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Abstract

Simulation methods for design flood estimations in dam safety studies require

fine scale precipitation data to provide quality input for hydrological models, es-

pecially for extrapolation to extreme events. This leads to use statistical models

such as stochastic weather generators. The aim here is to develop a stochas-

tic model adaptable on mountainous catchments in France and accounting for

spatial and temporal dependencies in daily precipitation fields. To achieve this

goal, the framework of spatial random processes is adopted here.

The novelty of the model developed in this study resides in the combination of an

autoregessive meta-Gaussian process accounting for the spatio-temporal depen-

dencies and weather pattern sub-sampling discriminating the different rainfall

intensity classes. The model is tested from rain gauges in the Ardèche catch-

ment located in South of France. The model estimation is performed in four

steps, dealing respectively with: (i) the at-site marginal distribution, (ii) the

mapping of the marginal distribution parameters at the target resolution, (iii)

the at-site temporal correlation and (iv) the spatial covariance function.

The model simulations are evaluated in terms of marginal distribution, inter-site

dependence and areal rainfall properties and compared to the observations at

calibration stations and also on a set of independent validation stations. Regard-

ing all these aspects, the model shows good abilities to reproduce the observed
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statistics and presents really small discrepancies compared to the stations data.

The sub-sampling is particularly efficient to reproduce the seasonal variations

and the marginal mapping procedure induces very small differences in terms of

daily rain amounts and daily occurrence probabilities.
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Latent gaussian process, Weather Pattern, Rainfield generation
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1. Intoduction

Stochastic methods embedding rainfall-runoff simulation are now commonly

used for extreme flood estimation, like the SCHADEX method (Paquet et al.,

2013), or the SEFM method (Schaefer and Barker, 2002). Lumped hydrological

models can be considered in this context, but a more detailed representation of5

hydrological processes varying in space, or the need of information within the

catchment (and not only at the outlet) require the implementation of distributed

rainfall-runoff models. In a stochastic process, being continuous or event-based,

such models have to be fed by either a multi-site or a rain-field simulation model.

The presented model is dedicated to this context, and more precisely to future10

applications to dam safety studies.

A large variety of models has been developed to answer the need for spatially

coherent rainfall simulation. The main difficulty lies in the intermittent nature

of precipitation. Thus, the modelling has to deal with two different processes:

the occurrence and the intensity. In hydro-climatology, the panel of stochastic15

weather generators is extremely wide. Each model reproduces the different

spatio-temporal properties of precipitation with its own benefits or drawbacks.

Models available in the literature can be divided into two families.

• Random resampling models. The principle is to rearrange past obser-

vations in order to get new time series. These models do not allow to20

generate unobserved values, and in particular the extreme ones needed in

dam safety analyses.
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• Random generator models. The principle is to fit distributions from which

new times series can be generated. These models can generate unobserved

values. In this family, mainly two types of model are available:25

– Multi-site models. These models are able to generate rainfall only at

the stations on which they have been calibrated. This type of model

allows to prescribe the observed spatial dependence for each pair of

stations.

– Random fields models. These models are able to generate rainfall on30

a regular grid of a chosen resolution whether or not there is stations

in the grid cells, thanks to a covariance function. However, the rain

gauge network has to be dense enough to be able to learn the spatial

properties of the rain field.

These models are often used in two simulation context:35

1. Observation-based models:in this family the models only aim at mimick-

ing the statistical properties of the observations. Among them, there

are resampling models using for instance k−nearest neighbours algorithm

(knn, e.g. Buishand and Brandsma, 2001; Leander and Buishand, 2009).

There are also rainfall generators mainly based on an underlying Gaussian40

process. These models rely on the transformation of the non-Gaussian

marginals into Gaussian ones. They are hereafter referred to as meta-

Gaussian. Many multi-site or rain-field simulators are based on this prin-

ciple. For the rain-field simulators, a covariance function has to be esti-

mated additionally.45

In order to cope with rain intermittency and rain intensity two strategies

are possible. One consists in using a single underlying Gaussian process

which is on the one hand truncated for the rain occurrence, and on the

other hand transformed for rain intensity. Bàrdossy and Pegram (2009),

and Rasmussen (2013) have developed a multi-site model based on a mul-50

tivariate latent autoregressive Gaussian process to model rain occurrence
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and rain intensity processes at the same time. Similarly, Sparks et al.

(2018) have recently provided a multi-site multivariate model for mini-

mum, maximum temperature and precipitation based on a single latent

autoregressive Gaussian process. Many rain-field simulation strategies55

over an entire region are also possible from at-site estimated rain distri-

bution and covariance function. A variety of meta-Gaussian models with

a single field for occurrence and intensity can be found in the literature

(e.g., Sigrist et al., 2012; Baxevani and Lennartsson, 2015). For instance,

simulations can be performed over a regular grid by considering the same60

at-site distribution for all gauges with unconditional simulations (Guillot,

1999; Guillot and Lebel, 1999) or conditional ones (Vischel et al., 2009).

A kriging can be done over marginal distribution parameters estimated at

each station in order to get spatially varying marginals at a desired target

resolution. These marginals are combined with a meta-Gaussian rain-field65

simulator to generate daily rain fields (Bennett et al., 2018). Another way

is to use two distinct processes to model the occurrence and the intensity.

Multi-site models based on that principle are available (Wilks, 1998; Evin

et al., 2018). Based on the same idea, rain fields are also simulated by

combining marginal parameters kriging with two distinct processes (e.g.,70

Kleiber et al., 2012; Verdin et al., 2015).

Based on meta-Gaussian process, models for high spatio-temporal reso-

lution accounting for the advection of the rain process have also been

developed (Leblois and Creutin, 2013; Paschalis et al., 2013; Peleg et al.,

2017; Benoit et al., 2018a). Event based modelling can also be adopted75

instead of using a fixed time scale (daily for instance e.g., Onof et al.,

2000; Leonard et al., 2008; Burton et al., 2010).

2. Exogenous variables-constrained models: in this family the models explic-

itly use exogenous variables as covariates (or predictors): these are the

so-called downscaling models (cf. Vaittinada Ayar et al., 2016; Gutiérrez80

et al., 2018, for intercomparisons). The principle is to statistically link

observations with synoptic information at coarse resolution extracted for
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instance, from climate models in order to simulate precipitation. Part of

the climate non-stationarity carried by the synoptic variable is, by con-

struction, taken into account in the stochastic model. These models can be85

used to reconstruct past events, perform short-term predictions or climate

projections from future climate simulations of global circulation model.

Resampling models can be based on atmospheric analog (Yiou, 2014) or

on non-parametric geostatistical methods (Jha et al., 2015). Many genera-

tors are based on Generalised Linear Models (GLM) to link the predictors90

with the observations. Many examples of meta-Gaussian multi-sites mod-

els have been also proposed (cf. Wilks, 2010, 2012, for a review). For

instance, Chandler (2002) has proposed a rain-field simulator with two

distinct processes for rain occurrence and intensity but only applied in a

multi-site context. Two other studies conducted by Yang et al. (2005) et95

Ambrosino et al. (2014) have applied a modified version of this model.

Estimated from a gridded dataset, Serinaldi and Kilsby (2014) have used

a single latent Gaussian process to simulate rain field at the observations

resolution.

Hybrid models:. many models that can be described as hybrid. This family100

gathers the models using components from both aforementioned families. These

models combine resampling, multi-sites or random fields approaches and a syn-

optic information through a discrete variable. Atmospheric circulation patterns

are summarised and discretised into different classes. If these classes are es-

tablished directly from the precipitation or from synoptic variables these are105

respectively referred to as Precipitation Types (PTs) or Weather Types (WTs).

Precipitations are generated conditionally to this discrete variable.

It is possible to perform resampling conditionally to WTs or PTs, i.e. the re-

sampling is only performed within a class. For instance, a Hidden Markov Model

(HMM) used to generate PTs sequence (Steinschneider and Brown, 2013) or a110

WTs classification (Caraway et al., 2014) can be combined with a knn method.

A simple multi-site modelling consists in considering the stations as spatially
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and temporally independent given a WT which can be modelled by a HMM

(Zucchini and Guttorp, 1991; Hughes and Guttorp, 1994; Bellone et al., 2000),

or defined explicitly (Vrac et al., 2007). Bellone et al. (2000) and Vrac et al.115

(2007) estimate the transition probabilities from one WT to another as func-

tions of synoptic variables (by GLM). Thompson et al. (2007) consider a multi-

site daily rainfall generator in which rainfall spatial dependence conditionally to

station-specific PTs. Ailliot et al. (2009) modify this model by first considering

regional PTs and second adopting a rain-field generator instead of a multi-site120

generator. A wide range of statistical models conditioned by WTs are sug-

gested in the literature (cf. Wilks, 2010, 2012; Ailliot et al., 2015, for reviews).

Based on the same idea, event-based models accounting for the advection and

for sub-daily data have also been developed (e.g. Peleg and Morin, 2014).

Using PTs or WTs are both valid options to define rain intensity classes.125

PTs define rather catchment-specific classes since they are defined from obser-

vations. On the contrary, WTs are defined over larger areas being defined by

synoptic variables and are not specific to one catchment. WTs defined over

France mountainous regions have been proved to be efficient for rainfall distri-

bution modelling over France (Garavaglia et al., 2010, 2011; Evin et al., 2016;130

Blanchet et al., 2019). The present paper investigates the added-value of these

WTs in the context of rainfall spatial modelling over mountainous regions in

France.

In this study, an hybrid model of daily rain-field is developed. The model

further presented is closely related to the model of Ailliot et al. (2009). Their135

approach lies on the combination of a HMM for the PTs generation and a rain-

field simulator which covariance function is estimated conditionally to a PTs.

Our model departs from the latter on three points:

1. PTs are replaced by WTs which are not specific to a given catchment.

WTs sequence is not modelled, instead a long observed sequence is played140

as many times as needed (e.g. if 1000-years long rainfall sequence is

needed, the observed WT sequence of 40 years is repeated 25 times),
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2. Temporal dependence is not implicitly ensured by the sequence of WTs but

is explicitly modelled conditionally to transitions from a WT to another,

3. The model is not only used in a multi-site contexte: simulations are not145

only generated at calibration stations. This model allows to generate

rainfall at any location of the catchment or to upscale at a target spatial

resolution to generate fields (1km2 for instance).

The novelty lies in the development of an hybrid random rain-field simulator

that is fed by daily rain-gauge data only and in which all the model components,150

namely the marginal distributions and the spatio-temporal dependence struc-

ture, are conditioned by synoptic WTs. This has to our knowledge never been

proposed before.

The aim is to get a model adaptable to different mountainous catchments

covering several thousands square kilometre. A daily time-step is relevant in155

these cases, as well for the dynamic of the hydrological processes to be mod-

elled, as for the availability of the rainfall data. A special attention is paid to

the ability of the model to simulate the high quantiles, and to the good rep-

resentation of the day to day correlation of wet sequences, in order to model

coherent hydrographs. Section 2 presents the study area and the data. Section160

3 describes the model. The simulations are evaluated in Section 4 and Section

5 gives the conclusions, discusses the results and presents some perspectives of

the proposed work.

2. Study area and data

To assess the model ability to meet the previously stated objectives an ap-165

plication to the Ardèche catchment (2260 km2) located in the south-east of

France (cf. Fig. 1) is made. Indeed, despite its size, this catchment presents

important orographic and climatic disparities. This region partly includes the

south-eastern slope of the Massif Central where the highest summits are located

(about 1700 m.a.s.l.), and bordered by the Rhône valley (down to 40 m.a.s.l.) in170

the East. This region is prone to extreme precipitations causing intense floods
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(Delrieu et al., 2005; Nuissier et al., 2008). These events are mainly triggered by

the advection of humid air mass of the lower layer of the atmosphere flown from

the Mediterranean sea and forming meso-scale convective and quasi-stationary

systems. Due to the specific topography, these systems can stay over the same175

area for several hours and are responsible for heavy rainfall (Nuissier et al.,

2008). The HyMeX field campaign (Ducrocq et al., 2014; Drobinski et al., 2014)

gives a thorough insight into the large variety of blocking situation generating

heavy rainfall systems over the region.
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Figure 1: Map of the studied region. Superficie: 2,260 km2 – 47 Stations – Station elevation:

from 47 to 1425 m – Red stations are validation stations.

Data from rain gauge networks operated by Électricité de France and Météo180

France are used. Forty seven stations are available inside and outside the catch-

ment with 15 to 40 years of daily data between January 1, 1969 and December

31 2008. Figure A.1 (Appendix A) shows the data availability throughout the

period for each station.

The proposed stochastic model aims at generating rain fields at a given185
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resolution to provide rainfall scenarios in order to simulate flood events thanks

to a rainfall-runoff model. This study only describes and evaluates the rainfall

generator model. Among the 47 stations, N = 41 stations (black stations in

Figure 1) are used to calibrate the model and to evaluate it from simulations

performed at these stations. In order to evaluate the potential errors or biases190

that will be faced when simulating fields, six leave-out (or validation) stations

are kept (red stations in Figure 1). The performance of the model is evaluated

at these stations in order to enlighten the potential errors in non-monitored

areas.

In the next sections, the simulator structure and its application over the195

Ardèche catchment are presented. The modelling choices are driven by the will

to combine WTs with a Gaussian process and are not specific to the Ardèche

catchment. In order to illustrate the adaptability of the model framework to

different catchment, the model is also tested over the Durance catchment. This

question is discussed in Section 4.4 and all the results for this catchment are200

available in the supplementary material.

3. Spatial simulator

In this section, the different components of the model are described. The

simulator is based on a single meta-Gaussian process to model both rain occur-

rence and intensity. This approach is privileged in order to reduce the number205

of estimated parameters and simulated Gaussian fields (especially in the case of

high resolution random fields) and to maintain the spatio-temporal coherence

between rain occurrence and intensity.

Let x = (x1, · · · , xN ) be the vector of length N of station locations. Accord-

ing to Guillot (1999), the vector of precipitation Y (x) at stations x is linked to210

the latent Gaussian vector Z(x) by the following relationship:

Y (x) =

 Ψ(Z(x)), if Z(x) > C(x)

0, if Z(x) ≤ C(x)
(1)
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where Ψ is a monotonic non-decreasing function (further described in Equation 2

and 3) from which rain intensity is retrieved by transforming Z values above C.

C is a threshold which prescribes the rain intermittency.215

Given the fact that the rain generating processes can have different nature

(e.g. stratiform or convective) or evolve seasonally (heavier rain intensity in

Autumn are observed over the region), the seasonal and WT-based sub-sampling

proposed by Garavaglia et al. (2010) is adopted. Indeed, a split in S = 2

seasons is set (with a low-risk season LO from December to August and a220

high-risk season HI from September to November). However, instead of the

eight WTs identified at the Western European scale by Garavaglia et al. (2010),

those are grouped into K = 3 Groups of weather Types (GT) based on the

correlogram characterising the spatial correlation of the rain fields (the same

GT as defined in Blanchet et al., 2019). GTs frequencies between 1969-2008 are225

given in Table 1. GT1 mainly regroups Mediterranean circulations bringing the

heavy rain events over the study region. GT2 rather regroups oceanic (Atlantic)

circulations based rainfall and GT3 gathers anticyclonic days (with really sparse

or no rainfall). The rainfall intensity, correlation range decreases from GT1 to

GT3 (cf. Table 1 and Blanchet et al., 2019). The distinction between convective230

and stratiform rainfall is mainly taken into account by the seasonal/GT sub-

sampling. In the following, each day t = 1, . . . , T is thus associated to a sub-set

j ∈ [1, · · · , S ×K = 6].
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Table 1: Annual and seasonal percentage of the three GTs for the period 1969-2008. The WT

defined by Garavaglia et al. (2010) composing each GT are given into brackets. LO season

extends from December to August, HI season from September to November. Into square

bracket are given the minimum median and maximum of the annual and seasonal averages of

daily non-zero rainfall of the 47 stations.

Year LO HI

GT1 (3-4-7) 28% [8.1 15.0 30.7] 27% [7.6 12.8 26.4] 31% [9.3 21.4 42.2]

GT2 (1-2-6) 35% [4.0 6.9 10.2] 36% [3.9 6.5 9.7] 33% [4.3 8.6 12.7]

GT3 (5-8) 37% [2.5 4.2 8.3] 37% [2.5 4.3 7.6] 35% [1.6 3.8 10.9]

In the following sections, the at site marginal model and the parameters

mapping are presented in Section 3.1, the spatio-temporal dependence in Section235

3.2 and all the parameters estimations are presented in Section 3.3. The model

steps are summarised in Figure 2, and the notations are reminded in Table 2.

[1] Marginal model estimation at each station  
Gamma per season/GT : Equation 1

[2] Marginal model estimation at 
the target resolution

Thin plate spline per season/GT : Blanchet et al. 2019

[3] Data transformation to Gaussian data using 
the marginal model

Anamorphosis per season/GT : Equation 3

[4] Estimation of the spatio-temporal 
dependence of the Gaussian process

Censored likelihood per season/GT : Equation 4 to 7 

[5] Simulation of the Gaussian process
Fixed sequence of season/GT : Section 3.4

[6] Back-transformation to precipitation
Inverse anamorphosis per season/GT : Inverse of Equation 3

Model Steps

Figure 2: Schematic summary of the full estimation and simulation process.
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Table 2: Model notations associated with their respective each steps in Figure 2.

Step Notations Definition

[1] p̂0j (x) Dry day fraction estimated at site x for sub-set j

ĤYj(x) Rainfall CDF estimated at site x for sub-set j

[2] H̃Yj(x) Mapped rainfall CDF for sub-set j at any point of the do-

main

[3] Zt(x) Censored Gaussian variable associated with the site x

cj(x) Censoring threshold of Zt(x) at site x for sub-set j

[4] Gt Spatio-temporal Gaussian process

ρj(τ) Anisotropic spatial covariance function for sub-set j

βj Parameters of ρj(τ) for sub-set j

αsk,l Temporal lag-1 correlation for season s and the transition

from GT k to GT l

3.1. Marginal distribution

One of the model ability is to generate rainfall at any location of the domain

or on a regular grid. To this end, marginal distribution parameters have to be240

mapped based on the rain gauge observations. Given the density of the stations

and the daily time scale of study, a 1×1 km2 interpolation grid is considered.

Interpolation is achieved for each sub-set j, in a two-step procedure put in place

by Blanchet et al. (2019) and illustrated for the same catchment. The marginal

distribution at station x relies on the sub-sampling into seasons and GTs. For245

a given day in sub-set j, the rainfall CDF is given by

P (Yj(x) ≤ y) = HYj(x)(y) = p0j (x) + (1− p0j (x))FYj(x)(y) (2)

where Yj(x) is the random variable of daily (zero and non-zero) rainfall amount

for a day in sub-set j at x. p0j (x) is the dry day fraction at station x within

sub-set j. Following the two-step estimation procedure developed in Blanchet250
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et al. (2019): first the at-site distribution parameters are estimated, then these

parameters are mapped at the wanted resolution. The interpolated values can

be interpreted as estimates of the local values at the center of the 1×1 km2 grid

points. In Blanchet et al. (2019), the interpolated values are validated at the

stations, as if the latter were all located at the center of the grid points they255

belong to. Blanchet et al. (2019) conclude that, for this study area, the best

marginal model is the mixture of gamma distribution (i.e. FYj(x) is a Gamma

distribution specific for each sub-set j). Blanchet et al. (2019) also found that

over this domain the best mapping model is a bivariate thin plate spline model

with drift in smoothed elevation. It is shown in the following that the interpo-260

lation is statistically quite robust to depict several rainfall characteristics at the

station locations.

3.2. Spatio-temporal model

Since the marginal distribution only describes the rainfall behaviour at a

given site, the spatial and temporal dependences have to be modelled. If Yt(x)265

were real valued, then

Zt(x) = Φ−1
[
HYj(x) [Yt(x)]

]
, (3)

would be a Gaussian process with marginals N (0, 1) (Φ being the standard

Gaussian). However since rainfall amounts are non-negative (Yt(x) ≥ 0), Zt(x)

defined above is a censored Gaussian process. It can be written as Zt(x) =270

max(cj(x), Gt(x)), where cj(x) = Φ−1(p0j (x)) is the censoring threshold and

Gt(x) is a mutivariate Gaussian with margins N (0, 1) and covariance matrix

Σt. Referring to Equation 1, Ψ is equal to H−1Yj(x)
◦ Φ.

The spatio-temporal dependence among the N stations is modelled by the

zero-mean latent multivariate Gaussian variableG = [gt(xi); i = 1, . . . , N ; t = 1, . . . , T ]275

∼ N (0,Ω) with Ω the NT ×NT covariance matrix for the N sites and T days.

It is assumed to be a multivariate Markov autoregressive process of order 1

(MAR(1)). MAR(1) has been used in several studies to describe spatio-temporal
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dependence of rainfall ( e.g. Rasmussen, 2013; Bennett et al., 2018). Thus, Gt(x)

is defined as follows:280

Gt(x) = At,t−1Gt−1(x) + Et(x). (4)

where At,t−1 is a N × N matrix of autoregressive parameters and Et(x) is a

Gaussian noise vector of length N . The Et(x)s, t = 1, . . . , T , are independent

of each other and Et(x) is independent of Gt′(x) for t′ < t. This ensures

the Markovian property. Then Et(x) has zero mean and covariance matrix285

Σt−A2
t,t−1Σt−1. The matrix At,t−1 is assumed to be diagonal (e.g. Evin et al.,

2018; Bennett et al., 2018). This means that only the spatial covariance and

the at-site autocorrelation are explicitly modelled.

3.2.1. Spatial dependence

Rain-field simulation based on Gaussian processes requires to calculate the290

correlation between every couple of points of a domain. In order to achieve that

the covariance matrix Σt is represented by a covariance function ρj(τ) for a day

t in sub-set season/GT j (τ is the inter-site distance). The powered-exponential

correlation function is used here ρj(τ) = exp
(
−( τλj

)νj
)

, where λj > 0 is the

range parameter and νj ∈]0; 2] is the power term.295

In the literature, anisotropic covariance functions are commonly used to

introduce a preferential dependence axis (e.g. Baxevani and Lennartsson, 2015;

Blanchet and Creutin, 2017). This can be easily done by using a distance

accounting for the directionality such as the Mahalanobis distance: τ(xu, xv) =√
(xu − xv)TΠ−1(xu − xv). Π is positive definite matrix (with Π = IdN the300

identity matrix, it gives the euclidean distance) introducing the anisotropy. Π

is usually written as Π−1 = MTM and M is parametrised as following:

M =

 cosψ sinψ

−b sinψ b cosψ


with b > 1 the elongation coefficient and ψ ∈

[
−π2 ,

π
2

]
the angle. With this

parametrisation, for a given site x all the points with equal covariance with x305
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form an ellipse centred at x with ψ the angle between the horizontal and the

major axis of the ellipse and b the ratio between the major and minor axes.

3.2.2. Temporal dependence

As previously mentioned, only the at-site autocorrelation is modelled here

since A is a diagonal matrix. Another approximation is made on matrix At,t−1310

by considering the autocorrelation as constant over the region. Thus, At,t−1 is

of the form At,t−1 = at,t−1IdN . This also simplifies the covariance of Et which

becomes Σt−a2t,t−1Σt−1. In the following, the at,t−1 only depends on transitions

among GTs within a season. This coefficient is assumed to be constant within

a season and for each transition from one GT to another (from GT1 to GT1,315

GT1 to GT2, GT2 to GT1 etc.). For t and t− 1 in a season s and a couple of

GTs (k, l), ask,l is defined as the autocorrelation coefficient for the transitions

from jt−1 = (s, k) to jt = (s, l). In total 18 coefficients have to be estimated.

3.3. Parameters estimation

3.3.1. Marginal distribution parameters320

The probability p0j (x) is the dry day fraction at station x in sub-set j. The

empirical probability p̂0j (x) is considered as a good estimate of p0j (x). At each

station x and for each sub-set j, the parameters of the gamma distribution mod-

elling positive rainfall are estimated by a probability weighted moments method

(PWM, cf. Blanchet et al., 2019, for more details). From the estimated ĤYj(x),325

the precipitations yj(x) are transformed into zj(x) used for the estimation of

the covariance function (see Section 3.3.2). The marginal model parameters are

mapped by a bivariate thin plate spline estimated by a penalised least square

method (for more details see Blanchet et al., 2019). A marginal distribution

H̃Yj(x) can now be obtained at each point of the domain for each sub-set j from330

the mapped parameters. The marginal distribution at the six validation stations

are computed according this method.
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3.3.2. MAR(1) model parameters

From the estimated marginal distributions ĤYj(x), realisations of Zt(x) at

station x for a day t in sub-set j = (s, k): zt(x) = Φ−1(ĤYj(xi)(yt(xi))) are335

computed. From this, the autoregressive parameters ask,l and the covariance

function ρj of Gt for t in sub-set j are estimated. The authors remind that the

latent process G ∼ N (0,Ω) is not observed but only a censored version Z. The

use of a censored likelihood is then required. One can write this likelihood for

the Gaussian process G described by the Equation 4, nevertheless it represents340

a numerical challenge to optimise. Indeed, not only the number of parameters

to optimise at a time would be too large, but also it would mean to invert a

N(T − 1)×N(T − 1) size matrix which is completely unrealistic. To avoid this,

the estimation is performed in two steps.

First, the 18 autocorrelation coefficients for each station are estimated. For345

all (t − 1, t) such as (jt−1 = (s, k), jt = (s, l)) Equation 4 written for a station

x gives: Gt(x) = ask,lGt−1(x) + Et(x) where Et(x) is Gaussian noise with zero

mean and variance 1− (ask,l(x))2 and ask,l(x) is the autocorrelation at station x.

Thanks to a composite censored likelihood each ask,l is estimated at each station

x.350

Lc(ask,l(x)) =
∏
t,t−1

Lct,t−1(ask,l(x))

where (t, t− 1) such that (jt = (s, l), jt−1 = (s, k)) and Lct,t−1(ask,l(x)) =

f2(gt(x), gt−1(x)) if gt(x) > cjt(x), gt−1(x) > cjt−1
(x)

P (Gt(x) ≤ cjt(x), Gt−1(x) ≤ cjt−1
(x)) if gt(x) ≤ cjt(x), gt−1(x) ≤ cjt−1

(x)

f1(gt−1(x))P (Gt(x) ≤ cjt(x)|Gt−1(x) = gt−1(x)) if gt(x) ≤ cjt(x), gt−1(x) > cjt−1(x)

f1(gt(x))P (Gt−1(x) ≤ cjt−1(x)|Gt(x) = gt(x)) if gt(x) > cjt(x), gt−1(x) ≤ cjt−1(x)

(5)

where f2 a bivariate Gaussian density with zero mean, unit variance and co-

variance ask,l(x) and P (Gt(x) ≤ cjt(x), Gt−1(x) ≤ cjt−1(x)) is computed from355

the associated CDF. f1 is the standard Gaussian density and the conditional

probabilities above P (Gt(x) ≤ cjt(x)|Gt−1(x) = gt−1(x)) and P (Gt−1(x) ≤
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cjt−1(x)|Gt(x) = gt(x)) are respectively computed from the CDF

N
(
ask,l(x)gt−1(x), 1− (ask,l(x))2

)
and N

(
ask,l(x)gt(x), 1− (ask,l(x))2

)
(the two

latter distributions are obtained from the formulation given in Appendix B for360

the N -variate case applied to the bivariate case).

In Figure 3, the boxplots of the estimated parameters âsk,l(x) for each season

and transitions are represented. In our model these coefficients are assumed to

be constant over the region. To this end, the regional median of the estimated

coefficients âsk,l(x) is taken.365
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Figure 3: All stations boxplot 1-day lag autocorrelation coefficient ask,l estimated for each

transition among GTs within a season.

Second, the parameters of the covariance function ρj(τ) for each sub-set j

are separately estimated from the censored data zt(x) = max(cj(x), gt(x)), for

t in sub-set j. In order to account for the temporal dependence between Gt

and Gt−1 in its estimation, spatial dependence is estimated from the Gaussian

error Et. Realisation of Et are given by εt(x) = gt(x)− âsk,l · gt−1(x). Separate370

estimation of each ρj needs one more simplification. Indeed, for t in sub-set

j the covariance Et is COV (Et) = Σt − (âsk,l)
2Σt−1. Here, the covariance is

approximated by COV (Et) ≈
(

1− (âsk,l)
2
)
ρj by considering Σt−1 ≈ Σt.

εt is censored whenever gt or gt−1 is. For a given day t in jt, let Eot =

{x|gt(x) > cjt(x) and gt−1(x) > cjt−1
(x)} be the ensemble of observed ε(x) and375

Ect = {x|gt(x) ≤ cjt(x) and/or gt−1(x) ≤ cjt−1
(x)} the ensemble of censored
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ε(x). et is defined as the vector of censoring thresholds of εt(x) and βj are

the parameters of ρj . For Et, several cases of censoring threshold et(x) and

hence of censoring intervals Ict (x) are possible. It depends on the sign of ask,l

and whether or not Gt(x) or Gt−1(x) are censored. All the cases are given the380

Appendix C and their proportion are given in Table C.1. For a given day t in

jt, I
c
t = {Ict (x)} is ensemble of censoring intervals of Et.

According to Pesonen et al. (2015), for each sub-set j, since the E1, . . . , ET

are independent, the censored likelihood of βj given the {εt(x)}x∈Eot is:

Lcj(βj) =
∏
t∈j

Lct(βj). (6)385

For a given day t in sub-set j, the Lct(βj) can be written as following.

• If all the εt(xi) are observed: Lct(βj) = fN (εt(x1), . . . , εt(xN );βj) = fN (εt(x);βj).

fN is multivariate Gaussian density of dimension N .

• If at least one station is censored:

Lct(βj) = fo(ε
o
t ) · P (Ect ∈ Ict |Eot = εot ;βj). (7)390

fo(ε
o
t ) is multivariate Gaussian density of dimension cardinal of Eojt , of zero

mean and covariance (1−(âsk,l)
2)ρj when jt−1 = (s, k) and jt = (s, l) (suc-

cessive days in different seasons are omitted for simplicity). The probabil-

ity in the right part of above equation is a Gaussian CDF since Ect |Eot = εot

is Gaussian (whose conditional mean and covariance formulation are given395

in Appendix B).

• If all the stations are censored: Lct(βj) = P (Et ∈ Ict ;βj). This probability

is the CDF of aN -variate Gaussian process, with zero mean and covariance

(1− (âsk,l)
2)ρj .

Note that, the estimation of β1, · · · , β6 by Equation 6 is only based on 59% of400

the observations according to Appendix C. Indeed, stations with consecutive

dry days (case 1b) have no contributions to the likelihood of Equation 6. Thus,

an alternative is suggested which consist in inferring the βj directly from the
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gt and independently of the temporal dependence. Naturally, censoring cases

still happen but the entire data-set is used. The Lct(βj) written for Gt take the405

following formulations:
φN (gt(x);βj) if no station is censored,

φo(g
o
t ) · P (Gc

t ≤ cjt |Go
t = got ;βj) if at least one station is censored,

P (Gt ≤ cjt ;βj) if all stations are censored.

where φo(g
o
t ) and φN (gt(x)) are the multivariate Gaussian distribution associ-

ated to gt. In that case, the ask,l are obviously omitted in the estimation of the

βj . Table C.1, gives the proportion of censored cases for this version. Hence, two410

versions of the model are compared: when ρj is estimated from either εt (taking

into account the temporal correlation) or gt (independently from the temporal

correlation). Both alternatives are compared to the observations data.

3.4. Spatio-temporal rainfall simulations

The purpose of the study is to evaluate the ability of both versions of the415

model to reproduce the rainfall spatio-temporal properties given a GT. Thus,

the objective is to compare the simulated rainfall density to the rainfall density

of the past observation. Therefore, transitions between GTs are not modelled

even if GT sequences can easily be generated thanks to a Markov model (e.g.

Vrac et al., 2007; Ailliot et al., 2009). The simulations are performed using the420

observed sequence of GTs between 1969 and 2008 which is assumed to be long

enough to contain a representative variety of transitions. The model applies for

t ≥ 2 only. For each day t:

1. if t = 1, G1(x) is randomly drawn from NN (0,Σ1),

2. if t > 1, Et(x) is randomly drawn from NN (0, (1 − âsk,l)Σt) and Gt(x) is425

set to âsk,lGt−1(x) + Et(x).

The simulations of the Et(x) are performed by eigenvalue decomposition

of the covariance matrix. From the simulated gt(x), the yt(x) are retrieved

from the inverse transformation of Equation 3. Note that in order to remove

19



the initialisation effect a warm-up is realised: the first year of simulation is430

discarded.

4. Simulations Evaluation

The model is evaluated in terms of precipitation intermittency, intensity and

extreme properties. Using different indices the evaluation is made from three

points of view: marginal, spatial and regional (or areal i.e. for aggregated435

rainfall over the catchment). Hundred simulations over 40 years (1969-2008)

at the 47 stations (41 stations of the calibration set and 6 stations from the

validation set) are performed for the two following versions of the model:

• AR1 p.exp: MAR(1) model with powered-exponential correlation func-

tion,440

• AR1 p.expi: MAR(1) model with powered-exponential correlation func-

tion with independent estimation of the ask,l and ρj .

The simulations are confronted to the observed statistics.

4.1. Marginals properties

In this section two aspects of the model are evaluated: first the marginal dis-445

tributions Ĥ estimated from the data at the calibration stations and second the

marginal distributions H̃ obtained at the validation stations from the parameter

mapping procedure. The evaluation is mostly made on the validation stations

in order to assess the quality of the marginal parameters mapping. An article

fully dedicated to the parameters mapping methodology used in this study is450

available in Blanchet et al. (2019). Only the results for AR1.pexp are shown

here but the same conclusions are drawn for AR1.pexpi (as expected since the

two versions differ only by the spatial correlation estimation).

Figure 4 gives, for both seasons and GT1, the daily mean (Mean), the wet-

day mean (Mean>0, a day is considered wet at 0.1 mm) and the rainy day455

fraction (P1) for all stations (calibration set in grey and validation set in red).
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Figure 4: Each colonne: Mean (mm/day), mean of positive values (mm/day) and wet day

fraction for GT1 and both seasons – In line grey: boxplot of 100 simulations, blue dots:

observed statistics (ordered with respect to the altitude given by the barplot on the right).

Red boxplots correspond to the simulations at the validation stations.

Little biases are only observed over the validation stations. Isolated stations

situated on the edge of the domain and outside the catchment show the largest

biases (e.g. Saint Julien de Peyrolas or Pont Saint Esprit). The geographical sit-

uation of these stations makes the interpolation more delicate due to the spatial460

extrapolation they require. Similar results are found for the other GTs. How-

ever no systematic (positive or negative) biases are noticed. This is something

expected since the mapping model has been selected in Blanchet et al. (2019)

as the best compromise over the entire domain. This is why, the interpolated

parameters may not perfectly coincide with the at-site values but the differences465

remain low.

Figure 5 displays the monthly mean for the six validation stations for the

AR1.pexp model. Note that, unlike the daily mean of Figure 4, the monthly

mean also evaluates the temporal correlation.
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Figure 5: Daily mean of monthly precipitation at the validation stations. Blue the observa-

tions, black dots the mean of simulations, light grey (resp. dark grey) the 90% (resp. 100%)

simulation intervals.

The precipitation seasonal aspect is important in terms of hydrological re-470

sponses (e.g. Grouillet et al., 2016). In our model, precipitation seasonality is

partly ensured by the frequency of the GTs. This modelling option combining

the GT and the two really contrasted season correctly reproduces the seasonal

cycle. For the four validation stations below 212m, the seasonal cycle is rela-

tively well reproduced despite the biases noticed in Figure 4. For the two other475

stations it seems to be more difficult during Summer months. Similar behaviour

to Sablières is observed for few calibration stations (not-shown) located on the

north-western part of the domain (at higher altitudes) or in peculiar topographic

area (e.g. a narrow valley). Even though these few stations, the use of GTs to

condition the autocorrelation seems to be a good alternative with lower number480

of parameters than the classical monthly modelling (e.g., Bennett et al., 2018)

or lower constrain than the use of sine/cosine functions (e.g., Kleiber et al.,

2012; Baxevani and Lennartsson, 2015).

Stationary spatial models usually lack variability in annual precipitation to-
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tals (e.g., Wilks and Wilby, 1999; Mehrotra and Sharma, 2007; Bennett et al.,485

2018). The mean and the standard deviation of annual totals for each station

are given in Figure 6. Annual total averages are well reproduced and the year-to-

year variations of GT occurrence frequencies is enough to correctly reproduce the

variability of the annual totals. Validation stations show little overestimations

or underestimations of the annual totals caused by the interpolated marginal490

distributions as already stated for Figures 4. Some calibration stations underes-

timate the observed interannual variability. As previously, GT frequencies are

not enough to represent all local year-to-year variations. In particular, for these

sites, very high annual total values can be observed some years which can highly

increase the standard variation of the observation. The stationary hypothesis495

of our model prevents to reproduce those peaks.
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Figure 6: Interannual precipitation total mean left and standard deviation right. Dots Mean

of simulations (blue dots for calibration stations, red dots for validation stations) and black

bars, the 90% simulation intervals.

The presented model does not represent rain occurrence and rain persis-

tence as specific parameters but implicitly by the censoring and the temporal

autocorrelation of the latent Gaussian process. Dry and wet days persistences

(spells) statistics are evaluated. Figure 7 represents the distributions of dry500

(Figure 7a.) and wet (Figure 7b.) spell duration (in days) for the six validation
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stations. Both persistences are well reproduced with some underestimations

and overestimations caused by the regionally constant ask,l. By doing so, the

model compromises on all stations which can induce a little too much or too

low temporal correlation depending on the stations. Long duration spells (≥505

10 days, representing less than 2%) seem to present larger overestimations, but

this is a visual artifact introduced by the logarithmic scale.
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Figure 7: Distribution of spell lengths (in days) at the validation stations (log-log scale) -

Blue dots Observations grey, the 90% simulation intervals. a. Dry spells - b. Wet spells.

The ability of the model to correctly represent the extremes is now as-

sessed. Figure 8 shows the relative differences between the observation-based

and simulation-based estimates of the 5-, 10-, 50- and 100-year return levels510
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of daily and 3-day cumulated rainfall. 3-day rainfall allows to examine the

temporal autocorrelation and it is relevant from an hydrological point of view.

Paquet et al. (2013) show for a quite similar catchment in terms size, topogra-

phy and hydrological response that all significant floods are generated by 3-day

sequences of intense precipitation. In order to have robust estimations of the515

return levels quantile, the return levels of Figure 8 are estimated by fitting the

gamma mixture of Equation 2 over the simulations and observations of daily

and 3-day rainfall. In order to apply the mixture to the 3-day rainfall a GT

has to be affected to them. The this end, the most frequent GT during 3 days

is affected to corresponding sequence. When three different GTs are observed520

during 3 days, the GT of the maximum during the sequence is affected to the

sequence.
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Figure 8: Relative differences (in %) of the estimated 5-, 10-, 50- and 100-year (from the left

to the right) return levels between observed and simulated annual maxima for all stations with

respect to the return levels (in mm) estimated over observations - Dots Mean of Simulations

(blue calibration stations, red validation stations) black bars, the 90% simulation intervals.

Top: 1-day rainfall Bottom: 3-day rainfall.

For the daily rainfall return levels, the relative differences are centred on
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0 for the calibration stations. Positive biases are mostly observed for the val-

idation stations (up to 30%), probably induced by the marginal parameters525

interpolation. The 3-day return level differences are larger (around 10%) with

both underestimations (mainly for the largest estimated quantiles) and overes-

timations (mainly for the smallest estimated quantiles). The validation stations

present the largest overestimations but close to the calibration stations (merely

a little above 20%). Spatially uniform ask,l coefficients probably induce too much530

or too low temporal correlation depending on the stations.

4.2. Spatial properties

In this part, the ability of the model to correctly reproduce the inter-site

dependence is evaluated. In all the following figures, the closer to the first

bisector the model is, the better the model performs. In this section, and in535

the following ones the two methods for estimating the spatial dependence are

confronted.

Figure 9 shows the Kendall rank correlation τk computed considering only

the couples of positive rain amounts. The boxplots of the number of pair of

stations simultaneously wet for each sub-set are shown in the first line. This540

number tends to be slightly underestimated for the AR1 p.exp version com-

pared to the observations. This aspect is improved for the AR1 p.expi version.

The model satisfyingly reproduces the correlation for the different sub-sets. In

particular, it respects the decreasing spatial correlation from GT1 to GT3. The

independent estimation (AR p.expi) considerably improves the correlation de-545

spite a slight underestimation. Larger underestimation in the correlation of the

AR1 p.exp version is partly caused by the approximation that Σt−1 ≈ Σt in

the estimation of the spatial dependence (see Section 3.3.2) which may bias the

estimation.

Recall that in the AR1 p.exp model, more than 41% of the censored cases fall550

in censored case 1b which has no influence on the covariance function estimation

since the contribution of the corresponding terms in the censored likelihood is

constant (see Appendix C for more details). Thus, estimation of the spatial

26



● ●●●● ●● ●● ●●●● ●●●●●● ●●● ●●● ●●●● ●●● ●●● ●● ●

●●● ●●●● ●●●●●● ●●●●● ●● ●● ● ●●●● ●●● ●● ●●● ●● ●● ●●● ● ●●●● ●●● ●●●● ●●● ●●●● ●● ●● ● ●●● ● ●●● ●● ●●● ●●● ●●●● ●● ●● ● ●● ● ●●●●● ● ● ●●●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●● ●● ●●●● ●●●●●●●●●●● ●●●●● ●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●● ●●●● ● ●● ●● ● ●● ●●●● ● ●●● ●● ●● ●●● ●●●●●●● ●● ●●● ●●●●●● ●●●●●● ●●● ●●●● ●●● ●●● ●●●● ●●●● ●● ● ●●●● ●●●●●● ●● ●●● ●●● ●●● ●●●● ●●●●●● ●● ●●●● ●●● ●●●●●●●●●●●●●●● ●● ●● ●●●● ●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ● ●●● ●● ●●●●●●●●●● ●●●●●●● ●●●● ●● ●●●●● ● ●●●● ●●● ●●●● ●●●●● ●●●●● ●●● ●●●●●●● ●● ●●●● ●● ●● ●●● ●●●●● ●●●● ●●●●●●●●● ●● ●●●●● ●●● ●● ●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●● ●●●● ●●● ●●●● ● ●●●●●●●●●● ●●● ●● ●●●●●●● ●●●● ●●●● ●●●● ●● ●● ● ●●●●●● ●●● ●●●●●● ●● ●●● ●● ●●●●● ●●● ●●●●● ●●● ●●● ●●●●● ●●● ●●● ●●● ●● ● ● ●●● ●● ●●●● ●●● ●●●● ●● ●●●●●●●● ●●● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ●● ●● ●●● ●●●● ●●● ●●● ● ●●● ●● ●● ● ●● ●●●● ●●●●● ●●● ●●● ● ● ●●●● ●●●●●●●●●● ●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●● ●●●● ●●●●●● ●●●●●●● ●● ●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●● ●● ●●●●● ●● ●●●●●● ●●●●●●● ●●●● ● ●●● ●●● ● ●● ●●● ●● ●● ●●● ●●● ●●●●●● ●●●● ●●●● ●● ●●●● ●●●●● ●● ●●●● ●● ●●● ●● ●●● ●●●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●● ● ●●●●●●●●● ●● ●● ●●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●● ●●●●● ●●●● ●●●●●●●● ●● ●●● ● ●●●●● ●●●● ●●●●●●● ●●●● ●●●●● ●● ●●● ●●●● ●●● ●●●● ●●●●●● ●●●● ●●● ●●●●●●●● ●●●●● ●●● ●●● ●● ●● ●●● ●●● ●●●●● ●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●●●●●●●●● ●●● ●●●●● ●●●● ● ●●●●● ●●● ●●● ●● ●●●●●●● ●●●● ● ●●●● ●●●● ●● ●● ●● ●●● ●●● ●●●●●● ●●● ●●●●● ●●● ●●●● ●●●●●●● ●●●● ●● ●●●●●●●● ●● ●●● ●● ●● ●●●●●● ●●●●●● ●● ●●●●● ●●●●● ●●●● ●●● ● ●●●●●● ●●●●●● ●●● ●● ●●●●●●● ●●● ●● ●● ●●● ● ●● ●● ●●● ● ●● ●●●●● ●● ●●●●●●●● ●●●●●●● ●●●● ●● ●●●● ●●●●● ●● ●● ●●●●● ●●●●● ● ●● ●●●●●●●●●●●● ●●●●● ●●● ●● ●●●● ●●● ●●●●● ●● ●●●●●● ●● ● ●● ●●●● ●●● ●●●●●● ● ●● ●● ●●●●●●● ●●● ●●●●●●● ● ●●●● ●● ●●●● ●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●● ●●● ●●●●●●●●● ●●●●● ●● ●●●●●● ●● ●●● ●●●●●● ●● ●● ●●●● ●●●●●● ●●●●●● ●●●● ● ●●●● ●● ●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●● ●●●● ●●● ●● ●●● ●● ●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●● ●● ●●●● ●●●●●●● ●●●●●●●●●●●● ●●● ●●●● ●●● ●●●● ●●●●●●●● ●● ●●●●● ●● ●●●●● ●● ●●●●● ●● ●●●●● ●●●●●● ●● ●●● ●● ●● ●●● ●●●●●●● ●●● ●●● ●●● ●● ● ●●●●●●● ●●●●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●●●●●●●●●● ●●● ●● ●● ●●● ● ●●●●●● ● ●●●●● ●● ●●● ●●● ●● ●●●●●●● ●●● ●●● ●●●●●● ●●●●●●●●●● ●●●●● ●● ● ●●●●●● ● ●● ●●●●● ●●●● ●● ●● ● ●●●● ●●● ●● ●● ●●● ●● ● ●●●●● ●●● ●●● ●●● ●●● ●●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ●●● ● ●●● ●●● ●● ●●●●●● ●●●●●● ●● ● ●●●●●●●●●●●● ●●●●●● ●●●●●● ●● ●●● ●●● ●●●●●●● ●●●● ●●● ●● ●●● ●● ●●●●●●●●●●●● ●●● ●●●●●●● ● ●● ●●●● ●● ●●●●●● ●● ●●●●●● ●●●● ●● ● ●●●●●●● ●● ● ●●● ●●●●● ●● ●● ●●● ●● ●●● ●●●● ● ●●● ●● ●●●●●●● ● ●●● ●●● ●●●●●● ●●●●●●●●● ●●●●●● ● ●●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●● ●●● ●●●● ●●● ●●● ● ●●●● ●● ●●● ●●●● ●● ●●● ●●●●● ●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●●● ● ●●●●● ● ● ●●●●●● ●●●● ●● ● ●●● ●●● ●●● ● ●●● ● ● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●● ● ●●●●●●●●●● ●●● ●● ●●● ●●●●●● ●●●●●●●● ●● ● ●● ● ●● ●● ●●● ●●● ●●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●● ●●● ●●●●● ●● ●● ● ●●● ●●● ●●● ●● ●●● ●●● ●●●●●●● ● ●●● ●● ●●●●●●●●●●●●● ● ●●●●● ●● ●●●●● ●●●●● ●● ● ●●●● ●●● ● ●● ●●●● ●● ●●●●● ●●●● ●●● ●●● ●● ●● ● ● ●● ●● ●● ●●●● ●●●●●● ●●● ●●● ●●●● ●●● ●● ●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●● ●●●● ● ●●●●●●●● ●●●●● ●●●●●●● ●●●●● ●●●●● ●●●● ●●● ●● ●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ● ● ●●● ●● ●●● ●●● ● ●●● ●●●●●● ●●●●● ●●● ● ●●●●●● ●● ● ●● ● ●●●● ● ●● ●● ●●●● ● ●●●● ●● ●●●●● ● ●●●●●● ●●●●●●● ●● ● ●● ●● ● ●●● ●●● ●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●● ●●●●●●●● ●●● ●●●● ●●● ● ●●●●● ●●●● ●●●● ●●●●● ●● ●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●● ●●● ●●●●●●●●● ●● ●●●● ●●●●● ● ●●● ●● ●● ● ●●● ● ●●●●●● ● ●● ●●●●● ●● ●● ●● ● ●●● ●● ● ●● ● ●●●●●●●●● ●● ●●● ●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●● ● ●● ● ●● ●● ● ●●● ●●● ●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●●●●● ●●●● ●● ●● ●●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●●● ●● ●● ●●●●● ●●● ●●● ●●●● ●●● ●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●●● ●●● ●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●● ●● ●●● ●●● ●●●●●●● ●●●●●● ●● ●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●● ●●●● ●●●●●●●●● ●● ● ●●● ●● ●●● ● ●● ●●●● ●● ● ● ●● ● ●●●●●● ●● ●● ●●●● ●● ● ●●● ●● ●● ●●● ●●●● ●●● ●●● ●●● ● ●●● ● ●●● ●●●● ●●●● ●● ●●● ● ●●● ●●●●● ●●● ●● ● ● ●●●●● ●● ●● ●●●●●●●●●● ●●●●● ●●●● ●● ●●●●●● ●● ●● ● ●● ●●●●● ●●● ●● ●●●●● ●● ●●●●● ●●● ● ●● ●●●●● ● ●●●●●● ●● ●●● ●● ●●●● ●●●●● ● ● ● ●●●●●●●●●● ●●●●●●●● ●● ●●●●● ●● ●● ●● ●●●●●● ●● ● ●●●●●●● ●●● ●● ●● ●●● ●●●●●●● ●●● ● ●●● ●● ●● ●●●● ●● ●●●●●● ●●● ●●● ●●● ●●●● ● ● ●●● ●● ●●●●●● ●●●●●● ●● ●●● ●●●● ●●●●● ●●●●● ●● ● ●●●●●●●●●● ●● ●●●● ●●● ●●●● ●●●●● ●● ● ●●●● ● ●●●●●● ●●●●● ● ●● ●●● ●●● ●●● ●●●●●● ●● ●● ●● ●●●●● ●●● ●● ●●● ●●●● ●●● ●●●●●●● ●● ●●● ●●● ●● ●●● ●● ●●●● ●●● ●●● ●●●●● ● ●●● ●● ●● ● ●● ●●●● ●●●●● ●●● ●●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●●● ●● ●●● ●●●●● ●● ●● ●●● ● ●●●● ●● ●● ●●●●●● ●●●●● ●● ●● ●●●●●● ●● ● ● ●●●● ●●● ●● ●● ●●● ●●● ●●● ●●● ● ●● ●● ● ●●● ●●● ● ●

0 1255 2510

GT3
GT2
GT1

●●● ●●●●●●●●● ●●●●●● ●●●● ●●●● ●●● ●●●● ●●●● ●● ●●●●● ●●●● ●●● ●● ●

●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●●● ●● ●● ●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●●● ●●●●●●●● ●●●● ● ●●●●●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●●●●●●●●●●●● ●● ●●●●● ●●● ●●●●●●●● ●●●● ●● ●●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●●● ●● ●●●● ●●● ●● ●●●●●● ●●●● ●●● ●●●● ●●●●●● ●●●● ●●●●●●●● ●●● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●● ●● ●●●● ●●● ●● ●●● ●●● ●●●● ●●● ●● ●●●●●● ●● ●●●● ●●●●●● ●● ●●● ●●●● ●● ●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●● ●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●● ●●● ●●●●●●●●● ●● ●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●● ●●●●●● ●● ● ●●● ●●●●●●● ●●●●● ●●●●● ●●●●●● ●●● ●●●●●● ● ●●●● ●● ●● ● ● ●●●● ●●● ●●● ●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●● ●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●●● ●● ●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●● ●● ● ●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●● ●●●●● ●●● ●●●● ●● ●●● ●● ●●●●●●● ● ●●●●● ● ●● ●● ●● ●●●●● ●● ●● ●●●● ●● ●●●●●●● ●●●● ●●●●● ●●● ●●●● ●● ●●●●● ●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●● ●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●● ●●●● ●●● ●● ●●●●● ●●●●●● ● ●●●●●●● ●● ●●●● ●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●●● ●●● ● ●●●●●●● ●●●●●●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●● ●● ●● ●●●●●●● ●●● ●● ●●●●●●●● ●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●● ●●● ●● ● ●●●●●●●● ●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●● ●●●●●● ●●●●●●● ●●●●●●●● ●●● ●●●●●● ●●● ●●●●● ●●●●●●●●●● ●●●●● ●●● ●●● ●●●●●●●●●● ●●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●● ●● ●●● ●● ●●●●●●●●● ●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●● ●● ●● ●●●● ●●●●●●●●● ●● ●● ●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●● ●●● ●●●● ●●●●● ●● ●●●●● ●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●● ●●● ●●● ●●●●●●●● ●●●● ●●●●●●●●●● ●●● ●●●●●●●● ●●●● ●●● ●● ●● ●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●●●●●●●●●●● ●● ●● ● ●●● ●●●●●● ●●● ●● ●● ●●●● ● ●●●●●● ●● ●●●●●●●● ●●●● ●●● ●●●●● ●●●●●●● ●● ●●● ●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●● ●● ●● ●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●●●●●● ●●●●● ●●● ●●● ●●●●●●● ●● ●●●●●● ●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●●● ●●●●●●● ●● ●●●●●●●●●● ●●● ●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●● ●●●● ●●●● ●● ●●●●●● ●●● ●●●●● ● ●● ● ●●●● ●●● ●●●●●●●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●●●●● ●● ●● ●●●●●● ●● ●● ●●●●●●●● ●●●●● ●●●● ●●● ●●●● ● ●●●●● ●●●●●● ●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●● ●● ●●●●●●● ●● ●●●●●● ●●●●●●● ●● ●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●● ● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●● ●●●●●● ●●●●● ●●● ●● ●● ●●●●● ●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●●●● ●●●●● ●●● ●●● ●●●●●● ●● ● ●● ●● ●●●● ●●●●

OBS SIM

0 1255 2510

● ●●●● ●● ●● ●●●● ●●●●●● ●●● ●●● ●●●● ●●● ●●● ●● ●

● ●●● ●● ●●●●● ●●●●● ●●●●●●●● ●● ●●●●● ●● ●● ●●●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●●●● ●● ●●●● ●●● ●● ● ● ●●● ●● ●●●●●● ●●●● ●●●● ●● ●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●● ● ●●●●● ● ●●● ●●●● ●●● ●●●● ●●● ●●●● ●●●● ●● ●●● ●●●●●●● ●●● ●●●●● ●● ●● ●● ●●●●● ●● ●●●●● ●●●● ●●●●●●● ● ●● ●● ●● ● ●●●●● ●●●●●●● ●●●●● ●● ●●● ●●●●● ●● ●●●●●● ●●● ●●● ●● ●●● ●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●● ●●●● ●●●●●●●●●●● ●●●●●●●● ●●●● ●●●● ●● ●●●● ●●●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●●● ●● ●● ●●●● ●●●●●●● ●●●● ●●● ●●●●●●●● ●●●●● ●●● ● ●●●●●● ●● ●● ●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●●● ● ●●● ●● ●●● ●● ●●●●● ●●●● ●●●● ●● ●●●●● ●●● ●●●●●●●●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●● ●●●● ●●●●● ●● ●●● ●● ●●●●●●●● ●● ●● ●● ●● ●●● ● ●●●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●● ●●●● ●● ●●● ●● ●●●● ●●● ●●● ●●●● ●●●●●●● ● ●● ●●● ●●● ●●● ●●●● ●●● ●●●● ●●● ●●●●● ●●●● ●● ●●●●● ●●●● ●● ●●●●● ● ●● ●● ●●●● ●●●●● ●●●●●●●● ●●●●● ●●● ●●● ●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●●●●● ● ●●● ●● ●●●● ●●●●●● ●●●● ●●●● ●● ●●●●● ●●●● ●●● ● ●●●● ●●●●●●●●● ●●● ●●●● ●●● ●● ●● ● ●●●●● ●●●● ●●●● ●● ●●●●●● ●● ●● ●●●● ●● ●● ●●●●●●●●●●●●● ●●● ● ●●● ●● ●● ●●● ●●●● ●●● ● ●●●● ●●●●●●●●●● ●● ●●●● ●●● ●● ●● ●●●●● ●●● ●●●●●●●●●● ●● ●●●●● ●●● ●●●●● ●●●●● ●●●●● ●●● ●● ● ●●● ●●●●●●●● ●● ●● ●●●●● ●●●● ●●● ●●●● ●●● ●● ●● ● ●●●●● ●●● ●●●●●●●● ● ●● ●●●●● ●● ●● ●●● ●●● ●●●● ● ●●● ●●● ●●●● ●●●● ●●●●●● ●● ●●● ●● ●●●●●●● ●●●●● ●●●●●●● ● ●●● ●●●●●● ● ●● ● ●● ●● ●●● ●●● ●● ● ●●●● ●●● ●●● ● ●●● ●● ●●●●● ●●●●●● ●●●●● ●●● ●●●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●●●●● ●●●● ●● ●● ●● ● ● ●● ●● ●●● ●●●● ●●●●●●●●●●●● ●● ●● ●● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●●●● ●●●●●● ● ●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●● ●● ● ●●● ●●●●●●● ●●●●●●●● ●● ●●●● ●● ●●●● ●●● ● ● ●●● ●●●●●●●●●●● ●●● ●●● ●● ●●●●●● ●●●● ●● ●●●●● ●●●● ●●● ●● ●● ●● ●●●●●●●●● ●●●●●● ●●●● ●●● ●● ●●● ● ●●● ●●● ●●●●●●●● ●● ●●●● ● ●● ●● ●●●●●● ●●● ●● ●● ●●●●●● ●●●● ●●●●●●● ● ●● ●● ●●●●● ●● ●●●● ●●●● ●●●●●● ●●● ● ●●● ●●●●●●●●●●●●● ●● ● ●● ●●●●●●●● ●●● ●● ●●●●●●● ●●●● ●●● ●● ●● ● ●● ●●●●● ●● ●●●●●●●●● ●●●● ●●●●●● ●● ●●●● ●● ●●●●●●● ●●●●●●●●●● ● ●●● ●●●●● ●●●● ●●●●●●● ●●● ●●● ●●●● ●● ●● ●●●● ●●●●● ●● ●●●●● ● ●●●●● ●●●●● ● ●●● ●●● ●●●●●●● ●●● ●●●●● ● ●●●●●●●●● ●●●●● ●●●● ● ●●●● ●● ●●●●● ●●●● ● ● ●● ●●●● ●● ●● ●●●●●●●●●●●●●●●●●● ● ●● ●●●●●● ●● ●● ●●● ●●●● ● ●●● ●● ●● ●●● ●●● ●●●● ●●●● ●●●●●●● ● ●● ● ●●●● ●● ●●●●●●● ●● ●●●●● ●● ●●●●●●●●●●● ●● ●●● ●●●●● ●● ●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ● ● ●● ● ●●●● ● ●● ●●● ●● ●●●● ●●●● ●●●●●●● ●●●●●●● ●● ●●●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●●●● ●● ●● ●● ●●● ●● ●●● ● ●● ● ●●● ●● ●● ●● ●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ● ● ●●● ●● ●●●●● ●●●●● ●●●● ● ●●● ●● ●● ●●● ●●● ●●●● ●●●● ●●●●●●●● ●●●● ●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●●●● ● ●●●● ●● ●●● ●● ●● ●● ●●● ● ●●●●●●●●●●●● ●●● ●● ●●●●●●● ●●● ●●●●●● ●●● ●●● ●● ●●●●●●●●●●●●● ● ●●●●●●● ● ●● ●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●●● ●●●●● ● ● ●● ●● ●●● ●●● ●●●●● ● ●●● ●●●●●● ●● ●●● ●●● ●●●●● ●●●● ●● ●● ●● ● ●●●● ●●● ●● ●● ●●●●● ●● ●● ●●● ●● ●●●●● ● ●●●● ●●●●● ●● ●● ●● ●●●●●●●●●●●●● ●●●● ●●● ●●●● ●● ●●● ●●●●● ●●●●●●●● ●●●●●● ●●● ●● ●●●●● ●●●●●●● ●● ●●●●●●●●● ●●●●● ●●●● ●●● ●●●●● ●● ●●● ●●●●●● ●●● ●● ●●●● ●●● ●●●●●●●● ●●● ●● ●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●● ●●● ● ●● ●● ●● ●●●●●● ●●●● ● ●●● ●● ●●●● ●●●● ●●●● ●●●●●● ● ●● ●● ●●●●● ●●● ●● ●● ●●● ●● ●● ● ●●●● ●● ●●●●● ●●●●● ●● ●●● ●● ●●●● ●● ●● ●●●● ● ●●●● ●● ●●●●●●●●●● ● ●●● ●● ●● ●● ●●●● ● ●●● ●●●●●● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●●●●● ●●●●●●● ●●● ●● ●●●● ●●●● ●● ●●● ●●●● ●● ● ●●●●● ●●●● ●●●● ●● ●● ●● ● ●●● ●●●● ● ●●● ●● ●●●●● ● ●●●● ●●● ●● ●● ●●● ●● ●● ● ●●●● ●● ●●●●● ●●●●●●● ●●● ●● ●● ●● ●●●● ● ●●● ● ●●●● ●●● ●●●●●● ●●●● ●●● ●● ●● ●● ● ●● ●●●●● ●●●● ●●● ●●● ●● ●●●● ●●● ●● ●● ●● ● ●● ●● ●●●●● ●● ●●●●● ●●●●●●● ●●● ●● ●● ●● ●●● ● ●●●●● ●●●● ●●● ●●●●●●●●● ●●●● ●● ●● ●●● ●●● ● ●●● ●●●● ●● ●●●● ●● ●●●● ●●● ●●●● ●●● ●● ●● ●●●●● ●● ●●●●● ●●●●● ●● ●●● ●● ●● ●● ●●●● ● ●●●● ●●●●●●● ●●●●● ●●●● ●●●● ●● ●● ●●● ●●● ●●●● ●●●● ●●●●●●● ● ●●● ● ●●● ●● ●● ●●●●● ●● ● ●●●● ●● ●●●●● ●●●●● ●● ●●● ●● ●● ●● ●●●● ●

0 1255 2510

●●● ●●●●●●●●● ●●●●●● ●●●● ●●●● ●●● ●●●● ●●●● ●● ●●●●● ●●●● ●●● ●● ●

● ●●● ●●● ●●●●●● ●●●●●●●● ●●● ●● ●● ●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ● ●●● ●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●● ●●●● ●●●●●●● ●●●●● ●●● ●●●●●● ●●●●●● ●●● ●● ●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●● ●●●● ●●●● ●●● ●●● ●●●●●●●●●●●●●●●● ●● ●● ●● ●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●● ●●● ●●● ●●●●●● ●●● ●●● ●●●● ●●● ●●●● ●●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●●● ●● ●●●●●● ●●●●● ●●● ●● ●●●●● ●● ●● ●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●● ●● ●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●● ● ●●●● ●●● ●●●●●● ●● ●●● ●●● ● ●●● ●● ●●●●●●●● ●●●● ●●● ●● ● ●●●● ●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●● ● ●● ●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●●●● ●●●●●● ●● ●●●● ●●● ●●●● ●●●●●●●●● ●● ●●●●●● ●●●● ●●● ●●●●●●●●● ●●●●●●● ●●●● ●● ●●●●●●● ●●● ●●●●● ● ●●●●●●● ●●●● ●●●● ●●●● ●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●● ●●●●●●●●● ●● ●●●●●● ● ●●● ●● ●●●●●●●●●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●● ●●● ●● ●●●●●● ●●● ●●●●● ●●●●● ●● ●●●● ●●●● ●●●● ●●●●●●●● ●●● ●●●●●●● ●●●●●● ●●● ●●● ●●●●● ●●●●● ● ●● ●● ●● ●●●●●●●●●●●●● ●●●●● ●● ●●●●●● ●●●● ●● ●●● ●● ●●●● ●●● ●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●● ● ●●● ●●●●●● ●● ●●●●●● ●●● ●●●●●●●●● ● ●●●● ●●● ●●● ●●●●●● ●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●● ●●● ●●●●●●●● ●●●●●●● ●●● ●●● ●●●●●● ●●●● ● ●●● ●● ● ●● ●●●●●●●●● ●●●●●●●● ●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●● ●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ●●●●●● ●● ●● ●●●● ●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●● ●●● ●● ●●●●● ●●●●●●●● ●●●●● ●● ●●●●●●●●●●●● ●●●●●● ●●●● ●●● ●● ●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●● ● ●● ●●●●●●● ●●●●●● ●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●● ●●● ●● ●●●● ●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ● ●●●● ●●● ●●●●●● ●●●●●●●● ● ●●●●●●●● ●●●●●●●●● ●●●●● ● ●●●● ●●● ●●●● ●●●●● ●●● ●●●●● ●●●●● ●●● ●●● ●●● ●● ●●●●● ●● ●●● ●● ●● ●● ●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●● ● ●●●● ●●● ●●●● ●●●●● ●●● ●●●●● ●●●●●●●● ●●● ●●●●● ●●●●● ●● ●●● ●●● ●● ●●●● ●●●●●●●●● ●●●●●●●● ● ●●●●●● ●●●●●●●●●● ●●●●● ● ●●●● ●●●●●●● ●●●●● ●●● ●●● ●●●●● ●●● ●●● ●●●●● ●●●●● ●● ●●● ●● ●● ● ● ●●●● ●●●●●●●●● ●● ●●●●●● ●●● ●●●● ●● ●●●●●●●●● ●●●●● ● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●● ●●●●● ●●● ●●● ●●●●● ●●●●● ●● ●●● ●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●●● ●●● ●●●●●● ●● ●● ● ●● ●●●● ●●●●●●●● ●●●●● ●●●●● ●●● ●●● ●● ●●● ●●●●● ●● ●●● ●● ●●● ● ●●●● ●●●●●● ●●● ●● ●● ●● ●● ● ●●●●●● ●● ●●●●●● ●●● ●●●●● ● ●● ●● ●●● ●●●●●●●●● ●●● ●●● ●● ●●●●● ●●● ●●● ●● ●●● ●●●●● ●● ●●●●● ●●●

0 1255 2510
Nb of >0 couples

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

LO GT1

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

LO GT2

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

LO GT3

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0
HI GT1

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

HI GT2

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

HI GT3

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

LO GT1

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

LO GT2

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

LO GT3

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

HI GT1

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

HI GT2

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

HI GT3

Observation τk

S
im

ul
at

io
n 

τ k

a. AR1 p.exp b. AR1 p.expi

Figure 9: Pairwise Kendall correlation coefficient for each sub-set for positive rain amounts.

Vertical color bars indicates the 90 % simulation intervals. Color shade from blue to black

indicates the density of the plotted bars and red bars represent the probabilities for each pair

of validation stations. a. AR1 p.exp - b. AR1 p.expi. This first line gives the boxplots of

the number of pair of station simultaneously wet for each sub-set. Blue observed statistics -

Black simulated statistics.

dependence in AR1 p.exp is actually based on much less data than for AR1

p.expi. In both versions of the model, one can notice that the correlation of555

simulations is almost constant for all pairs of stations for GT3. This sub-set
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mainly regroups very localised rain events, which can explain the difficulty for

the model to correctly estimate its spatial correlation. Besides, the number of

jointly wet pairs is much lower for GT3 which introduces uncertainty in the

computation of τk and makes its interpretation difficult. Validation stations560

(red segments) show similar behaviour to the calibration stations.

The spatial dependence of high quantiles is also investigated by computing

the conditional probability of exceeding high quantile q. For two stations xi

and xj , this probability is defined as P1|1 = P [Y (xi) > qi|Y (xj) > qj ]. The P1|1

associated to the 95th percentile are represented in Figure 10. The conclusions565

are similar to those drawn for τk with better performance for P1|1 than for τk,

although a larger variability can be noted for the simulations. For GT2 and GT3,

the probabilities are better reproduced by AR1 p.expi while AR1 p.exp tends

to underestimate those probabilities likewise for τk. For GT1, the probabilities

are partly overestimated by AR1 p.expi while AR1 p.exp underestimates those570

of the LO season and better reproduces those of the HI season.

4.3. Areal properties

The model performance is analysed in terms of areal properties based on

aggregated precipitation over the region (i.e. all station precipitations are cu-

mulated). These are only computed over the calibration stations. The validation575

stations are excluded to avoid mixing with the potential error induced by the

marginal mapping procedure.

The dry and wet spells distribution of the aggregated rainfall are represented

in Figure 11 for both versions of the model. Wet and dry spells are very well

reproduced by the AR1 p.expi version while AR1 p.exp slightly overestimates580

or underestimates the spell duration. Note that the spells are not explicitly

prescribed in the model but rather induced by day-to-day correlation and the

GT sequence. Spells are also investigated in some other studies using quite close

modelling frameworks (e.g. Kleiber et al., 2012; Serinaldi and Kilsby, 2014). In

those articles, the models show some difficulties to reproduce areal dry spells.585

However these studies consider wider areas (65 to 370 times larger than our
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Figure 10: Empirical conditional excess probability P1|1 for each sub-set and for 95% quantile.

Vertical color bars indicates the simulation 90% intervals. Colour shade from blue to black

indicates the density of the plotted bars and red bars represent the probabilities for each pair

of validation stations. a. AR1 p.exp - b. AR1 p.expi. This first line gives the boxplots of the

95th percentile at all stations for each sub-set. Blue observations - Black simulations.

study area) which can make this aspect more difficult to represent.

Figure 12 represents the distribution of jointly wet sites among the calibra-

tion stations. This shows the ability of the model to generate daily rain fields

with the right size and at the right frequency. This criteria has been computed590
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Figure 11: Distribution of spell lengths (in days) over the region (log-log scale). Top: Dry

spells Bottom: Wet spells - Blue dots Observations grey, the 90% simulation intervals. Left

AR1 p.exp - Right AR1 p.expi.

from the simulated data removing the values corresponding to missing value in

the observations.

Globally, AR1 p.expi performs better. AR1 p.exp underestimates the fre-

quency of the largest events and the frequency of the dry days while it overesti-

mates the frequency of the intermediate size events. Similar results are obtained595

by Baxevani and Lennartsson (2015). The independent estimation reduces the

bias in the largest and intermediate size events but it slightly overestimates the

frequency of the small size events (< 5 stations) and the frequency of dry days.

Now the size of the events generating daily annual maxima is studied. Fig-

ure 13 shows for a given threshold the 90% range of areas (number of stations)600

experiencing rainfall no smaller than that threshold during the annual maxi-

mum events. The upper bound (resp. lower bound) of the envelope corresponds

to the widest (smallest) area covered by a given magnitude or more. For both

models and sub-sets, the lower bounds of the simulations match very well the
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Figure 12: Distribution of jointly wet sites (log scale). Blue dots: Observation - Black bars:

the 90% simulation intervals. Left AR1 p.exp - Right AR1 p.expi.

observations. Thus the least extended events are very well represented. The605

most extended events for a given magnitude (upper envelope) tend to be over-

estimated in size in GT1 during the HI season, while they tend to be underes-

timated in size in all the other subsets. The AR1 p.expi model slightly reduces

the underestimation but slightly increases the overestimation in GT1 HI. Note

that the GTs were defined in Blanchet et al. (2019) according to the spatial610

correlation of the WTs, with GT1 corresponding to the largest range of correla-

tion, followed by GT2 and GT3. Figure 13 shows that the simulations correctly

reproduce this aspect.

4.4. Model adaptability

The adaptability of the model to different catchments is a genuine issue. In615

order to illustrate the generality of the modelling framework, the exact same

model as implemented for Ardèche is applied to a much bigger catchment within

a different climatic region. The Durance catchment at Cadarache located in the

southern French Alps is chosen (14,000 km2 see Figure S1 of the supplementary

material). The altitude of the region ranges up to 4000 m.a.s.l while the Ardèche620

catchment reaches around 1700 m.a.s.l. Fifty four stations with data from Jan-

uary 1, 1975 to December 31, 2014 are selected (for data availability see Figure
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simulation 90% intervals. Left AR1 p.exp - Right AR1 p.expi.

SA1 of the supplementary material). Table S1 (of the supplementary) gives the

minimum, median and maximum of the annual and seasonal averages of daily

non-zero rainfall of the 54 stations. The daily average of rain intensity over the625

Durance catchment is half to 2/3 of the daily average of rain intensity over the

Ardèche. GT1 and GT2 have almost the same rain intensity while it is more

contrasted for Ardèche. No validation stations are considered for this catchment

since the generality of the selection framework of the marginal distribution and

the parameter interpolation is thoroughly discussed in Blanchet et al. (2019).630
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The same seasons, GTs (based on the spatial correlation of rain amount over

the Ardèche) and the best model version (AR1 p.expi) used for the Ardèche are

adopted. Figures 3 to 13 are reproduced for the Durance catchment and given in

the supplementary material (Figures S2 to S12). Between the two catchments,

only few differences of performance are observed in terms of marginal properties.635

In particular, there are differences in the standard deviation of annual totals,

the wet spells duration and 3-days return levels (respectively Figure S5, S6 and

S7 of the supplementary material). The variability of annual totals seems to

be mostly slightly overestimated while there are over- and underestimations

for Ardèche. The frequency of the large wet spells (>5 days, they represent640

less than 2%) are a little overestimated for almost all stations while there are

over- and under-estimations for Ardèche. Similarly, the 3-day return levels

are systematically overestimated (up to a little above 20%) for the Durance

catchment. The conclusions for all the other marginal properties, the spatial

properties and areal properties (Figures S2 to S4 and S8 to S12) are the same645

for both catchments. The differences in the model performance between the

two catchment may probably be linked to the sub-sampling in seasons/GTs.

The sub-sampling for the Ardèche catchment may not be totally suited to the

Durance catchment.

It is quite remarkable that the performance of the model over such different650

catchments is globally similar. This proves that the proposed model combining

weather pattern with a latent Gaussian field is general enough to be applied

to any region, although some modelling choices (sub-sampling, marginal dis-

tribution, spatial and temporal correlation) may need to be tailored for some

regions.655

5. Conclusions, discussions and perspectives

5.1. Conclusions

The aim of this study is to develop a high resolution spatial rainfall model

from station data in order to generate spatially distributed rainfall scenarios for
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hydrological applications based on a distributed rainfall-runoff model. To this660

end, the modelling strategy relies on weather types sub-sampling conditionally

on which a first order Markovian autoregressive model is calibrated. An appli-

cation of the model is performed over the Ardèche catchment situated in south

of France. Given the complex terrain nature and the strong variability of the

rainfall, this catchment constitutes a challenging candidate to test the model.665

The added-value of combining sub-sampling with spatial modelling is evaluated

with regards to the observations. Two versions of the model are compared

considering three aspects: the marginal, spatial and areal properties.

The at-site behaviour is assessed in terms of daily occurrence, rainfall in-

tensity (at daily, monthly and annual scale), persistence and extremes. Results670

are globally satisfying for both calibration and validation stations. Indeed, the

marginal distribution parameters interpolation seems to be efficient and shows

little discrepancies. The discrepancies of the marginal properties have mainly

three sources: (i) the interpolated margins (illustrated by the biases on the val-

idation stations Figures 4 and 8), (ii) the constant temporal correlation over675

the region can induce local-scale autocorrelation discrepancies (see for instance

the return levels of 3-day cumulated rainfall for large return periods Figure 8)

and (iii) the sub-sampling in two seasons and three weather types is not always

enough to represent the seasonality or the year-to-year variability (Figures 5 and

6). As mentioned in Blanchet et al. (2019), the mapping process of the margins680

is still perfectible. For instance, in order to take into account complex orog-

raphy or climate non-stationarity, covariates characterising the terrain nature

(Carreau et al., 2013) or atmospheric circulation (Serinaldi and Kilsby, 2014)

can be introduced. This could improve the quality of the model in terms of sea-

sonality and variability. However, this would imply an heavier parametrisation685

and a substantial work is needed to adapt the parameter mapping procedure in

a temporal non-stationary context.

The reproduction of inter-site dependence is also studied. Two versions of

the model are confronted: one in which the spatial dependence is estimated

conditionally on temporal correlation (AR1 p.exp) and the other one in which690
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the spatial and temporal correlation are estimated independently (AR1 p.expi).

The dependence is modelled by a powered-exponential correlation function. The

dependence is examined with respect to daily rainfall and high quantiles. Results

show that AR1 p.expi reproduces better the inter-site dependence despite a

slight tendency to underestimation. The better performance of AR1 p.expi is695

probably because its estimation involves actually more data than AR1 p.exp.

The areal aspect of the aggregated precipitation over the area is assessed.

The model shows good performance with even better results for the AR1 p.expi

version. And finally, the hybrid model developed in this study present the

advantage to work for different catchment within different climatic regions with700

very little alterations.

Rain fields generated over a regular grid of one square kilometre spatial

resolution for the Ardèche catchment are given in an animated plot supplied in

the supplementary material.

5.2. Discussions and perspectives705

Despite the good performance of the AR1 p.expi version, it slightly under-

estimates the spatial correlation. This can have four causes:

1. the data sub-sampling into two seasons and three GTs might be relevant

for the rain intensity over the region but not necessarily optimal for the

spatial dependence. Indeed, GTs are obtained by grouping the WTs ac-710

cording to the spatial correlation. The WTs are based on the clustering

of the geopotential heights which has proved itself to be relevant for rain

intensity (Garavaglia et al., 2010) but these have not been validated for

the spatial dependence,

2. the use of the meta-Gaussian framework causes potential correlation re-715

duction when the marginals are transformed from Gaussian to rainfall

marginals. This theoretical aspect has been proven by Kendall et al. (1979)

and Matheron (1989). Some solutions have been proposed to inflate the

Gaussian correlation in order to compensate the correlation reduction. Li

and Hammond (1975) is one of the first study addressing this issue. In720
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the case of rainfall Guillot (1999) and Leblois and Creutin (2013) used a

polynomial expansion while Papalexiou (2018) proposed a simpler para-

metric transformation to inflate the correlation. However in our case it

represents a huge numerical effort for unguaranteed improvements and

new developments are still needed to fit our purposes,725

3. the simplification of the covariance of the noise term Et in order to es-

timate the correlation function independently for each sub-set. The con-

sidered simplification Σt = Σt−1 is only true 70% of the times, which

probably biases the estimation. Relaxing this hypothesis would be theo-

retically possible, but the estimation would be a burden,730

4. the use of a latent Gaussian process which is radially symmetric. This

means that in the case of a Gaussian process G with zero mean and co-

variance matrix Σ and for any vector u = (u1, · · · , uN ) ∈ [0, 1]N , we have:

P (G1 ≤ Φ−1(u1), · · · , GN ≤ Φ−1(uN )) = P (G1 > Φ−1(1−u1), · · · , GN >

Φ−1(1− uN )).735

This last point is empirically illustrated in Figure 14, for uk = p0j (xk) in

sub-set j corresponding to the high-risk season and GT1 which is the sub-set

containing the most stations (xk, xl) with p0j < 0.5. For each pair of stations, the

joint empirical probability of non-exceedance NEPkl = P (Y (xk) = 0, Y (xl) =

0) and exceedance EPkl = P (Y (xk) > H−1Yj(xk)
(1− p0j (xk)), Y (xl) > H−1Yj(xl)

(1−740

p0j (xl))) are computed. Figure 14 represents the differences EPij − NEPij for

the model AR1 p.expi versus the observations.

For the observations, EP − NEP is mostly positive and depends on the

pair of stations. This means that the bivariate CDF of precipitation is mainly

right skewed and the asymmetry is spatially non-stationary. On the contrary,745

for the simulations EP −NEP is constant around zero which is prescribed by

the Gaussian process.

In order to introduce asymmetry, other spatial dependence structure can be

considered. For instance, the chi-square copula introduced by Bàrdossy (2006)

and recently explored by Quessy et al. (2016) allows to prescribe the asymmetry.750
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Favre et al. (2018) have proposed a generalisation of this copula allowing for

upper tail dependence. However their use in a spatial rather than multivariate

context poses some difficulties, in particular with regards to the estimation of the

correlation function (cf. Nelsen, 2007; Joe, 2014, for more details). Exploring

the added-value of different copulas prescribing asymmetry would be relevant.755

Concerning the estimation of the spatio-temporal dependence, simplifica-

tions have been made to the MAR(1). The first simplification states that the

temporal correlation is constant over the region. In principle, ask,l can vary in

space but this complicates the estimation procedure. First, if the matrix At,t−1

has different coefficients on its diagonal, the matrix (IdN − A2
t,t−1)Σjt is not760

symmetrical. Thus, additional constraints on the ask,l have to be set to make

the matrix (IdN − A2
t,t−1)Σjt symmetric. This can be easily done for 41 sta-

tions but it is not realistic for high resolution fields due to computational time

and numerical problems. Second, in the view of generating rain fields with spa-

tially varying a, these parameters have to be mapped similarly to the marginal765

parameters (Blanchet et al., 2019). However, spatial patterns are not obvious
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for all transitions (not-shown) and a tricky interpolation is avoided by taking

it to be spatially uniform. To summarize, the use of diagonal matrix At,t−1

reproduces only the lag 0 spatial correlation and lag-1 autocorrelation. This

modelling choice does not reproduce the rain fields advection (or movement),770

which may be necessary for hourly data but is less important for daily data and

is omitted here for computational reasons.

The second simplification is to consider separately the temporal and the

spatial dependence. Spatio-temporal correlation function can be used to simul-

taneously estimate both dependencies (cf. Cressie and Wikle, 2011; Bourotte775

et al., 2016, for example). However, in that case the use of a censored likelihood

is not realistic. Most of the times, a pairwise composite likelihood or a method

of moment is used ( e.g. Baxevani and Lennartsson, 2015; Bourotte et al., 2016).

Concerning the weather pattern-based sub-sampling, instead of using synop-

tic WT, a direct clustering of days with similar spatial correlation could improve780

the model performance. A solution would be to cluster days based not only on

synoptic variables but also including indices of the spatial variability of rainfall.

The rainfall variability can be assessed through indicators such as the number

of wet stations, where the rainfalls are located (on the foothills, the ridge or

the plateau) or the rain field orientation. A methodology inspired from stud-785

ies conducted over radar data could be adapted in our case (e.g. Benoit et al.,

2018b).

An additional model deserves to be added, to simulate long WT sequences

instead of repeating the observed 40 year sequences as it is done in the article.

For hydrological applications, it should be able to model the correct frequency790

of occurrence of each GT within each month of the year, and also the correct

distribution of WT spells. A first order Markov with covariates, accounting for

monthly variations of GTs occurrence, may be a relevant option to achieve this.

Last but not least, considering the relatively small size and the strong

orographic orientation of our study catchment, there is no evidence of non-795

stationary spatial dependence. However, if larger domains are considered, non-

stationarity can be suspected in the spatial dependence. Many ways are possible
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to introduce non-stationarity (cf. Risser, 2015, for a review). A promising way

for mountain catchments with complex topography (e.g. in the Alps) would

be to use a non-stationary covariance function. Paciorek and Schervish (2006)800

give a formulation for a Gaussian process allowing to derive a non-stationary

covariance function from a stationary one.
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Appendix A. Data availability810
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Figure A.1: Data availability - Green: complete years. White: empty years. Other colors:

year with missing values, the percentage of available data are indicated. Station are ordered

with respect to the altitude.

Appendix B. Conditional moments of Gaussian process.

Let U be a N -variate Gaussian with zero mean and covariance matrix Σ and

U1, U2 be sub-vectors of respective dimensions P +Q = N such as U = [U1, U2]
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and

Σ =

 Σ11 ΣT21

Σ21 Σ22

 .
Then the conditional distribution U2|U1 = u1 is Gaussian with the following

mean vector µ2|1 and covariance matrix Σ2|1:

µ2|1 = Σ21Σ−111 × u1
Σ2|1 = Σ22 − Σ21Σ−111 ΣT21

Appendix C. Et censoring interval cases.

For a given day t, there are three possible censoring interval Ict (x) for each

station x ∈ Ect :

1. If both gt(x) and gt−1(x) are censored then gt(x) ≤ cjt(x) and gt−1(x) ≤815

cjt−1(x):

(a) if a < 0 then εt(x) ≤ cjt(x) − a · cjt−1
(x) = et(x) =⇒ Ict (x) =

[−∞, et(x)]

(b) if a > 0 then Ict (x) = [−∞,∞]1

2. If only gt−1(x) is censored then gt−1(x) ≤ cjt−1(x):820

(a) if a < 0 then εt(x) ≤ gt(x) − a · cjt−1
(x) = et(x) =⇒ Ict (x) =

[−∞, et(x)]

(b) if a > 0 then εt(x) ≥ gt(x)−a·cjt−1(x) = et(x) =⇒ Ict (x) = [et(x),∞]

3. If only gt(x) is censored then gt(x) ≤ cjt(x):

• εt(x) ≤ cjt(x)− a · gt−1(x) = et(x) =⇒ Ict (x) = [−∞, et(x)]825

For each day t, a vector et = {et(x)} with its associated censoring interval is

obtained.

Table C.1 gives the percentage of each censoring cases that are encountered

when ρj is estimated from εt. C gives the total percentage of censored cases.

1these cases have no contribution to the likelihood of Equation 6, since P (Ec
t (x) ∈

Ic
t (x);βj) = 1 whatever βj independent from covariance
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Table C.1: Percentage of censoring.

Cases 1a 1b 2a 2b 3 C NC

εt 0% 41.44% 0% 12.34% 12.34% 66.12% 33.88%

gt - - - - - 63.64% 36.36%

NC regroups all uncensored cases where it rains everywhere at t and t− 1. The830

main information here is that more than 41% of the εt(x) are in the case 1b,

corresponding to successive dry days, which does not contribute to the likelihood

of ρj . The fraction of censored (C) and uncensored (NC) stations are also given

when ρj is estimated from gt.
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