workers	designed	a	three-bead	model	(two	for	the	backbone,	
and	one	for	the	side-chain)	that	reproduces	the	polar,	hydrophobic	and	charged	
nature	of	each	residue.	Using	a	simple	energy	function	that	controls	the	beta-strand	
propensity	of	each	peptide	and	Langevin	dynamics	simulations,47	they	found	that,	
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when	the	beta-strand	propensity	is	not	too	high,	the	oligomeric	states	consist	of	
disordered	 aggregates,	 multiple	 β-sheet	 layers	 with	 different	 orientations	
including	 the	 cross-β	 structure,	 and	 β-barrels	 consistent	 other	 coarse	 grained	
simulations.48-50		

Frenkel	and	co-workers	describe	the	monomers	as	single	spherocylinders	
able	to	coexist	in	two	states:	a	soluble	state	and	an	amyloid-like	state.		Using	this	
model	 and	Monte	 Carlo	 simulations,	 they	 estimated	 a	 critical	 nucleus	 size	 of	 4	
peptides	 for	 Aβ42.	 They	 also	 established	 the	 concentration,	 temperature	 and	
interpeptide	interactions	conditions	upon	which	aggregation	follows	the	one-step	
nucleation	 (where	 two	peptides	 in	 the	 amyloid-competent	 state	 binds)	 and	 the	
two-step	nucleation	(where	the	amorphous	aggregates	reorganize	into	beta-rich	
nuclei).19,20		

The	four-bead	“Urbanc”	and	PRIME20	models	consist	of	three	spheres	for	
the	backbone	(N,	Ca,	and	CO)	and	one	bead	for	the	side	chain.	Using	DMD,	Urbanc	
et	al.	reproduced	differences	in	oligomer	size	distributions	between	the	Aβ40	and	
Aβ42	 peptides	 consistent	 with	 experimental	 data.51	 Using	 PRIME20/DMD,	 Hall	
reproduced	the	propensity	of	a	series	of	hexapeptides	known	to	form	amyloid	and	
non-amyloid	 fibrils	 in	 vitro	 and	 studied	 the	 mixing	 of	 Aβ40	 and	 Aβ16-22	
peptides.32		

Wolynes	 et	 al.	 also	 designed	 the	 AWSEM	 (associative	 memory,	 water	
mediated,	structure	and	energy	model)	three-bead	model	with	Ca,	Cb	and	O	and	
applied	it	to	the	aggregation	of	Aβ40	and	Aβ42	peptides.52,53	Derreumaux	and	co-
workers	 designed	 the	OPEP	 (optimized	 potential	 for	 efficient	 peptide	 structure	
prediction)	model,	where	each	amino	acid	is	represented	by	six	beads:	one	bead	
for	each	side-chain	and	the	atomic	resolution	is	used	for	the	backbone	(N,	H,	Ca,	C	
and	O).54,55		This	model	has	been	used	for	on-lattice	and	off-lattice	simulations	of	
many	 short-amyloid	 peptides,	 and	 the	 Aβ40	 and	 Aβ42	 peptide.56,57	 Note	 it	 is	
beyond	the	scope	of	this	review	to	describe	the	potential	energy	functions	used	by	
all	models.	

3.	Structures	of	small	aggregates	
	

Among	 all	 amyloid	 sequences,	 the	 Aβ16-22	 peptide	 has	 been	 the	 most	
studied	due	to	its	simplicity,	its	amyloid	fibril	at	neutral	pH	consists	of	antiparallel	
β-strands	and	parallel	β-sheets,2	and	the	amino-acids	17-21	constitute	 the	main	
driving	force	for	the	aggregation	of	the	full-length	Aβ	peptides.8	Based	on	MD	and	
REMD	simulations	with	all	force	fields	except	AMBER99sb-disp,	it	is	clear	that	the	
probability	of	Aβ16-22	fibril	formation	following	the	one-step	nucleation	is	very	
small.		

	
Using	the	modified	AMBER94	force	field	and	REMD,	Nussinov	et	al.	found	six	

configurations	 including	 shifted	 parallel	 strand	 and	 parallel	 loop,	 antiparallel	
strand,	 parallel	 strand,	 shifted	 antiparallel	 strand,	 cross,	 and	 tight	 cross/lock.58	
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Employing	 the	 OPEP	 coarse-grained	 force	 field,	 in-register	 and	 out-of-register	
parallel	and	antiparallel	strands	were	generated	along	with	amorphous	states.59	
Nguyen	et	al.	demonstrated	with	0.34	millisecond	MD	that	the	probability	of	the	
amyloid-competent	 state	 is	 on	 the	order	 of	 at	most	10%	using	 the	most	 recent	
atomistic	 force	 fields.	 Of	 interest	 is	 that,	 in	 principle	 there	 are	 9	 out-register	
antiparallel	β-sheets	in	addition	to	the	native	in-register	β-sheet,	but	only	five	are	
populated	 at	 the	 dimer	 level.38	 This	 feature	 is	 important	 as	 experiments	 and	
simulations	have	shown	that	large	aggregates	consist	of	out-of-register	β-strands	
and	 transition	 to	 the	 fibril	 state	 involves	 the	 reptation	 of	 the	 β-strands	 at	 high	
concentration	and	detachment/binding	of	the	peptides	at	low	concentration.60,61	A	
second	important	aspect	from	the	Aβ16-22	dimer	simulations	is	that	the	parallel	
β-sheet	conformation	is	a	state	of	low	probability.	This	feature	explains	why	the	
E22Q	mutation	can	 induce	antiparallel	 to	parallel	β-sheet	 transition	of	Aβ16-22	
fibrils	as	observed	by	solid-state	NMR	and	all-atom	simulation	studies.62		

	
Simulations	of	Aβ16-22	trimer	reveal	that	the	main	configurations	found	at	

the	 dimer	 level	 remain	 and	 we	 have	 a	 low	 population	 of	 mixed	 antiparallel	 –	
parallel	 beta-sheets.60	 In	 terms	of	dynamics,	we	 can	 infer	 a	 very	 likely	 scenario	
from	 other	 peptides	 known	 to	 form	 fibrils	 with	 antiparallel	 beta-strands.	 By	
studying	the	aggregation	of	the	KFFE	peptide	up	to	4-mers	by	REMD	and	Markov	
models,	 Sengupta	 et	 al.	 found	 that	 disordered	 and	 β-sheet	 oligomers	 do	 not	
interconvert,	leading	to	separate	pathways	for	their	formations.63		

	
De	Groot	et	al.	used	unbiased	explicit	solvent	MD	simulations	to	investigate	

the	 structural	 and	 dynamical	 features	 of	 aggregates	 formed	 by	 Aβ16-22	 at	
atomistic	 resolution	 for	 2	 microseconds.	 Simulations	 of	 12	 peptides	 were	
performed	at	2	and	20 mM	peptide	concentration.64	To	characterize	the	structures,	
they	computed	collision	cross	sections	of	the	individual	aggregates	sampled	from	
the	MD	 trajectories	 and	 found	heterogeneous	 ensemble	 of	 aggregates	 lacking	 a	
defined	quaternary	structure,	fully	consistent	with	the	same	simulations	of	other	
amyloid	peptides	ranging	from	6-	to	12-mers.	In	particular,	they	found	a	very	large	
variety	of	ordered	intermolecular	β-structure	motifs	 including	distinct	 fibril-like	
configurations	and	β-barrel	oligomers	of	various	sizes	already	prevalent	in	smaller	
aggregates.	This	conformational	ensemble	is	fully	consistent	with	all-atom	Aβ16-
22	DMD	simulations	of	6	to	12	peptides	where	β-barrel	oligomers	of	various	sizes	
were	found	with	a	probability	varying	between	2	and	4%,31	CG	Langevin	dynamics	
simulation	results	of	Shea	et	al.,47	and	a	multitude	of	all-atom	and	CG	simulations	
of	other	sequences.26,65,66	

The	second	peptide	we	want	to	discuss	is	the	Aβ37-42	peptide	because,	in	
contrast	to	many	short-amyloid	peptides,	its	fibril	structure	displays	in	parallel	β-
strands,	as	formed	by	the	full	length	Aβ40/42	peptides.	Nguyen	et	al.	performed	a	
REMD	simulation	of	16	all-atom	Aβ37-42	peptides	in	explicit	water	starting	from	
dispersed	 orientations.67	 The	 total	 simulation	 time	 of	 23	 microseconds	 allows	
them	to	obtain	the	conformational	distribution	of	oligomers	and	β-sheet	sizes	at	
300	K	and	a	peptide	concentration	of	12	mM.	Self-assembly	 is	described	by	 the	
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condensation-polymerization	conversion	from	micelle	to	high	β-sheet	structures.	
When	 equilibrium	 is	 reached,	 the	 oligomer	 distribution	 consists	 of	 large	
aggregates	(70%)	and	free	monomers	(30%).	The	population	of	4-5	fully	parallel	
β-strands	 consistent	 with	 the	 native	 fibril	 is	 low,	 the	 population	 of	 4-5	 fully	
antiparallel	β-strands	is	non-negligible,	and	the	system	has	a	large	population	of	
mixed	parallel/antiparallel	β-strands	 in	equilibrium	with	amorphous	oligomers.	
This	distribution	 is	 in	agreement	with	all-atom	metadynamics	 results	of	Laio	et	
al..34	We	now	report	on	Aβ16-22	simulations	of	unprecedented	sizes	that	further	
support	the	second-step	nucleation.	

4.	Exploring	the	early	aggregates	of	amyloid	peptides	at	quasi-atomic	level	
with	hydrodynamics	
	

Coarse-grained	simplified	molecular	models	with	implicit	solvent	have	been	
extensively	 used	 to	 explore	 the	 aggregation	 process	 of	 amyloid	 systems	 and	 to	
inspect	 the	 impact	 of	 the	 peptide	 beta	 propensity	 and	 amino	 acid	 sequence,	
peptide-peptide	 interactions,	 concentration,	 temperature,46,47,52,53,68,69	 and	
crowding.70	 However	 these	 simulations	 based	 on	 simplified	models	 neglect	 the	
effect	of	solvent	mediated	interactions	on	the	kinetic	behaviour	of	the	system	and	
the	diffusion	limited	aggregation	process.	It	is	therefore	important	to	include	these	
hydrodynamic	 interactions	 (HI).	 	 This	 can	be	done	using	 specialised	 simulation	
techniques,	e.g.	Brownian	dynamics	with	HI,	the	stochastic	rotational	method,	and	
the	lattice	Boltzmann	molecular	dynamics	(LBMD).		
	

Recently	 we	 implemented	 an	 effective	 LBMD	 approach	 to	 study	 bio-
molecular	systems	based	on	the	OPEP	CG	model.	This	technique,	which	includes	
naturally	hydrodynamics	in	implicit	solvent	coarse-grained	molecular	dynamics	of	
biomolecules,	 has	 been	 used	 to	 explore	 the	 mobility	 of	 proteins	 in	 a	 crowded	
solution,	the	unfolding	and	dynamics	of	proteins	under	shear	flow,	the	multi-scale	
dynamics	of	amyloid	peptides	aggregation.22,71,72		Before	describing	the	results	of	
interest,	we	pause	to	describe	the	methodology,	see	Figure	1A.	
	

In	LBMD,	the	particle-based	dynamics	is	coupled	to	a	kinetic	representation	
of	the	solvent,	simulated	via	the	Lattice	Boltzmann	(LB)	technique.73	The	coupling	
between	the	particles	and	the	solvent	has	the	form	of	a	Stokes-like	drag	force	acting	
on	a	per-particle	basis:	
	

	
	
where	 the	 first	 	 term	 is	 the	velocity	of	 i-th	particle,	 the	second	 term	 is	 the	 fluid	
velocity	smeared	over	a	finite	extension	of	the	i-th	particle,	and	g	is	the	friction,	an	
adjustable	parameter	 in	 the	methodology	taken	to	be	equal	 for	all	particles	of	a	
given	molecule.	The	drag	force	adds	up	to	the	usual	conservative	forces	derived	



	
10	

from	the	Hamiltonian	of	the	system	and	to	a	random	white	noise	that	represents	
thermal	fluctuations.	The	reader	can	find	more	technical	details	in	Ref.	71	and	74.	
	

In	 our	 simulations,	 the	 LB	 evolution	was	 solved	 by	 using	 the	 Bhatnagar-
Gross-Krook	(BGK)	collisional	operator,	with	a	lattice	grid	spacing	that	was	varied	
depending	on	the	size	of	the	system	and	the	wished	resolution	(1-5	Å),	and	the	bulk	
water	 kinematic	 viscosity.71,74	 When	 using	 the	 flexible	 OPEP	 force	 field,75	 the	
molecular	and	LB	dynamics	were	evolved	synchronously	using	a	time	step	of	1.5	
fs,	a	value	defined	by	the	properties	of	the	molecular	mechanics	force	field.	When	
focusing	on	 the	mesoscale	behaviour	of	aggregate	growth,	an	elastic	model	was	
used	in	tandem	with	a	time	step	of	10	fs.	The	friction	g	was	optimised	in	order	to	
reproduce	the	diffusion	of	an	isolated	peptide	in	dilute	condition.	
	

We	first	considered	a	system	composed	of	100	Aβ16-22	peptides	placed	in	
a	 box	 corresponding	 to	 a	 concentration	 of	 about	 60	 mM.74	 The	 first	 issue	 we	
addressed	was	to	estimate	the	characteristic	time	of	complete	aggregation	with	HI	
compared	to	a	Langevin	simulation.	It	turns	out,	as	already	anticipated	by	Skolnick	
and	co-workers	in	the	study	of	lipid	assembly,76	that	the	presence	of	HI	speeds	up	
the	 aggregation	 process.	 In	 the	 LBMD	 simulation,	 after	 100	 ns	we	 observe	 the	
formation	of	a	large	aggregate	containing	about	80%	of	the	peptides.	At	the	same	
time	scale	and	in	the	absence	of	HI,	the	aggregation	proceeds	more	slowly,	and	only	
50%	 of	 peptides	 form	 the	 largest	 cluster,	 see	 Figure	 1B.	 The	 result	 can	 be	
understood	considering	that	by	including	HI	the	diffusivity	of	peptide	aggregates	
scales	more	favourably	with	the	aggregate	size	than	in	their	absence.		Also,	when	
focusing	on	the	fluctuations	of	the	size	of	the	formed	aggregates,	it	results	that	the	
presence	of	HI	increases	the	fast	exchange	of	peptides.	
	

The	aggregation	process	of	Aβ16-22	was	further	investigated	by	considering	
a	 system	 of	 much	 larger	 size,	 1000	 peptides	 placed	 in	 a	 box	 of	 L=300	 Å,	
corresponding	to	a	concentration	of	60	mM.77	Using	atomistic	and	explicit	solvent,	
this	 system	would	 count	 for	 2.7	millions	 of	 particles,	 becoming	 prohibitive	 for	
classical	MD	simulations.		
	

The	aggregation	process	was	followed	at	the	microsecond	time	scale,	and	for	
the	 first	 time	 three	 different	 regimes	 were	 clearly	 individuated.	 At	 the	 short	
timescale,	 <102	ns,	 the	 growth	of	 peptides	 aggregates	proceeds	 continuously	 in	
time,	with	progressive	absorption	of	 single	molecules.	When	 in	 the	solution	 the	
presence	of	finite	size	oligomers	(10-20	peptides	in	each)	becomes	relevant,	the	
aggregation	proceeds	via	the	fusion	of	these	entities,	and	the	growth	mechanism	is	
discontinuous	manifesting	sudden	size	 jumps	(see	the	arrows	 in	the	Figure	1C).	
Several	 fusion	 mechanisms	 were	 individuated,	 from	 head-tail	 elongation	 to	
branching,	involving	coherently	from	two	up	to	four	aggregates.	Interestingly,	the	
time	 evolution	 of	 the	 aggregate	 size	 distribution	 shows	 the	 emergence	 of	 a	
shoulder	around	the	pentamer	and	decamer	states,	a	signature	that	can	be	related	
to	 the	 presence	 of	 a	 critical	 nucleus	 size.	 Finally,	 the	 system	 reaches	 a	 steady	
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regime	for	time	>	350	ns,	with	the	formation	of	a	large	amorphous	protofibril	and	
three	 minor	 ones,	 no	 residual	 monomers	 are	 present	 in	 the	 system	 at	 this	
timescale.	The	progress	of	the	amorphous	protofibril	elongation	is	limited	by	the	
diffusion	of	these	very	 large	(massive)	clusters.	To	be	noted	that	very	 large	size	
fluctuations	 of	 the	 largest	 amorphous	 protofibril	 are	 visible	 and	 are	 caused	 by	
fragmentation	events.	
	

Having	individuated	these	relevant	timescales	it	is	worth	to	stress	that	the	
simulated	 system	 is	 at	 a	 very	 high	 concentration.	 If	 one	 considers	 a	 lower	
concentration	 regime,	 e.g.	 reproducing	 the	 upper	 limit	 of	 experiments,	 μM,	 the	
early	phase	of	the	aggregation	would	be	on	the	microsecond	timescale	and	would	
approach	the	second	timescale	at	in	vivo	concentrations	(nM).	
	

Looking	 at	 the	 early	phase	of	 aggregation,	 following	 the	 formation	of	 the	
small	oligomers,	the	peptides	acquire	in	part	beta-sheet	organisation,	going	up	to	
15%	of	the	whole	system.	The	further	conversion	is	then	rate-limited	by	the	size	of	
the	 formed	 aggregates	 that	 constraints	 the	monomer	 conformational	 sampling.	
The	possibility	to	explore	the	growth	of	very	 large	amorphous	protofibril	at	 the	
quasi-atomistic	resolution	allowed	to	 individuate	critical	structural	 features	 like	
the	formation	of	a	large	asymmetric	pore	(dimensions	of	3-5	nm)	at	the	edge	of	the	
structure,	see	Figure	1D.	It	is	interesting	that	amyloid	plaques	with	annular	pores	
have	been	detected	in	the	brain	of	Alzheimer’s	disease	patients	by	antibodies	and	
electron	microscopy	experiments.78		
	

Evolution	of	the	amorphous	protofibril	elongation	was	further	explored	by	
deploying	an	ad-hoc	multi-scale	strategy.	The	four	final	clusters	individuated	in	the	
LBMD	simulation	based	on	the	fully	flexible	OPEP	force	field	were	converted	into	
an	 elastic-network	 and	 placed	 in	much	 larger	 simulation	 box	 (60	 nm)	 to	 avoid	
finite-size	artefact.	The	elastic	network	allowed	the	use	of	a	larger	integration	time-
step	 for	 the	particle	dynamics,	 and	 scaling	arguments	were	applied	 to	ensure	a	
kinetic	coherence	when	changing	fluid	and	particle	resolutions.	With	this	tool	in	
hands,	it	was	possible	to	follow	the	hydrodynamic	sustained	formation	of	a	larger	
branched	amorphous	protofibril,	and	the	critical	role	of	the	amorphous	protofibril	
surface	acting	as	 an	entropically	 favourable	 seed	 for	 the	 formation	of	branched	
structures	via	aggregate	fusion,	see	Figure	1E.	
	
5.	Primary	and	secondary	nucleation	from	simulations	
	
	 	The	 foundation	 of	 the	 nucleation	 for	 amyloid	 fibrils	 dates	 from	 the	
polymerisation	studies	of	actin	by	Oosawa79	and	deoxyhemoglobin	by	Weaton.80	
They	 theoretically	 explained	 the	 nucleation	 and	 subsequent	 polymerisation	
processes	by	employing	the	homogeneous	nucleation	theory	developed	for	vapour	
condensation.	Their	theories	have	served	as	a	background	for	the	development	of	
kinetic	and	thermodynamic	analyses	for	amyloid	nucleation.81	
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	 	Basically,	 in	 the	 first	 step,	 the	 fluctuations	 in	 the	 system	 induce	
spontaneous	association	of	monomers,	leading	to	the	formation	of	small	clusters	
of	monomers.		Due	to	small	sizes,	these	clusters	are	thermodynamically	unstable	
with	high	positive	 interfacial	 free	energy.	With	 increasing	 size,	 the	 intra-cluster	
interactions	become	more	 significant,	 and	 the	 clusters	become	more	 stable,	 the	
bulk	free	energy	is	negatively	decreased,	resulting	in	the	decrease	in	the	total	free	
energy.	A	smallest	cluster,	whose	total	free	energy	is	highest	along	the	nucleation	
pathway,	is	usually	defined	as	a	critical	nucleus.	The	probability	of	forming	a	larger	
cluster	started	from	a	nucleus	is	higher	than	the	probability	of	dissociation	of	the	
nucleus.		The	initial	formation	of	nuclei	in	a	system	where	there	are	still	no	formed	
aggregates	present	is	called	primary	nucleation.	The	primary	nucleation	may	occur	
in	homogeneous	solution,	called	homogeneous	nucleation,	or	at	a	surface,	called	
heterogeneous	 nucleation.	 A	 surface	 can	 be	 the	wall	 of	 the	 vessel,	 an	 air-water	
interface	or	the	wall	of	a	lipid	vesicle	etc.	The	secondary	nucleation	is	induced	by	
the	surface	of	existing	aggregates,	referred	to	as	surface-catalysed	nucleation.82		
	
	 From	 the	 experimental	 side,	 the	 chemical	 kinetic	 and	 thermodynamic	
analyses	 play	 an	 important	 role	 in	 revealing	 the	 mechanism	 of	 nucleation	 of	
protein	 aggregation.83	 These	 analyses	were	 applied	 to	 the	 aggregation	 of	 IAPP,	
alpha-synuclein	and,	notably	the	Aβ	peptides	with	wild-type	sequences	and	many	
variants.7,84-86	These	studies	revealed	the	role	of	mutations	and	truncations	at	the	
N-terminus	on	the	concentration-dependent	time	course	of	Aβ	fibril	formation	and	
lag	phase	from	a	solution	of	monomers.		
	
				 From	the	theoretical	side,	master	equations	have	been	used	to	interpret	
experimental	data.	Basically,	rate	equations	with	increasing	complexity	are	fitted	
to	the	experimental	sigmoidal	curve.	It	has	been	shown	that	the	best	fit	can	only	be	
obtained	if	all	processes,	including	primary	nucleation,	fibril	growth	and	secondary	
nucleation	are	taken	into	account.	The	use	of	only	the	first	two	processes	can	fail	
to	 reproduce	 the	 experimental	 curve.83	 The	 master	 equations	 do	 not	 provide,	
however,	information	on	the	nucleus.	As	a	remedy,	simulations	have	been	carried	
out,	employing	various	protein	models	so	as	to	provide	insights	into	the	structure	
and	size	of	the	primary	nucleus.6,87			
	
	 At	the	coarse-grained	level,	Li	et	al.	developed	an	on-lattice	protein	model,	
where	each	residue	 is	entered	on	a	 site	of	a	 cubic	 lattice.23,88	MC	simulations	of	
multiple	 Aβ42	 chains,	 each	 chain	 consisting	 of	 eight	 residues,	 show	 that	 the	
nucleus	size	N*	is	11	chains.		Irback	et	al.	developed	another	lattice	model,	where	
a	residue	is	represented	by	an	unit	vector,	located	on	a	site	of	a	cubic	lattice,	and	
interacts	with	other	peptides	by	hydrogen	bonding	and	hydrophobic	forces.	The	
simulation	 of	 256	 peptides	 shows	 that	 fibril	 formation	 occurs	with	 a	 sigmoidal	
kinetics	shape,	and	the	width	of	the	aggregate	prior	to	nucleation	is	3.5.18			
	
	 Abeln	 and	 coworkers	 developed	 a	more	 sophisticated	 lattice	model	 by	
considering	 the	 formation	of	 hydrogen	bonds,	 the	directions	 of	 side-chains	 and	
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pairwise	 interaction	 energies	 between	 the	 20	 amino	 acids.	 REMC	 simulations	
captured	 the	amyloid	 formation	with	N*=	10	 for	a	designed	7-residue	TFTFTFT	
peptide	 at	 low	 concentration.89	 We	 have	 developed	 further	 this	 model	 by	
incorporating	the	OPEP	force	field	and	notably	the	four-body	hydrogen	bonding	
interaction	 so	 as	 to	 explore	 the	 critical	 nucleus	 size	 of	 fibril	 formation	 for	 real	
amyloid	 peptides.	 REMC	 simulations	 of	 oligomers	 formed	 by	 10	 -	 20	 chains	 of	
Aβ16-22	 or	 Aβ37-42	 peptides	 allowed	 us	 to	 characterise	 the	 structure,	
thermodynamics	and	nucleus	sizes.21,22	We	show	that	Aβ16-22	decamer	forms	a	
stable	fibril	with	two	anti-parallel	5-stranded	beta-sheets,	consistent	with	the	NMR	
fibril	structure,	indicating	that	the	nucleus	size	of	Aβ16-22	is	about	10	chains.	For	
a	system	of	20	Aβ37-42	peptides,	Figure	2	shows	the	population	of	one,	two	and	
three	 layers	 of	 β-sheets	 composed	 of	 n-strands.	 	 Overall,	 the	 system	 is	 mainly	
disordered	with	a	 low	population	of	two	and	three	layers	of	 long	n-strand	beta-
sheets.	 It	 is	 to	 be	 noted	 that	 the	 free	 energy	 surface	 changes	 for	 30	 Aβ37-42	
peptides	 with	 the	 presence	 of	 well-defined	 native	 fibrils	 (with	 parallel	 beta-
strands)	indicating	that	20	<	N*	<	30.22	
	
		 In	addition	 to	 the	Caflish’s	and	Frenkel’s	models	described	 in	Section	2,	
Linse	et	al.	developed	an	algorithm	for	MC	simulation	of	amyloid	formation	from	
flexible	peptides.	The	algorithm	is	based	on	kinetic	discrimination	among	fibrillar	
and	non-fibrillar	contacts.	The	simulations	of	up	to	500	hexapeptides	show	that	the	
fibrillation	 follows	 a	 sigmoidal	 curve,	 but	 there	 is	 no	 requirement	 for	 any	
complicated	structural	pathway	to	explain	the	lag	phase	and	sigmoidal	shape.	This	
shape	 arises	 from	 cooperative	 among	multiple	 interactions	within	 each	 pair	 of	
peptides	in	a	fibril.90	Another	kinetic	model	developed	by	Hsieh	et	al.	also	shows	a	
two-step	nucleation	for	Aβ16-22.91	Using	PRIME20	model	with	DMD	method,	Hall	
et	al.	show	that	at	low	temperatures,	the	aggregation	of	48	Aβ16-22	chains	follows	
a	primary	nucleation	mechanism	with	N*=	8.92			
	
	 Finally,	Laio	et	al.	 investigated	the	all-atom	aggregation	of	18	Val8	and	18	
Aβ35-40	peptides	employing	the	bias-exchange	metadynamics	method	in	explicit	
solvent	with	the	Amber99	force	field.	The	simulations	show	that	the	aggregation	
follows	 a	 primary	 nucleated	 conformational	 conversion	 mechanism	 and	 the	
nucleus	size	is	on	the	order	of	14.	The	most	populated	aggregate	is	amorphous.	The	
free	 energy	 landscape	 projected	 on	 appropriate	 variables	 reveals	 that	 the	
maximum	 free	 energy	 is	 characterized	 by	 a	 transition	 from	 mixed	
parallel/antiparallel	 to	parallel	β-strand	orientations	and	only	when	a	sufficient	
number	 of	 parallel	 sheets	 are	 formed	 that	 the	 free	 energy	 decreases	 to	 a	 free	
energy	minimum	with	fully	parallel	β-sheets.34,93	

			 To	 study	 the	 secondary	 nucleation	mechanisms,	 large	 system	 sizes	 are	
necessary.	 However,	 due	 to	 the	 limitation	 of	 current	 computer	 power,	 most	
atomistic	simulations	start	from	preformed	fibrils	and	free	monomers.	Strodel	et	
al.	carried	out	1	microsecond	all-atom	simulations	of	six	Aβ42	monomers	placed	
near	the	surface	of	a	preformed	fibril	fragment	composed	of	20	Aβ17-42	peptides.	
During	 the	 simulations,	 the	 monomers	 slide	 on	 the	 fibril	 surface,	 leading	 to	
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oligomer	 formation.	 The	 results	 show	 that	 the	 hydrophobic	 surface	 at	 the	 C-
terminal	of	 the	 fibril	 causes	 the	unfolding	of	 the	monomers	which	catalyses	 the	
formation	of	beta-sheet	 rich	oligomers	on	 the	 fibril	 surface.94	This	 suggests	one	
possible	molecular	basis	of	the	secondary	nucleation	pathway.			
	
	 Zacharias	et	al.	 carried	out	 atomistic	 simulations	using	 the	CHARMM27	
force	field	to	study	the	association	of	monomer,	dimer	and	larger	oligomers	to	the	
surface	of	a	Aβ9-40	fibril	model.	The	results	show	that	the	association	during	the	
second	 nucleation	 follows	 a	 dock-lock	 mechanism	 consisting	 of	 a	 fast	 initial	
docking	phase	and	a	slow	structural	phase,	and	the	hydrophobic	effect	is	a	major	
driving	force	for	the	association.	Also,	the	surface	induced	association	process	is	
faster	than	the	elongation	at	the	fibril	ends,	indicating	that	secondary	nucleation	
process	can	become	the	dominant	process	of	amyloid	formation	in	agreement	with	
experiment.95			
	
	 Very	 interestingly,	Wilson	 and	 colleagues	 studied	 the	 co-aggregation	 of	
Aβ40	 and	 Aβ16-22	 to	 obtain	 molecular	 insights	 into	 the	 surface-catalysed	
secondary	nucleation	of	Aβ40	by	Aβ16-22.32	Employing	DMD	with	the	CG	PRIME20	
force	field,	simulations	were	performed	on	different	systems:	six	Aβ40	monomers,	
six	 Aβ16-22	monomers	 and	 six	 Aβ40	monomers,	 and	 six	 Aβ40	 peptides	 in	 the	
presence	of	preformed	two,	three	and	four	beta-sheet	Aβ16-22	protofilaments.	The	
simulations	 show	 that	 while	 all	 primary/secondary	 nucleation	 and	 growth	
processes	occur	at	the	same	time,	secondary	nucleation	is	dominant	in	Aβ40	fibril	
formation	kinetics	during	co-assembly	with	Aβ16-22.	Interestingly,	although	the	
fibril	surface	of	Aβ16-22	catalyses	the	assembly	of	Aβ40,	the	assembly	mechanism	
resembles	that	of	Aβ40	alone	in	solution.32		
	
6.	Recent	advances	in	structures	of	Aβ40/42	oligomers	from	simulations	
	

In	 this	 last	 section,	we	would	 like	 to	 review	 some	 recent	 and	 significant	
contributions	in	the	field	of	Aβ40/42	peptide	simulations.	We	already	discussed	
the	simulation	results	of	Aβ42	dimer	in	aqueous	solution	(see	Section	2).	

	
	In	 the	 case	 of	 Aβ40	 dimer	 in	 aqueous	 solution,	 Nguyen	 et	 al.	 performed	

atomistic	REMD	simulations	on	the	wild-type	(WT)	sequence,	the	A2V/A2V	mutant	
and	 the	mixed	WT/A2V	mutant.96-98	 Experimentally,	 the	A2V	mutation	protects	
from	Alzheimer's	 disease	 in	 its	 heterozygous	 form	 and	 leads	 to	 early	 AD	 in	 its	
homozygous	 form.	 Biophysical	 experimental	 showed	 that	 the	 aggregation	 rate	
follows	the	order	A2V	>	WT	>	A2V-WT.	It	 is	 found	by	REMD	that	the	secondary	
structure	content	(18%	β-strand	and	10%	α-helix)	is	invariant,	but	the	patterns	of	
intramolecular	and	intermolecular	conformations	drastically	change	upon	single	
and	 double	 A2V	mutation.	 In	 all	 sequences,	 the	 antiparallel	 and	 perpendicular	
peptide	orientations	are	preferred	over	the	parallel	organization.	However,	upon	
single	A2V	mutation,	 the	 intermolecular	potential	energies	are	reduced,	and	the	
population	 of	 intramolecular	 three-stranded	 β-sheets	 and	 of	 multiple	 beta-
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hairpins	 spanning	 the	 residues	 17-21	 and	 30-36	 is	 increased,	 providing	 an	
explanation	for	its	slower	aggregation	kinetics.	Similar	computational	results	were	
obtained	for	the	Aβ40	WT/A2T	dimer	and	the	Aβ42	A2T/A2T	dimer,	A2T	mutation	
known	 to	 reduce	 Aβ	 aggregation	 kinetics	 and	 the	 risk	 of	 AD.98,99	 Of	 particular	
interest	is	the	application	of	a	Markov	state	model	to	the	transition	pathways	and	
associated	 kinetics	 resulting	 from	 a	 hybrid-resolution	 model	 and	 adaptive	
sampling	technique	that	explores	over	2.7	milliseconds	of	simulations	of	formation	
of	Aβ40	dimers.	 Indeed	beta-hairpin-structures	are	 formed	by	direct	binding	of	
soluble	Aβ	in	β-hairpin	conformations;		while	formation	of	parallel	beta-structures	
resembling	the	U-fibril	state	results	from	Aβ	monomers	in	arbitrary	conformations	
and	occurs	100-fold	more	slowly.100		

	
For	 larger	 aggregates,	 two	computational	 studies	 in	 aqueous	 solution	are	

worth	discussing.	First,	using	the	predictive	coarse-grained	protein	AWSEM	force	
field,	 Wolynes	 et	 al.	 calculated	 and	 compared	 the	 free	 energy	 landscapes	 and	
relative	stabilities	of	Aβ42	and	Aβ40	in	their	monomeric	up	to	octameric	forms.	At	
the	 same	 concentration,	 the	 aggregation	 free	 energy	 profile	 of	 Aβ42	 is	 more	
downhill	and	Aβ42	has	a	computed	solubility	10	times	smaller	than	that	of	Aβ40.	
While,	at	a	concentration	of	40	μM,	there	is	a	clear	free	energy	barrier	between	the	
pre-fibril	tetramer	form	and	the	fibril	pentamer	in	the	Aβ40	aggregation	landscape,	
this	 is	not	 the	case	 for	Aβ42.	 It	 is	 to	be	noted	that	 the	 fibril	state	depicts	 the	U-
shape.	Using	oligomerization	maps	that	capture	the	paths	of	conversion	between	
similar	states	of	oligomers,	several	key	differences	are	revealed.	Moreover,	the	two	
C-terminal	residues	stabilize	the	oligomeric	structures	of	Aβ42,	and	facilitate	the	
conversion	 from	 pre-fibril	 trimers	 to	 fibril	 tetramers.52,53	 Second,	 atomistic	MD	
simulations	of	20	Aβ	disordered	chains	in	implicit	solvent	followed	by	transition	
networks	analysis	showed	that	pathways	of	Aβ40	and	Aβ42	aggregation	depend	
on	 oligomer	 shape,	 with	 compact	 and	 extended	 configurations	 and	 different	
solvent-exposures	of	hydrophobic	residues.101	
	

Numerous	experiments	indicate	that	toxicity	could	involve	pore-forming	Aβ	
oligomers	in	membranes,	but	aggregate	heterogeneity	has	prevented	experimental	
high-resolution	structure	determination.	Nussinov	and	coworkers	have	modeled	
annular	 pores	 of	 1.7-2.5	 nm	 inner	 diameters	 consistent	 with	 atomic	 force	
microscopy	experiments.102	Their	channels	were	built	from	the	assembly	of	the	U-
shape	 fibril	 conformation	 of	 Aβ	 peptide.	 Recent	 biophysical	 experiments	 in	
membrane-mimicking	 environments	 also	 suggest	 Aβ42	 pores	 with	 different	
oligomer	sizes,	and	notably	tetramers103	and	hexamers.104	Using	atomistic	REMD	
simulations,	 low-resolution	data	obtained	in	 lipid	bilayers,	and	other	theoretical	
factors,	Derreumaux	and	coworkers	designed	3D	structures	of	Aβ40	and	Aβ42	β-
barrels	in	a	bilayer	mimicking	a	neuronal	membrane.105	The	tetrameric	model	with	
two	 distinct	 β-hairpin	 motifs,	 eight	 antiparallel	 β-strands	 and	 an	 inner	 pore	
diameter	of	0.7	nm	is	highly	stable	in	all-atom	MD	and	REMD	simulations	for	Aβ42	
and	is	much	less	likely	for	Aβ40.105	Overall,	this	result	sheds	light	on	the	amyloid	
pore	hypothesis	and	explains	the	higher	toxicity	of	Aβ42.	The	authors	also	reported	
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novel	findings	as	the	stability	of	this	Aβ40/42	beta-barrel	in	aqueous	solution	has	
not	been	tested	before	at	the	atomistic	level,	and	is	very	different	from	previous	
computational	studies.45	
	
7.	Conclusions	
	
	 Understanding	how	amyloid	aggregates	actually	become	toxic	is	truly	a	real	
challenge	 in	 developing	 a	 treatment	 for	 neurodegenerative	 diseases,	 as	 only	
monomers	are	nontoxic.	Thus	far,	all	molecules	(antibodies	and	drugs)	targeting	
amyloid-beta	oligomers	have	failed	to	pass	clinical	trials.	Many	reasons	have	been	
put	forward	to	explain	this	repetitive	failure.106,107		

Atomistic	 and	 coarse-grained	 simulations	 with	 increased	 computer	
efficiency,	improved	force	field	accuracy,15,108	coupling	to	machine	learning109	and	
integration	 of	 the	 main	 cellular	 partners110-112	 are	 likely	 to	 lead	 to	 a	 better	
molecular	 understanding	 of	 all	 events	 involved	 in	 amyloid	 fibril	 formation	 and	
structural	characterization	of	 the	Aβ	and	tau	proteins	aggregates	 in	Alzheimer’s	
disease.	These	molecular	insights	coupled	to	experiments	such	as	microbubbles	in	
combination	 with	 focused	 ultrasound	 to	 deliver	 drugs	 through	 blood-brain-
barrier113	may	help	design	more	efficient	inhibitors	of	AD	toxicity.	
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Figure	1:	LBMD	study	of	amyloid	aggregation.	(Panel	A):	Scheme	describing	the	
LBMD	technique	with	particles	embedded	in	a	solvent.	The	set	of	velocities	of	the	
fluid	(fp)	 is	represented	by	displacement	 in	the	 lattice	space	(pink	arrows).	The	
drag	 force	 acting	 on	 the	 particle	 and	 its	 feedback	 on	 the	 evolution	 of	 the	 fluid	
velocity	 field	require	an	 interpolation/extrapolation	communication	strategy.	 In	
lattice	 Boltzmann,	 the	 typical	 3D	 set	 of	 displacements	 is	 represented	 by	 18	
directions	 and	 the	 zero	 displacement	 (D3Q19).	 (Panel	 B):	 simulations	 of	 100	
Aβ16−22	peptides.		The	curves	represents	the	growth	of	the	largest	cluster	during	
the	simulation	time	including	or	not	HI.	The	vertical	bars	schematically	indicate	the	
fluctuations	of	the	cluster	size.	(Panel	C):	simulations	of	1000	Aβ16−22	peptides.	
The	 growth	 of	 the	 largest	 cluster	 manifests	 three	 regimes:	 individual	 peptide	
inclusion,	 cluster	 fusion,	 and	 fragmentation.	 (Panel	 D):	 amyloid	 amorphous	
protofibril	sampled	in	LBMD,	capped	by	an	annular	pore.	(Panel	E):	Aggregation	of	
a	large	amorphous	protofibril	can	occur	via	lateral	branching.	
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Figure	2.	The	population	of	one	(black),	two	(red)	and	three	(green)	beta-sheet	
layers	as	a	function	of	the	number	of	beta-strands.	Shown	is	the	REMC	result	of	20-
mer	Aβ37-42	below	the	melting	temperature	of	the	aggregates.	
	
	
	
	

	


