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ABSTRACT

We propose a new approach to explain multiday rainfall accumulation over a French Alpine watershed

using large-scale atmospheric predictors based on analogy. The classical analogy framework associates a rainfall

cumulative distribution function (CDF) with a given atmospheric situation from the precipitation accumulations

yielded by the closest situations. The analogy may apply to single-day or multiday sequences of pressure fields.

The proposed approach represents a paradigm shift in analogy. It relies on the similarity of the local topology

mapping the pressure field sequences, somehow forgetting the pressure fields per se. This topology is summa-

rized by the way the sequences of pressure fields resemble their neighbors (dimensional predictors) and how fast

they evolve in time (dynamical predictors). Although some information—and hence predictability—is expected

to be lost when compared with classical analogy, this approach provides new insight on the atmospheric features

generating rainfall CDFs. We apply both approaches to geopotential heights over western Europe in view of

assessing 3-day rainfall accumulations over the Isère River catchment at Grenoble, France. Results show that

dimensional predictors are the most skillful features for predicting 3-day rainfall—bringing alone 60% of the

predictability of the classical analogy approach—whereas the dynamical predictors are less explicative. These

results open new directions of research that the classical analogy approach cannot handle. They show, for in-

stance, that both dry sequences and strong rainfall sequences are associated with singular 500-hPa geopotential

shapes acting as local attractors—a way of explaining the change in rainfall CDFs in a changing climate.

1. Introduction

Relying on the hypothesis that similar synoptic situa-

tions are likely to result in similar local effects despite

unexplained variability (Lorenz 1969), the analog method

has been developed in the 1980s for forecasting daily

rainfall depths based on analogy in geopotential heights

(Duband 1981). Since then the method has been widely

applied,mainly for daily and infradaily precipitation, using

various predictors ranging frompressure fields towind and

rain fields over domains of various size and configurations

(Chardon et al. 2014; Dayon et al. 2015; Horton and

Brönnimann 2019). It has been used either in forecasting

(BenDaoud et al. 2016; Duband 1981) and,more recently,

in nowcasting (Atencia andZawadzki 2015; Panziera et al.

2011) or in downscaling larger-scale outputs (Dayon et al.

2015; Raynaud et al. 2017; Zorita and von Storch 1999).

Application of the analog method to sequences of

synoptic situation is much less developed. Matulla et al.

(2008) and Zhou and Zhai (2016) downscale precipita-

tion at a given target day from the state of the atmo-

sphere on that day and the preceding 7 days. The main

motivation for looking at sequences is that the local-

scale variable in a given day may also result from the

atmospheric states of the antecedent days. They evi-

dence some benefit in accounting for antecedent days

for estimating persistent ordinary features such as dry

and wet spells in California and Austria (Matulla et al.

2008) or persistent large precipitation (exceeding the

95% quantile) in China (Zhou and Zhai 2016). Zhou

et al. (2018) also consider the analog method accounting

for precedent days to forecast two persistent extreme

precipitation events that caused severe flooding in the

Yangtze–Huai River valley (China) in summer 2016.

They show the method outperforms the ensemble mean

and about half the ensemble members of a numerical

weather model for lead times longer than 3 days.

To the best of our knowledge, the only study that

addresses the frequency of occurrence of multiday pre-

cipitation accumulation—andparticularly the extremes—on

the basis of analogy of atmospheric sequences is
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Blanchet et al. (2018). The study shows that the aver-

age singularity of geopotential shapes—defined as the

mean distance to the nearest analogs—together with the

celerity of deformation of the geopotential states re-

markably stratify the CDF of multiday precipitation ex-

tremes.However, the ability of the celerity–singularity

space to predict the frequency of occurrence of mul-

tiday extremes is not quantitatively evaluated.

This article aims at assessing the degree of predict-

ability of multiday rainfall CDF based on analogy of

low-dimensional atmospheric predictors. The considered

predictors intend to summarize the topology of the space

defined by the geopotential field sequences. They char-

acterize how the sequences of pressure fields cluster lo-

cally (dimensional predictors) and how fast they evolve

(dynamical predictors). They include the celerity and

singularity of Blanchet et al. (2018), together with the two

predictors used in Faranda et al. (2016, 2017), Messori

et al. (2017), and Rodrigues et al. (2018) describing the

local clustering of atmospheric states—the local dimen-

sion and the local stability—that are considered here for

atmospheric sequences. The phase spaces associated with

different combinations of these predictors are compared

in terms of their ability to predict multiday rainfall CDF

in the French Alps for the dry, wet, and extremely wet

sequences. Comparison is made with the more common

analog framework predicting multiday rainfall CDF di-

rectly from the most similar atmospheric sequences.

Section 2 presents the precipitation and atmospheric

data. Section 3 develops the classical analogy approach

and the low-dimensional predictor analogy approach.

Section 4 compares results of the two approaches for

predicting multiday rainfall CDF in a cross-validation

framework. Section 5 concludes.

2. Data

The data and the study region are the same as in Blanchet

et al. (2018). We consider the Isère River catchment at

Grenoble, France, in the northern FrenchAlps (Fig. 1). The

altitude of the catchment ranges from about 200m in the

Isère River valley to more than 4100m in the Ecrins na-

tional park.Themedianaltitude is about 1500m.The region

experiences cold winters and warm summers. Precipitation

falls mainly as snow above 1500m between December and

March and originates mainly from the Atlantic Ocean,

whereas air flows originating fromboth theAtlantic and the

Mediterranean Sea trigger precipitation in summer.

Since the Isère River catchment has a response time

of a few days, we consider 3-day rainfall accumulations at

the catchment scale as a good flood predictor. Catchment

daily series are obtained by interpolating daily rain gauge

data. We use 61 stations provided by MétéoFrance,
featuring less than 25% of missing data in the period

1950–2011. Daily data are interpolated on a 1 3 1 km2

grid using a thin-plate spline function (Duchon 1977;

Wahba and Wendelberger 1980). Catchment series are

obtained by summing these gridded data.

With a view toward modeling the CDF of 3-day rainfall

accumulation in the Isère River catchment, we consider

FIG. 1. (left) Map of western Europe with the analogy windows of geopotential heights at 500 (light blue) and 1000 (blue) hPa and the

region of interest (red) outlined. (right) Elevation map of the region (m), with the main cities and rivers shown. The 61 rain gauges are

indicated in red. The coordinate projection is according to the Lambert II extended system.
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large-scale geopotential height fields over western Europe

at 500 and 1000hPa. These predictors have been found

to be the most informative large-scale analogy predictors

of daily precipitation for France (Obled et al. 2002;

Radanovics et al. 2013), as well as for different re-

gions in Europe with contrasted meteorological regimes

(Raynaud et al. 2017). Daily means of geopotential

heights are extracted from NOAA–CIRES Twentieth

Century Reanalysis, version 2c (V2c; Compo et al. 2011),

using arbitrarily the first member of the reanalyses.

However, a separate analysis on the second and mean

members of the reanalyses, as well as on the ECMWF

twentieth century reanalysis (ERA-20C; Poli et al. 2016),

shows remarkably similar results, so we think the choice

of the reanalysis is actually of little importance for this

study. The considered reanalysis has a spatial resolution

of 28 in longitude and latitude. The geopotential windows
are chosen to be similar to the optimal windows found in

Raynaud et al. (2017) in the region. Both windows are

centered on 68E longitude and 448N latitude (see Fig. 1).

The 500-hPa window is 328 in longitude and 168 in lat-

itude, and the 1000-hPa window is one-half as big in

both longitude and latitude. Although the reanalysis

data are available back to 1851, in this study only the

1950–2011 period is used so as to match the rainfall

measurement period.

3. Method

We present two distinct methods for computing mul-

tiday rainfall CDFs in an analogy framework. Figure 2

provides a schematic illustration of these methods in a

cross-validation framework.

a. Classical analogy approach

Various versions of the analog method as a way of

predicting daily rainfall CDF at local scale have been

developed since the pioneering work of Duband (1981).

For the great majority of the time, analogy is based on

atmospheric states (Chardon et al. 2014; Dayon et al.

2015; Horton and Brönnimann 2019; Raynaud et al. 2017;

Zorita and von Storch 1999), although analogy between

atmospheric sequences is considered in Matulla et al.

(2008) and Zhou and Zhai (2016) for constructing daily

rainfall CDFs and in Yiou et al. (2013, 2014) for re-

constructing daily sea level pressure, temperature, and

wind fields above the North Atlantic. Here we present

the analogy approach for downscaling multiday rain-

fall CDFs based on analogy of sequences of situations.

To the best of our knowledge, the multiday-multiday

case (i.e., downscaling multiday precipitation based on

analogy of multiday atmospheric sequences) has never

been developed so far.

Following previousworks on probabilistic precipitation

forecasting in France (Bontron andObled 2005; Chardon

et al. 2014; Raynaud et al. 2017), we consider analogy in

shape of geopotential fields rather than in absolute value,

using the Teweles–Wobus score (Teweles and Wobus

1954). Denoting zjk as the height at a given pressure level,

grid point sj, and observation time tk, the Teweles–Wobus

score for days tk and tk0 is given by

D
k,k0 5

�
( j,j0)2A dj

j(z
jk
2 z

j0k)2 (z
jk0 2 z

j0k0)j

�
( j,j0)2A dj

max(jz
jk
2 z

j0kj, jzjk0 2 z
j0k0 j)

, (1)

FIG. 2. Cross-validation workflow for prediction analyses: (a) classical analogy approach and (b) low-dimensional analogy approach based

on atmospheric predictors of dynamics and dimensionality.
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whereAdj is the set of adjacent grid points in horizontal

and vertical directions in the analogy window of geo-

potential height at the considered pressure level.

Let Sk be the 3-day sequence (tk, tk11, tk12). The

Teweles–Wobus score for sequences Sk and Sk0 at pres-

sure p is defined as

D
Sk,Sk0

5 �
r50,1,2

D
k1r,k01r

. (2)

The smaller DSk ,Sk0 is, the more similar the sequences

of geopotential shapes will be. The N analog sequences

of the sequence Sk at pressure p are defined as those Sk0

corresponding to the N smallest values of DSk ,Sk0 . The

choice of the neighborhood sizeNwill be investigated in

section 4a.

Let the random variable RSk be the precipitation ac-

cumulation during the sequence Sk and let rSk be the

observed value. Relying on the hypothesis that precipi-

tation during sequences analog to Sk are plausible alter-

natives to the observation rSk, the CDF ofRSk is estimated

as the CDF associated with its N analog sequences.

b. Low-dimensional predictor analogy approach

1) ATMOSPHERIC PREDICTORS OF DYNAMICS AND

DIMENSIONALITY

The analog sequences of the classical approach of

section 3a are determined by similarity in a high-

dimensional space—the space of geopotential fields,

hereinafter referred to as the ‘‘atmospheric space.’’ It

has dimension D 5 16 3 8 for the 500-hPa heights

and D 5 8 3 4 for the 1000-hPa heights. This

section intends to define analogy in a low-dimensional

space (basically 1, 2, or 3) using interpretable predic-

tors. Wetterhall et al. (2005) consider analogs in a low-

dimensional space of leading principal components (PCs)

of daily pressure fields. They interpret the obtained PCs

as different classes of circulation. However, this approach

needs further developments to be extended to the multi-

day case that requires PCs for sequences of pressure

fields. Here we take another approach by constructing a

low-dimensional space summarizing somehow the local

topology of the atmospheric space in terms of dimen-

sionality and dynamics. The dimensionality summarizes

how similar the most similar sequences of geopotential

fields are. In other words, it describes whether we are

along a highly reproducible atmospheric trajectory or not,

and this whatever the shape of the geopotential field. The

dynamics summarizes how fast a sequence of geopotential

fields or its surrounding sequences evolves in time.

FollowingBlanchet et al. (2018), Faranda et al. (2016),

Faranda et al. (2017), andMessori et al. (2017), there are

two considered predictors of dimensionality of a given

day tk. The first is the singularity (sing) defined as the

mean Teweles–Wobus score between tk and itsQ closest

days (Blanchet et al. 2018):

sing
k
5

1

Q
�
Q

q51

D
k,(q)

, (3)

where Dk,(1), . . . , Dk,(Q) are the Q smallest values, in

ascending order, of Dk,1, Dk,2, . . . . The sing describes the

reproducibility in shape of the atmospheric field. The

lower it is, the more the geopotential shape at day tk is

similar to that at some other days. The second predictor

of dimensionality is the relative singularity (rsing), de-

fined as the singularity divided by Dk,(Q):

rsing
k
5

sing
k

D
k,(Q)

: (4)

The rsing lies between 0 and 1. It characterizes the

relative usualness (in shape) of the atmospheric field at

day tk: the smaller rsing is, the closer it is to its neigh-

bors relative to the surrounding density, that is, the

more likely the shape at day tk relative to the vari-

ability of the surrounding shapes. Considering the

D-dimensional space of atmospheric fields (D 5 128

for 500 hPa and D 5 32 for 1000 hPa), rsing charac-

terizes the local degree of clustering around the point

associated with day tk in this space. Noting that the

average value of rsing for uniformly distributed points

in a D-dimensional space is D/(D 1 1), the cases of

local ‘‘attraction’’ (clustering) will start with rsing

values lower than 0.99 for the 500-hPa case and 0.97 for

the 1000-hPa case.

The relative singularity defined by Eq. (4) is very

closely related to the local dimension of Faranda

et al. (2016, 2017) and Messori et al. (2017). However,

therein a logarithmic transformation of Dk,k0 is used,

which makes its estimation maybe more robust (us-

ing extreme value theory) but its interpretation less

straightforward.

Also following Blanchet et al. (2018), Faranda et al.

(2016), Faranda et al. (2017), and Messori et al. (2017),

there are two considered dynamical predictors. The first

is the celerity (cel) defined as the Teweles–Wobus score

between tk21 and tk (Blanchet et al. 2018):

cel
k
5D

k21,k
. (5)

The cel characterizes the celerity of deformation of the

atmospheric field from one day to another. The second

dynamical predictor is the local persistence (pers),

defined as the probability that any analog field of the
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geopotential field at day tk remains an analog on the

following day:

pers
k
5Pr(D

k,(q)11
#D

k,(Q)
jD

k,(q)
#D

k,(Q)
), (6)

where (q)1 1 is the following day of the qth-most analog

day to tk, for q 5 1, . . . , Q. According to the geomet-

ric distribution, 1/pers is the mean residence time of

neighbors of tk in its neighborhood. The pers is thus the

inverse of the u parameter of Faranda et al. (2016, 2017)

and Messori et al. (2017). The local persistence depends

on the mean speed of deformation of the geopotential

fields similar in shape to day tk. It is thus related to the

dynamics of deformation, but it differs from the celerity

of Eq. (5) on two main points: first, it involves a neigh-

borhood (i.e., the most similar shapes), with the under-

lying idea that the speed of deformation of my neighbors

informs one about my own deformation; second, since

neighborhoods can have different sizes, it describes the

relative celerity of deformation, accounting for the

variability of the surrounding shapes.

Averaging the above daily predictors over the days

of a given sequence Sk gives the predictors celSk, singSk,

rsingSk and persSk. Note that, of the four above predictors

the celerity is the only one not involving neighboring

sequences since the computation of sing, rsing, and pers

involves the Q closest geopotential fields (the choice of

the neighborhood sizeQwill be discussed in section 4b).

In a separate analysis, we also considered as predictor

for tk the mean celerity of the neighbors of tk, but this

choice did not improve the results. For the sake of

conciseness and to be consistent with Blanchet et al.

(2018), we do not report these results here.

2) TWO-STAGE ANALOGY

Analogy is constructed in two stages (Fig. 2). The first

stage is an analogy in the pressure field space. It relies on

the Teweles–Wobus score, allowing us to define the

predictors of section 3b(1) based on the Q-nearest se-

quences (apart from the celerity, which does not involve

neighboring sequences). The second stage considers a set

of predictors (e.g., 1–3 in section 4b). It defines analogy

in a ‘‘predictor space’’ by determining the M analog se-

quences of dynamics and dimensionality based on the

Euclidean distance between the standardized predictors

(i.e., the predictors divided by their standard deviation

since they have very different ranges). Relying on the

hypothesis that precipitation during analog sequences of

Sk in the predictor space is a plausible alternative to the

observation rSk, the CDF of RSk is estimated as the CDF

associated with its M analog sequences.

Note that analogy in the predictor space represents

a paradigm shift compared with the classical analogy

approach. Whereas the classical approach relies on

the similarity of the geopotential field sequences, the

predictor approach relies on the similarity of the local

topology, characterized by the way the geopotential

sequences cluster locally (sing and rsing) and how

fast they evolve (cel and pers), somehow forgetting

their shapes.

c. Cross-validation workflow

To compare the two analogy approaches, we consider

a onefold cross-validation framework. As illustrated in

Fig. 2, the framework allows us 1) to select N, the opti-

mal number of neighbors to consider in the classical

analogy approach; 2) to select M and Q, the optimal

number of neighbors to consider in the two-stage pre-

dictor analogy approach; 3) to compare performance of

different subsets of predictors; and 4) to compare per-

formance of the two analogy approaches.

The cross-validation framework is constructed as fol-

lows. Let Sk be a given sequence. We compute the CDF

for Sk based on the 3-day rainfalls for the analog se-

quences of Sk, excluding Sk, using either analogy ap-

proach. Since rainfall accumulations can be either null or

positive, the CDF for any Sk, FSk(r), can be written as

F
Sk
(r)5 p0

Sk
1 (12 p0

Sk
)F1

Sk
(r) , (7)

where p0
Sk
is the probability of zero rainfall accumulation

and F1
Sk
is the CDF of nonzero rainfall accumulation.We

estimate p0
Sk

empirically. We tested different paramet-

ric distribution for modeling F1
Sk

[including the gamma

distribution and the more flexible extended generalized

Pareto distribution of Naveau et al. (2016)] but for the

sake of conciseness, to avoid discussing estimation

method and choice of distribution, and since the results

presented here barely change, we present below only

the results when F1
Sk

is estimated empirically.

As an objective way of assessing prediction perfor-

mance, we compute the continuous ranked probability

score (CRPS) for Sk. It allows us to evaluate the predicted

cumulative distribution functions FSk(r), in comparison

with the single observed value rSk for sequence Sk:

CRPS
Sk
5

ð1‘

0

F
Sk
(r)2H(r2 r

Sk
)
2
dr , (8)

where H(r2 rSk) is the Heaviside function that is null

when r2 rSk , 0 and has the value 1 otherwise. The

better the prediction for Sk is, the lower the CRPS score

(CRPSS) will be. As a way of comparing the overall

performance over all sequences, we consider its skill

score expression, with the climatological distribution of

precipitation as the reference:
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CRPSS5 12
�
k

CRPS
Sk

�
k

CRPS0
Sk

, (9)

where CRPS0
Sk

is computed using Eq. (8) with FSk(r)

replaced by F0(r), the empirical 3-day rainfall CDF

computed over all sequences. The better the prediction

is, the larger the CRPSS will be. A CRPSS of 0 means

that the analogy approach does not improve prediction

when compared with the climatological distribution. A

CRPSS of, for example, 0.2, corresponds to a decrease of

20%of the averageCRPS provided by analogy. To focus

on different parts of the distribution, we compute the

CRPSS over 1) all sequences, 2) all wet sequences, 3) the

62 largest rainfall accumulations (roughly correspond-

ing to the annual maxima), and 4) the indicator values

of rain/no rain [in the latter case, FSk in Eq. (8) is the

Bernoulli distribution with parameter 12 p0
Sk
].

4. Results

a. Classical analogy approach

Unless said otherwise, we consider analogy in geo-

potential heights at 500 hPa. Comparison with geo-

potentials at 1000 hPa, and combination of the two of

them, will be provided in section 4b. Figure 3 compares

the CRPSS of the classical analogy approach depending

on the number of neighbors, here given as a percentage

of the total number of sequences, that is, in the formN5
naN, with n 5 22 643 denoting the number of 3-day se-

quences. In addition to the 3-day case, we temporally

consider the daily case for a comparison with the most

common use of themethod. Note that the CRPSS values

in the daily and 3-day cases cannot be compared one-to-

one since they involve different normalizations [i.e.,

different CRPS0 in Eq. (9)]. A larger value of CRPSS in,

for example, the 3-day case, means that improvement in

CRPS in comparison with the climatology is larger than

in the 1-day case, but this does not necessarily imply a

better CRPS.

According to the CRPSS values, analogy in the 3-day

case improves overall prediction performance over

the daily case (larger CRPSS values). However, pre-

diction of the rain/no rain occurrence is more im-

proved in the daily case mainly because there are more

very small rainfall values at 3-day scale than at daily

scale, which makes harder the distinction between rain

and no rain. Comparison of the CRPSS values when

the number of neighbors changes shows that the best

prediction performance overall is obtained when ap-

proximately 45–110 neighbors are considered (0.2%–

0.5% of the days or sequences). Decrease in prediction

performance when the number of neighbors increases

is particularly marked for the largest rainfalls, for

which the better performance is achieved with 22–45

neighbors (0.1%–0.2%). As a compromise and for

the sake of robustness, we select at 3-day scale

aN 5 0.2%, although smaller neighborhoods seem to be

even slightly better for the extremes. However, 1) it

would not make sense, in a prediction framework, to

select the neighborhood depending on the rainfall ac-

cumulations and 2) very small neighborhoods lead to

nonrobust estimates of the CDFs. There is obviously a

balance to find between high degree of analogy and

decent number of analogs. Considering 0.2% of analogs

seems to be a good compromise.

b. Low-dimensional predictor analogy approach

We consider nine subsets of predictors, from 1 to 3

dimensions, as shown in the x labels of Fig. 4. The other

subsets involving dynamical predictors only are not

shown for the sake of conciseness and because they give

worse results.We tested for each subset different sizes of

neighborhoods, that is, different values of Q—used in

the computation of predictors—and M—determining

analog sequences—with aQ and aM varying from 0.2%

to 2%. For clarity reasons, we report in Fig. 4 the CRPSS

values for aQ and aM being either 0.2% or 0.5%, which

are the best-performing values. Figure 4 shows that

differences in CRPSS values with respect to aQ and aM

(and up to 2%; not shown) for a given set of predictors

are lower than differences among predictors. In other

words, the predicting performance comes at the first

order from the choice of predictors, rather than from the

size of the neighborhoods of analogy.

Let us focus first on the single use of the singularity

versus the relative singularity. Figure 4 shows that,

overall, the relative singularity clearly underperforms

the singularity. However, its predicting performance

greatly increases for the largest rainfall accumulations.

This means that, although the degree of clustering in the

atmospheric space (rsing) is not a good predictor when

compared with the density of points (sing) for usual

rainfalls and intermittency, the largest rainfall accumu-

lation is triggered by atmospheric shapes that are un-

usually clustered within a high local density. It thus

seems that the shapes responsible for extremes are very

specific. The dynamical predictors (cel and pers) bring

negligible to minor improvement except for the inter-

mittency. However, we note that by considering daily

means of geopotentials at 0000, 0600, 1200, and 1800

UTC (see section 2) we smooth out instantaneous

fields, which may be disadvantaging the dynamical

predictors. The use of the relative singularity together

with the singularity slightly improves the prediction
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performance compared with the singularity alone, for

the whole range of rainfall accumulations. For all cases,

whether zero, common, or large rainfall accumula-

tions, the best performance is achieved with the triplet

celerity–singularity–relative singularity, but the greatest

part of the CRPSS improvement comes from the sin-

gularity at first order and from the relative singularity at

second order (mainly for the extremes). With regard to

the choice of the size of the neighborhoods, the best

CRPSS values are obtained whatever set of predic-

tors for aQ 5 0.5% and aM 5 0.5% (red dotted lines).

Although differences are small, we see that the optimal

neighborhood for predicting rainfall—and particularly

the extremes—in the classical analogy approach (i.e.,

aN 5 0.2% according to Fig. 3) is not the optimal

neighborhood for computing predictors (i.e., Q 6¼ N).

A comparison of Figs. 3 and 4 shows that the best

CRPSS values obtained with low-dimensional predic-

tors are around 60% those of the classical analogy ap-

proach. As expected, there is a significant loss in using

themere topology of the surrounding atmospheric space

instead of the full list of analog atmospheric sequences.

However, a major advantage of the predictor approach

is to drive toward a different and synthetic interpre-

tation of the atmospheric features leading to zero-,

small-, or large-rainfall accumulations. Figure 5 shows

FIG. 3. Classical analogy approach applied to geopotential heights at 500 hPa: comparison of CRPSS for 1- (red)

and 3-day (black) rainfall, depending on the number of neighbors, here indicated as a percentage of the total

number of sequences or days (e.g., in the 3-day case, ‘‘0.5’’ means N 5 22 643 3 0.5%).
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the two-dimensional predictor space for the five pairs

of predictors. A look at the spatial distribution of points

(Fig. 5a) reveals a clear nonuniform spreading. Almost one-

half of each predictor space is empty. Even in the half of

predictor space that is not empty, points are clearly non-

uniformly distributed. The densest parts of each scatterplot

are about 1500 times as dense as the least dense parts.

We colored in Figs. 5b and 5c the points of the pre-

dictor space with respect to the proportion of dry 3-day

sequences (Fig. 5b) and the average nonzero 3-day

rainfalls (Fig. 5c) in the neighborhood analogy of each

point (using aQ 5 aM 5 0.5%). A comparison of the

two scatterplots of a given pair of predictors (Fig. 5b vs

5c) shows, in almost all cases, a clear duality. The parts of

the predictor space with the largest probability of dry

sequence and with the largest rainfall accumulation are

almost opposite one another. The values themselves are

well contrasted: the probability of dry sequence lies be-

tween 0 and about 40%, which is considerable given that

the average proportion of dry sequences is 8%. The aver-

age nonzero 3-day rainfall varies from around 0 to more

than 10mmday21, the latter corresponding overall to the

90%quantile of nonzero rainfall. Each pair of predictors is

able to continuously stratify the rain/no rain probability

FIG. 4. Predictor analogy approach applied to 3-day geopotential heights at 500hPa: comparison of CRPSS for different

values of aQ, which is used in the computation of the predictors, and aM, which is used to determine analog sequences.
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and the rainfall accumulations. Of course, some pairs

perform better than others. For example, as already seen

in Fig. 4, the celerity–relative singularity provides the

fuzziest stratification of the rain/no rain probability, al-

though it sharply stratifies the rainfall accumulations.

Most of the rainfall stratification is actually provided by

the singularity and the relative singularity, while the other

predictors improve relatively little, in coherence with the

CRPSS scores of Fig. 4. However, note that the largest

rainfall accumulations tend to occur for relatively small

celerities, corresponding to situations of greater steadiness

of the atmospheric shapes, as also noted in Blanchet et al.

(2018). The best stratification of the rainfall accumulations

is obtained when the singularity and relative singularity

are used jointly but, in coherence with Fig. 4, the influence

of the relative singularity is only significant for the larg-

est accumulations, which are associated with the lowest

values of both predictors. In particular, the geopotential

sequences triggering more than 10mmday21 have a rel-

ative singularity of 0.86–0.90, which is extremely unlikely

for uniformly distributed points in the atmospheric space

(p value lower than 1026). This means that the geo-

potential sequences leading to the largest rainfall accu-

mulations have reproducible shapes (low singularity) but,

using Lorenz’ terminology (Lorenz 1969), each shape is an

attractor of the atmospheric space, inducing a higher de-

gree of clustering in its neighborhood (low relative sin-

gularity). Dry sequences tend to show medium to large

singularity but are still among the lowest relative singu-

larity for the range of singularity. The geopotential shapes

of the dry sequences are also attractors. We see then two

poles of attractors: one corresponding to usual shapes and

associated with large rainfall accumulations, and the

other one corresponding to less common shapes and as-

sociated with dry sequences. Note that the intermittency

is also remarkably associated with persistent atmospheric

shapes, showing that attraction acts in time.

Until now the analysis considered the 500-hPa geo-

potential heights. As a way of comparing the predic-

tion skills depending of the geopotential, we show in

Fig. 6 the scatterplots corresponding to 1000 hPa, to

be compared with Figs. 5b and 5c. These new diagrams

differ from many respects. In general, the scatter-

plots at 1000 hPa are noisier and less contrasted than at

500hPa (note that the color scales differ between Figs. 5

and 6). They also differently stratify the mean rainfall. In

particular the dynamical predictors (celerity and persis-

tence) stratify more at 1000hPa than at 500hPa (cf., e.g.,

the y-oriented stratification of the celerity–relative

singularity scatterplot in Fig. 5c with the xy-oriented

stratification in Fig. 6). With regard to the dimen-

sional predictors, the singularity–relative singularity

plane at 1000 hPa does not stratify the probability of

dry sequence. The largest values of the probability of dry

sequence correspond to medium values of the relative

singularity—meaning that geopotential shapes of the

dry sequences are not attractors—but among the largest

values of persistence. Moreover, the scatterplot in the

persistence–singularity plane varies notably in shape

when going from 1000 to 500 hPa. In particular, persis-

tence and singularity are never large at the same time,

whereas this corresponds to the largest probability of

dry sequence at 500 hPa (see Fig. 5b). Notably, for

both geopotentials, persistence explains intermittency,

whereas relative singularity (local clustering) explains

accumulations, although the explicative power of the

1000-hPa shape is considerably lower.

As a way of quantifying the qualitative differences

commented above, we show in Fig. 7 the CRPSS scores

obtained for 500hPa, 1000hPa, and the combination of

them. In the latter case, the Teweles–Wobus score used

for the computation of predictors is the average Teweles–

Wobus score for both heights (Blanchet et al. 2018).

The scores at 1000hPa are almost always lower than

at 500hPa, in accordance with Fig. 5 versus Fig. 6. At

whatever height, the relative singularity is useless for in-

termittency, while it is indispensable for the large rainfall

accumulations at 1000-hPa height. For the large rainfalls,

the choice of predictors (among those compared) is much

less discriminant than the choice of geopotential. The scores

when using the combination of geopotentials are almost the

average of the individual scores, apart for the large rainfall

accumulations. Surprisingly, the classical analogy approach

shows inverse results. First, geopotential shapes at 500hPa

are less discriminant than at 1000hPa. This is in accordance

with the relevance maps found in Horton et al. (2012) to

explain rainfall readings at Marécottes, a Swiss gauging

station close to our study area and exposed to comparable

weather situations. Second, the two heights seem to bring

complementary information since combining them im-

proves the scores rather than averaging them. Obled et al.

(2002) also finds that combining geopotential fields im-

proves predictive skills of basin precipitation in France.We

note that the best score in the predictor analogy ap-

proach—corresponding to the celerity–singularity–relative

singularity at 500hPa—is only 0.5 times the best score of the

classical analogy approach, corresponding to the combina-

tion of geopotentials at 500 and 1000hPa.

5. Conclusions and discussion

We proposed in this article a new two-stage analogy

approach for explaining 3-day rainfall CDF based on at-

mospheric predictors of dynamics and dimensionality.

Themethod differs from the classical analogy approach in

that it is based on the mere topology of the surrounding
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atmospheric space instead of the full list of analog at-

mospheric sequences.Our results confirmprevious works

showing the link between rainfall accumulations and

atmospheric mesoscale circulation in western Europe.

For France, the studies of Boé and Terray (2008) and

Garavaglia et al. (2010), for example, aimed at seg-

menting the atmospheric space of pressure fields over time

into a set of weather types governing precipitation prop-

erties over target regions. With the two-stage analogy we

propose to carry out this segmentation through an inter-

mediate low-dimensional space mapped with predictors

summarizing the topology of the atmospheric space. The

position of each sequence in the low-dimensional space

appears to govern corresponding rainfall characteristics

and opens the way to a ‘‘continuous’’ examination of the

atmospheric space according to the local topology.

Examining the predictive power of topological pre-

dictors sheds a new light on the governing meteorological

situations. We revealed, for instance, that both dry se-

quences and strong rainfall sequences are associated with

geopotential shapes acting as local attractors, the 500-hPa

field being much more significant than the 1000-hPa one.

The fact that these attractors concern neighborhoods

of the atmospheric space that display respectively low

FIG. 7. Predictor analogy approach applied to 3-day rainfall: comparison ofCRPSSwhen using geopotential heights at

500 hPa, 1000 hPa, or both of them. The dotted horizontal lines show the CRPSS of the classical analogy approach.
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(dry sequences) and high (strong rainfall sequences)

densities deserve some care to interpret. Strong rainfall

sequences come from geopotential fields that repro-

duce very narrowly the same shape (very low singu-

larity and relative singularity) and that are very seldom

(low density area in the singularity–relative singularity

plane). A low singularity thus does not mean the cor-

responding pressure fields are common, this means that

the way they resemble some others is stronger and this

topological situation is rare.

These results could be obviously improved in various

ways, in particular by considering new atmospheric pre-

dictors—for example, differences in celerities between

500 and 1000hPa, or complementing the geopotentials by

other atmospheric predictors such as moisture index,

vertical velocity, helicity, or temperature (Marty et al.

2012; Chardon et al. 2014, 2018; Ben Daoud et al. 2016),

or by usingmeasures other than Teweles–Wobus score or

intermediate geopotentials such as the 700- or 850-hPa

height (Horton et al. 2018). Even more interesting is that

the new analogy approach based on low-dimensional

predictors opens new directions of research that the

classical analogy approach cannot handle, such as 1) at-

mospheric predictors as a first-order measure of a climate

model’s ability to reproduce rainfall statistics, 2) the

change in predictors as a way of explaining the change in

rainfall CDF in future climate without looking explicitly

to the CDF, and 3) the predictor space as a way of

probabilizing atmospheric sequences.
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