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Abstract

Tree-level dynamical stability of scalar field potentials in renormalizable theories can in principle

be expressed in terms of positivity conditions on quartic polynomial structures. However, these

conditions cannot always be cast in a fully analytical resolved form, involving only the couplings

and being valid for all field directions. In this paper we consider such forms in three physically moti-

vated models involving SU(2) triplet scalar fields: the Type-II seesaw model, the Georgi-Machacek

model, and a generalized two-triplet model. A detailed analysis of the latter model allows to estab-

lish the full set of necessary and sufficient boundedness from below conditions. These can serve as

a guide, together with unitarity and vacuum structure constraints, for consistent phenomenological

(tree-level) studies. They also provide a seed for improved loop-level conditions, and encompass

in particular the leading ones for the more specific Georgi-Machacek case. Incidentally, we present

complete proofs of various properties and also derive general positivity conditions on quartic poly-

nomials that are equivalent but much simpler than the ones used in the literature.

* corresponding author
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I. INTRODUCTION

Since the experimental discovery of a Standard Model (SM)-like Higgs particle at the

LHC [1, 2] and the lack so far of any direct evidence for physics beyond the standard model

(BSM)1, one might ask whether the properties of the discovered 125 GeV scalar particle being

so much close to the SM predictions (see e.g. [4]) leaves any room for BSM physics to reside

below the TeV or at the nearby few TeV scale. If new physics is present in the electroweak

symmetry breaking sector it should either be very heavy (almost decoupled) or light but

having very weak mixing with the SM-Higgs. For the latter case, extensions of the scalar

sector of the SM by complex or real SU(2)L triplets, or further extensions comprising Left-

Right symmetric gauge groups, or possibly higher representation multiplets, are appealing

possibilities. A typical example is the Type-II seesaw model for neutrino masses [5–10], for

which an essentially SM-like physical Higgs state is unavoidable, a consequence of the very

small mixing between the doublet and triplet neutral components being set off by the tiny

(Majorana) neutrino mass scale as compared to the electroweak scale. Another example

is the Georgi-Machacek model [11, 12] with one complex and one real triplet such that a

tree-level custodial symmetry is preserved in the scalar sector through a global SU(2)R.

These scenarios have triggered various activities both on the phenomenological level,

(including left-right symmetric or not, supersymmetric or not, scenarios) see e.g. among

the recent works [13–22] (and references therein), and in experimental searches at the LHC

for neutral, charged, and in particular doubly-charged scalar states that are specific to such

class of models decaying either to same-sign leptons or W boson pairs [23, 24], [25, 26] As

for any extension of the SM, and in the absence of a unifying ultraviolet completion, these

models have an increased number of free parameters and thus a large freedom in particular

for the physical spectrum of the scalar sector. Theoretical conditions such as the stability

of the potential, a consistent electroweak vacuum, unitarity bounds, etc., are thus welcome

as a guide together with the experimental exclusion limits to narrow down future search

strategies.

1 possible indirect ”evidence” notwithstanding [3]
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The present paper focuses on the potential stability issue for three models: the Type-

II seesaw model, the Georgi-Machacek model, and a generalized two-triplet model. The

aim is to address as thoroughly as possible the theoretical determination of necessary and

sufficient (NAS) conditions on the scalar couplings that ensure a physically sound bounded

from below (BFB) potential. The NAS BFB conditions have already been considered in the

corresponding literature. Inspired by the approach of [27] initially proposed for the general

two-Higgs doublet potential, the strategy consists in a change of parameterization of the field

space reducing it to a minimal set of variables corresponding to positive-valued ratios of field

magnitudes and to field orientations varying in compact domains. It is then found that in

contrast with the general two-Higgs doublet case, the general doublet-triplet potential leads

to a simplification that allows a fully analytical solution. A complete answer was given

first in [28] and [29] for the Type-II seesaw model. Following the same approach the NAS

BFB conditions were provided for the Georgi-Machacek model in [30]. We will nevertheless

reexamine the issue for these two models, supplementing with complete proofs, for reasons

that will become clear in the course of the study. Encouraged by the success of the approach,

we extend it in the present paper to a generalized two-triplet model, that we will dub pre-

custodial, for which we provide novel results by deriving the full NAS BFB conditions. Some

stability constraints have already been given for this model in [31] and [32]corresponding

however to specific directions in the field space, thus to a subclass of necessary conditions.

This pre-custodial model can be of phenomenological interest by itself, but can also serve

as a guideline for the effective potential beyond tree-level in the Georgi-Machacek model.

The main issue of the analysis will be to cast the conditions in a form as close as possible

to a fully resolved one. By ‘fully resolved’ we mean an analytical expression that depends

solely on the couplings with no reference to orientations or magnitudes in field space. A fully

resolved form, when possible, is an ideal result both technically, since no scan over the field

configurations is needed, and physically, as consistency constraints are expressed directly in

terms of the (physical) couplings. This was the case for the conditions derived in [28], [29]

while in [30] the conditions were resolved with respect to only one parameter, thus remaining

in a partially unresolved form albeit with a residual field dependence reduced to a compact

domain. As we will see, similar configurations arise in the pre-custodial model where the

resolving occurs at different stages with respect to different parameters. A hindrance in the

way of reaching fully resolved conditions emerges whenever dealing with a quartic polynomial
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that cannot be reduced to a biquadratic one. This fact motivated us to investigate further

a rather mathematical question, the positivity of general quartic polynomials, for which we

determine NAS conditions that are simpler than the ones found in the literature.

A word of caution is in order here: The NAS BFB conditions we are considering are

obtained by requiring the tree-level potential not be unbounded from below in any direction

in the field space. It is only in that sense that they are necessary and sufficient. Obviously

they might be only necessary in a wider physical sense when taking into account the structure

of the vacua. Moreover, going beyond tree-level would modify these conditions. As alluded

to above and will be briefly discussed towards the end of the paper, the tree-level conditions

can, however, encapsulate in some cases the leading loop corrections.

Several methods to treat the stability of the potential have been conceived in the liter-

ature, e.g. specifically for multi-Higgs-doublets models [33–35] including elegant geometric

approaches [36], or more general methods relying on copositivity [37–39] or on other power-

ful mathematical techniques [40] (and references therein). As attractive as it may seem, the

ability of the latter systematic methods to treat in principle any model through ready-to-use

packages [41], can yet in practice run into technical difficulties when dealing with extended

scalar sectors as noted in [40]. Also to the best of our knowledge a model with one triplet

has been treated using copositivity [38] but for which only specific directions in field space

where considered in agreement with [28].2 Thus, the more pedestrian and somewhat math-

ematically lowbrow approach we adopt in this paper remains in our opinion an efficient way

of tackling the stability problem specifically for the three models under consideration.

The paper is organized as follows. In Section II we revisit the derivation of the NAS-BFB

conditions for the Type-II seesaw model finding equivalence with the conditions of [29] that

corrected [28], but stress that the conditions of [28] do remain valid necessary and sufficient

when one of the couplings is negative. Adding one real SU(2) triplet, the approach is

extended to the general pre-custodial model in Section III, including the Georgi-Machacek

model as a special case. This section contains the bulk of the new results. In Section

III C we first identify six field dependent variables that provide a reduced parameterization

of the field space suitable to the BFB study, four of which, dubbed α-parameters, vary

in compact domains. We then investigate the NAS-BFB conditions following a procedure

2 More symmetric models can be more tractable [42].
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where the resolving with respect to these six field-dependent variables is performed step-by-

step. Section III D deals with the analytical determination of the domains of variation of

the α-parameters as well as all 2,3,4-dimensional analytical correlations between them. In

Section III E we derive the main results identifying the fully and partially resolved branches

of the NAS-BFB conditions. The special case of the Georgi-Machacek model is reconsidered

in Section III F where we relate the reduced parameters to those of the pre-custodial model

and provide a proof of their domain of variation that was only conjectured in the literature.

Section IV illustrates an unexpected feedback of the Georgi-Machacek model on the pre-

custodial one. A wrap-up with further illustrations, comments and a user’s guide, is given

in Section V and we conclude in Section VI. Further material and detailed proofs, either

missing in the literature for known properties, or for the new results found in this paper

are given in appendices A – F. Special attention is payed, in appendices G and H, to the

mathematical issue of deriving simple forms for the NAS positivity conditions of quartic

polynomials .

II. THE TYPE-II SEESAW DOUBLET-TRIPLET HIGGS POTENTIAL

We first sketch the main ingredients, relying on the detailed analysis and notations of

[28] to which the reader may refer for more details.

The potential reads

V (H,∆) = −m2
H
H†H +

λ

4
(H†H)2 +M2

∆
Tr(∆∆†) + [µ(HT iσ2∆†H) + h.c.]

+λ1(H†H)Tr(∆∆†) + λ2(Tr∆∆†)2 + λ3Tr(∆∆†)2 + λ4H
†∆∆†H .

(2.1)

H denotes the standard scalar field SU(2)L doublet and ∆ a colorless SU(2)L complex

triplet scalar field, with charge assignments H ∼ (1, 2, 1) and ∆ ∼ (1, 3, 2) under SU(3)c ×

SU(2)L × U(1)Y ,

H =

 φ+

φ0

 , ∆ =

 δ+/
√

2 δ++

δ0 −δ+/
√

2

 . (2.2)

We have used the 2 × 2 traceless matrix representation for the triplet and wrote the two

multiplets in terms of their complex valued scalar components and indicated a choice of elec-

tric charges with the conventional electric charge assignment for the doublet and following
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Q = I3 + Y∆

2
with I3 = −1, 0, 1 and Y

∆
= 2 for the triplet. σ2 denotes the second Pauli

matrix. The potential V (H,∆) is invariant under SU(2)L × U(1)Y field transformations

H → eiαULH and ∆ → ei2αUL∆U †L where UL denotes an arbitrary element of SU(2)L in

the fundamental representation. Since we are only interested in the issue of boundedness

from below of the potential, we need not go further here into the details of the dynamics of

spontaneous electroweak symmetry breaking, the structure of the physical Higgs states and

the generation of Majorana neutrino masses.

A. The BFB conditions

In order to cope generically with the shape of V (H,∆) along all possible directions of

the 10-dimensional field space, we adopt a reduced parameterization for the fields that will

turn out to be particularly convenient to entirely solve the problem analytically. Following

[28] we define:

r ≡
√
H†H + Tr∆∆†, (2.3)

H†H ≡ r2 cos2 γ, (2.4)

Tr∆∆† ≡ r2 sin2 γ, (2.5)

Tr(∆∆†)2/(Tr∆∆†)2 ≡ ζ, (2.6)

(H†∆∆†H)/(H†HTr∆∆†) ≡ ξ . (2.7)

Obviously, when H and ∆ scan all the field space, the radius r scans the domain [0,+∞)

and the angle γ ∈ [0, π
2
]. With this parameterization it is straightforward to cast the quartic

part of the potential, denoted hereafter by V (4) and given by the second line of Eq. (2.1), in

the following simple form,

V (4)(r, tan γ, ξ, ζ) =
r4

4(1 + tan2 γ)2
(λ+ 4(λ1 + ξλ4) tan2 γ + 4(λ2 + ζλ3) tan4 γ) (2.8)

We stress here that the crux of the matter is the existence of a parameterization, Eqs (2.3

-2.7), which allows to scan all the field space and in the same time recasting the relevant part

of the potential into a biquadratic form in tan γ. It is the concomitance of these two facts

that allows a tractable and complete analytical solution for the necessary and sufficient

boundedness from below conditions. Indeed, the absence of linear and/or cubic powers

of tan γ in Eq. (2.8) is anything but generic. (For instance, in a similar parameterization

7



initially proposed in [27] to study two-Higgs-doublet models such terms do remain, hindering

an easy fully analytical treatment.)

One can thus consider only the range 0 ≤ tan γ < +∞ in accordance with the above

stated range for γ. Boundedness from below is then equivalent to requiring V (4) > 0 for all

tan γ ∈ [0,+∞) and all ξ, ζ in their allowed domain. The γ-free necessary and sufficient

conditions on the λi’s have already been given in [28]:

λ > 0 ∧ λ2 + ζλ3 ≥ 0 ∧ λ1 + ξλ4 +
√
λ(λ2 + ζλ3) > 0 . (2.9)

Note that the second inequality above is non-strict. This accounts rigorously for the only

possible equality among the NAS conditions that is compatible with requiring V (4) to be

strictly positive.3 These inequalities are a subset of the general necessary and sufficient

(NAS) positivity conditions for a quartic polynomial (see Appendix G). We stress here that

Eq. (2.9) answers fully the question of (tree-level) boundedness from below in the totality

of the 10 -dimensional field space. There remains however the dependence on ξ and ζ that

parameterize the relative magnitudes of the dimension four gauge invariant operators in

Eq. (2.1) that are not controlled solely by r and γ.

One can, however, show that

0 ≤ ξ ≤ 1 and
1

2
≤ ζ ≤ 1. (2.10)

(See Appendices A 0 a, A 0 b for a proof.)

In [28] the authors relied on this allowed range and on the monotonic dependence on (ξ, ζ)

in Eq.(2.9) to obtain equations (4.21),(4.22) and (4.23) of [28] reproduced in Appendix B 0 b

for later discussions. The authors of [29] rightly observed that [28] had actually overlooked

the fact that (ξ, ζ) being correlated, cannot reach an arbitrary point in the rectangle defined

by Eq.(2.10). Starting from Eq. (2.9) and using the constraint

2ξ2 − 2ξ + 1 ≤ ζ ≤ 1, (2.11)

they showed that the set of conditions Eqs. (B14 - B16) established in [28], although sufficient

in all field space directions, are in fact not necessary, even though deviation from absolute

3 In Section III C we will elaborate further on the meaning of the condition V (4) > 0, as well as on the fact

that the parameter tan γ varies independently of ζ and ξ.
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necessity is typically at the few percent level. Although we totally agree with their general

observation, we will see that despite the correlation between ξ and ζ the conditions Eqs. (B14

- B16) do remain sufficient and necessary whenever λ3 < 0; the modification will come only

for λ3 > 0. We will come back to this point in more detail later on in Appendix B.

For now, we just add that, as shown in Appendix A 0 c, it is possible to cast the ξ and ζ

parameters as follows

ξ =
1

2
(1 + c

2H
c

2∆
), (2.12)

ζ =
1

2
(1 + c2

2∆
), (2.13)

with c
2H
, c

2∆
two independent cosines taking any value in their allowed domain [−1, 1]; note

also that Eq. (2.11) comes as a direct consequence of these equations.

Altough the authors of [29] wrote a correct form of the necessary and sufficient BFB

conditions, they only sketched a proof of their result. In Appendix B, we provide a detailed

proof through a careful study of Eq. (2.9) leading to an alternative form of the fully resolved

NAS BFB conditions. The latter reduce to:

B0 ∧
{
B1 ∨ B2

}
(2.14)

where

B0 ⇔
{
λ > 0 ∧ λ2 + λ3 ≥ 0 ∧ λ2 +

λ3

2
≥ 0
}
, (2.15)

B1 ⇔
{
λ1 +

√
λ(λ2 + λ3) > 0 ∧ λ1 + λ4 +

√
λ(λ2 + λ3) > 0 ∧

√
λλ3 ≤

√
(λ2 + λ3)λ2

4

}
,

(2.16)

and

B2 ⇔
{√

λλ3 ≥
√

(λ2 + λ3)λ2
4 ∧ λ1 +

λ4

2
+

√
λ(λ2 +

λ3

2
)
(
1− λ2

4

2λλ3

)
> 0
}
. (2.17)

Note also that Eq. (2.17) implies λ3 > 0 and 2λλ3 − λ2
4 > 0 so that the B2 part is relevant

only when these conditions are satisfied simultaneously.

The above constraints are in fact totally equivalent to [29] although they have a slightly

different form. Indeed the equivalence is not straightforward as the two involved Boolean

forms are in general not equivalent to each other. However, they become equivalent due to

the implication given by Eq. (B13). The above constraints:
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� constitute an independent check of the results of [29].

� are written explicitly as a union of domains one of which, B1, is a necessary consequence

of constraints Eqs. (B15 - B16).

� allow to understand why in some regimes the previous constraints Eqs. (B15 - B16)

would exclude only a very small part of the allowed parameter space. This is the case

in particular in the regimes where λ4 � 1 or λ2
4 � 2λλ3.

� allow to see analytically that our previous constraints Eqs. (B15 - B16) were sufficient

but not necessary. Indeed Eq. (B14) is the same as Eq. (2.15) while one can easily

check that Eqs. (B15 - B16) always imply Eq. (2.16).

III. GENERALIZATION ADDING ONE EXTRA REAL TRIPLET

Such a generalization can be of phenomenological interest by itself, but is also motivated

by the structure of the Georgi-Machacek model beyond the tree-level [43].

A. The pre-custodial potential

Defining

A =

 a+/
√

2 −a++

a0 −a+/
√

2

 , B =

 b0/
√

2 −b+

−b+∗ −b0/
√

2

 , (3.1)

with A a different notation for the complex triplet ∆, and H as defined in Eq. (2.2), B = B† a

real triplet (b0 real-valued), we write the most general renormalizable pre-custodial potential

involving H,A and B as follows,

Vp-c = V (2,3)
p-c + V (4)

p-c (3.2)

where the dimension-2, -3 operators are collected in

V (2,3)
p-c = −m2

H
H†H +M2

A
Tr(AA†) +M2

B
Tr(B2)

+ [µA(HT iσ2A†H) + h.c.] + µBH
†BH + µABTr(AA

†B), (3.3)
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and the dimension-4 operators in

V (4)
p-c =

λH
4

(H†H)2 +
λ

(1)
A

4
(Tr AA†)2 +

λ
(2)
A

4
Tr(AA†)2 +

λB
4!

(TrB2)2

+λ
(1)
AHH

†H TrAA† + λ
(2)
AHH

†AA†H +
λBH

2
H†H TrB2

+
λ

(1)
AB

2
Tr AA† TrB2 +

λ
(2)
AB

2
Tr AB Tr A†B

+
i

2
λABH(H>σ2A†BH −H†BAσ2H∗). (3.4)

Vp-c is invariant under SU(2)L × U(1)Y field transformations

H → eiαULH,

A → ei2αULAU †L, (3.5)

B → ULBU †L,

where UL denotes an arbitrary element of SU(2)L in the fundamental representation. This

potential was written in [43] and later on in [31] with which we agree up to different nor-

malizations and notations4. All other dimension-3,-4 gauge invariant operators are either

vanishing or can be expressed in terms of the ones listed above. (For completeness we give

a proof of this in Appendix C.)

B. The Georgi-Machacek potential

This model [11, 12], a special setup of the model presented in the previous subsection,

allows to extend the validity of the SM tree-level (approximate) custodial symmetry in the

presence of SU(2)L triplet scalar fields. In particular the potential reads

VG-M = V
(2,3)

G-M + V
(4)

G-M, (3.6)

4 with the field correspondence as given by Eq. (3.10) and couplings correspondence: λH = 4λ, λ
(i=1,2)
A = 16ρi,

λB = 4!× 4ρ3, λ
(i=1,2)
AB = 8ρi+3, λ

(i=1,2)
AH = 2σi, λBH = 4σ3 and λABH = 4σ4. Note that our normalization

factors for the various couplings are chosen such that they cancel out for at least one vertex originating from

each operator when symmetry factors are taken into account in the Feynman rules.
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V
(2,3)

G-M =
µ2

2

2
TrΦ†Φ +

µ2
3

2
TrX†X −

(
M1TrΦ

†τaΦτ b +M2TrX
†taXtb

)
(UXU †)ab, (3.7)

V
(4)

G-M = λ̂1(TrΦ†Φ)2 + λ̂2Tr(Φ
†Φ)Tr(X†X) + λ̂3Tr(X

†XX†X)

+λ̂4(TrX†X)2 − λ̂5Tr(Φ
†τaΦτ b)Tr(X†taXtb), (3.8)

where we followed the notations of [30].5 We hat the λ’s to distinguish them from those of

Sec. II, and define the scalar bi-doublet and bi-triplet as

Φ ≡

 φ0∗ φ+

−φ+∗ φ0

 =
(
iσ2H∗, H

)
, (3.9)

X ≡


χ0∗ ξ+ χ++

−χ+∗ ξ0 χ+

χ++∗ −ξ+∗ χ0

 =
√

2


a0∗ b+ a++

−a+∗ b0 a+

a++∗ −b+∗ a0

 , (3.10)

so that the normalization of the VEVs are the same as in [30]. Note also the sign difference

in a++ and b+ between Eq. (3.1) and Eq. (3.10). The potential Vp-c is then mapped onto

VG-M through the following correspondence among the couplings

λ̂1 =
1

16
λH , λ̂2 =

1

8
λBH , λ̂3 = − 1

64
λ

(2)
A ,

λ̂4 =
1

32
λ

(1)
AB, λ̂5 = − 1

4
√

2
λABH , (3.11)

provided, however, the following correlations hold for the pre-custodial potential couplings:

λ
(1)
A = 2λ

(1)
AB + 3λ

(2)
AB, λ

(2)
A = −2λ

(2)
AB, λABH =

√
2λ

(2)
AH ,

λB = 3(λ
(1)
AB + λ

(2)
AB), λBH = λ

(1)
AH +

1

2
λ

(2)
AH .

(3.12)

The potential VG-M enjoys an increased symmetry as compared to that of Vp-c, Eq. (3.5),

with an invariance under an extra global SU(2),

Φ→ U (2)
L ΦU (2)

R , (3.13)

X → U (3)
L XU (3)

R , (3.14)

5 In Eqs. (3.7, 3.8) τa = σa/2 with σa the Pauli matrices are the usual SU(2) generators in the fundamental

representation, ta the generators in the triplet (adjoint) representation, with a = 1, 2, 3, and U some rotation

matrix about which we skip here the details (see [44] and [30]) as Eq. (3.7) will not be relevant to our study.
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where U (n)
L,R denotes n-dimensional representation of SU(2)L,R. The correlations given by

Eq. (3.12) can thus be viewed as encoding the tree-level constraints imposed by the SU(2)R

global symmetry on the potential. We come back to this point in Sec. V when discussing

briefly quantum effects. References [43], [31] considered such correlations.6

C. The pre-custodial BFB conditions

Being a polynomial in the fields, the tree-level potential has no singularities at finite

values of the fields; it follows that boundedness from below means that the potential does

not become infinitely negative at infinitely large field values. This is equivalent to requiring

strict positivity of the quartic part of the potential, Eq. (3.4), for all field values in all

field directions. The latter requirement is sufficient as it implies that at infinitely large field

values, where |V (2,3)
p-c | � |V (4)

p-c | in Eq. (3.2), the potential does not become infinitely negative.

That it is also necessary might not seem obvious since the last term in Eq. (3.4) is linear

in A and in B, so that V
(4)

p-c might be negative for some finite values of the fields without

being unbounded from below. That this does not happen, and the above requirement is

indeed necessary, can be easily seen as follows: If there existed a point in field space where

V
(4)

p-c ≡ V
(4)?

p-c ≤ 0, then scaling all the fields at that point by the same real-valued amount

s would have lead to V
(4)

p-c ≡ s4V
(4)?

p-c ≤ 0, implying unboundedness from below since s can

be chosen infinitely large. Note finally that strict positivity is important here because a

vanishing V
(4)

p-c at very large field values would generically lead to the dominance of V
(3)

p-c

which, barring accidental cancellations in some field directions, always possesses unbounded

from below directions!

The BFB conditions are thus the necessary and sufficient conditions on the nine couplings

λ of Eq. (3.4) that ensure

V (4)
p-c > 0, ∀A,B,H. (3.15)

Of course, loop corrections will modify the conditions on the couplings resulting from

Eq. (3.15), although the effects can be partly encoded in the runnings of the couplings

6 We agree with [31] except for a factor two difference on the right-hand side of the first equation of the second

line of Eq. (3.12) as compared to the first equation of the second line of Eq. (10) of [31].
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through a renormalization group improvement of the potential. (We will come back briefly

to this point in Section V.) Note also that the above definition of boundedness from below

does not take into account the actual pattern of spontaneous symmetry breaking that would

typically lead to more stringent constraints.

The condition in Eq. (3.15) should be verified in the full 13-dimensional space of the real-

valued field components of the A,B and H multiplets. However, symmetries of the model

(and possibly accidental symmetries akin to V
(4)

p-c ) will help reduce the number of relevant

degrees of freedom. Starting from Eq. (3.4) we generalize the parameterization of Eqs. (2.3

- 2.7) using spherical-like coordinates as follows:

H†H ≡ r2 cos2 a, (3.16)

TrAA† ≡ r2 sin2 a cos2 b, (3.17)

Tr(B2) ≡ r2 sin2 a sin2 b, (3.18)

r2 = H†H + TrAA† + Tr(B2), (3.19)

where r is a non negative number, and a ∈ [−π/2,+π/2] and b ∈ [−π,+π] two angles. It

will also prove useful to define the following real-valued quantities,

T ≡
√
TrAA†

H†H
= | tan a cos b|, t ≡

√
Tr(B2)

TrAA†
= | tan b|, (3.20)

αA ≡
TrAA†AA†

(TrAA†)2
, αAH ≡

H†AA†H

H†H TrAA†
, αAB ≡

TrAB TrA†B

TrAA† Tr(B2)
, (3.21)

αABH ≡ i
H>σ2A†BH −H†BAσ2H∗

H†H
√
TrAA† Tr(B2)

. (3.22)

Hereafter we will refer to the latter four parameters as the α-parameters. In terms of T, t

and the α-parameters, the quartic part of the potential now reads

V (4)
p-c = r4 cos4a× (a0 + b0T

2 + c0T
4), (3.23)

where

a0 =
λH
4
, b0 = λ

(1)
AH + αAHλ

(2)
AH +

1

2
(αABHλABHt+ λBHt

2),

c0 =
1

4
(λ

(1)
A + αAλ

(2)
A ) +

1

2
(λ

(1)
AB + αABλ

(2)
AB)t2 +

1

24
λBt

4.

(3.24)

It becomes evident from Eqs. (3.23–3.24) that the positivity of V
(4)

p-c does not depend explic-

itly on all ten terms of the right-hand side of Eq. (3.4), but just on the reduced set of the six

14



combinations of gauge invariant operators defined in Eqs. (3.20 – 3.22). The sought-after

NAS BFB conditions on the λ’s are thus those that ensure

a0 + b0T
2 + c0T

4 > 0, ∀T, t, αA, αAH , αAB, αABH . (3.25)

It is important to note that scanning independently over all values of the thirteen real-valued

components of the fields A,B and H amounts to varying T, t and the α-parameters. The

latter, however, do not all vary independently. For one thing, the α-parameters vary in

bounded domains: αA and αAH are nothing but respectively ζ and ξ defined in Eqs. (2.6,

2.7). Hence

αA ∈ [
1

2
, 1], (3.26)

αAH ∈ [0, 1], (3.27)

as shown in appendix A. Furthermore, one can show that

αAB ∈ [0, 1], (3.28)

αABH ∈ [−
√

2,+
√

2], (3.29)

see Appendix D for details. For another, the α-parameters are uncorrelated only locally.

But similarly to what was pointed out in [29] and discussed at length in sec. II A for the

Type-II seesaw model potential, they are correlated globally in that they cannot reach the

boundaries of their respective domains independently of each other. The actual domain

in the 4-dimensional α-parameters space is certainly not the simple hyper-cube defined by

Eqs. (3.26 –3.29). One can approach the true domain by considering the projected domains

on the sub-spaces of these parameters taken two-by-two. This is not trivial to establish and

will be carried out in full details in Sec. III D. The more difficult task of determining fully

the true domain will be discussed in Section III D 7.

In contrast, the variables T and t vary in ∈ [0,+∞) independently of each other and

of the α-parameters. In essence, the α-parameters being ratios of different gauge invariant

combinations of the fields can be seen as functions of cosines and sines of angles defined

separately in the A, B and H field spaces, where
√
TrAA†,

√
TrB2 and

√
H†H represent

lengths. This hints at the obstruction to span the full hyper-cube as noted above. Whereas

T and t, being two ratios of these three lengths, are clearly independent of each other and

of the α-parameters. It follows that T can be varied independently from a0, b0 and c0 in
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Eq. (3.25) Consequently, the NAS conditions for the strict positivity of V
(4)
p−c, ∀T , are those

of a biquadratic polynomial in T , namely conditions on the λ’s satisfying

a0 > 0 ∧ c0 ≥ 0 ∧ b0 + 2
√
a0c0 > 0,∀t, αA, αAB, αAH , αABH . (3.30)

As noted previously, only the highest degree monomial coefficient can vanish. However, for

the sake of simplicity we will consider in the sequel only the strict inequality c0 > 0. It is

convenient to recast the above inequalities in the following equivalent form that disposes of

the (less tractable) square root:

a0 > 0 ∧ c0 > 0 ∧ {b0 > 0 ∨ {b0 < 0 ∧ 4a0c0 − b20 > 0}}, (3.31)

∀t, αA, αAB, αAH , αABH ,

which simplifies further to

a0 > 0 ∧ c0 > 0 (3.32)

∧

{b0 > 0 ∨ 4a0c0 − b20 > 0}, (3.33)

∀t, αA, αAB, αAH , αABH .

1. a0 > 0 ∧ c0 > 0:

We consider first the conditions in Eqs. (3.32) as they are common to the union of the

two conditions of Eqs. (3.33). The coefficient c0 being itself biquadratic in t and the latter

independent of the α-parameters, see Eq. (3.24), the corresponding NAS positivity condition

is in turn of the same form as Eqs. (3.32, 3.33). The two inequalities in Eq. (3.32) are thus

equivalent to:

λH > 0 ∧ λB > 0 ∧ λ(1)
A + αAλ

(2)
A > 0 (3.34)

∧{
λ

(1)
AB + αABλ

(2)
AB > 0 (I) ∨ (λ

(1)
A + αAλ

(2)
A )λB − 6(λ

(1)
AB + αABλ

(2)
AB)2 > 0 (II)

}
, (3.35)

∀αA, αAB.

Note that the second inequality in Eq. (3.34) and the first inequality in Eq. (3.35) depend

solely on αA or on αAB. They can be easily resolved since the dependence on these parameters
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is monotonic; if required to be valid ∀αA, αAB in the domains given by Eqs. (3.26, 3.28),

they become equivalent to requiring them simultaneously at the two edges of these domains,

namely:

λ
(1)
A +

λ
(2)
A

2
> 0 ∧ λ

(1)
A + λ

(2)
A > 0, (3.36)

for the first, and

λ
(1)
AB > 0 ∧ λ

(1)
AB + λ

(2)
AB > 0, (3.37)

for the second. Equation (3.35)-(II) needs more care due to the nontrivial global correlation

between αA and αAB (see next section and Fig. 2), and will be kept in its present form

for the time being. One will also have to tackle a further complication involving the two

inequalities of Eq. (3.35). Indeed, due to the ‘or’ structure of Eq. (3.35), none of the two

corresponding inequalities need to be necessarily valid for all αA, αAB in their domains; it

suffices that one of the two inequalities be satisfied in a given subset of αA, αAB, and the

other inequality satisfied in the complementary subset. In particular, Eq. (3.37) is only

sufficient. To reach the NAS conditions one will have to consider all possible coverings of

the domain by two subsets for which such a configuration holds. This issue will be solved

explicitly in Sec. III E 1.

2. b0 > 0 ∨ 4a0c0 − b20 > 0:

We turn now to the two inequalities of Eq. (3.33). The first is quadratic in t, see Eq. (3.24),

but could in principle be treated as a biquadratic polynomial in
√
t, since t ∈ [0,+∞). The

second, 4a0c0 − b20 > 0, is a general quartic polynomial in this same variable. This is

the first place where we encounter the issue of positivity conditions for a general quartic

polynomial. Relying on a classic theorem about single variable polynomials that are positive

on (−∞,+∞), we derive in Appendix G a relatively tractable form of the corresponding NAS

conditions for a quartic polynomial. However these conditions are not directly applicable

to the case at hand since the relevant variable here, t, is in [0,+∞). In this case the NAS

conditions would obviously be less restrictive, see for instance [45, 46] for recent reviews.7

7 Somewhat surprisingly, corresponding theorems, when the variable does not span the full (−∞,+∞) interval,

seem not to have been referenced in the mathematics literature before the 1970’s, see [47].

17



Relying on these theorems we extend the results of Appendix G to the domain [0,+∞) in

Appendix H.

However, this is not the full story. Similarly to what we stated above in subsection

III C 1 regarding Eq. (3.35), the ‘or’ structure of Eq. (3.33) implies that it is sufficient for

the two inequalities b0 > 0 and 4a0c0 − b20 > 0 to be separately valid in two complementary

subsets of the allowed t and α-parameters domains. The NAS conditions will then be

obtained by investigating all possible coverings of these domains for which this happens.

The upshot is that the possibility of varying freely t with respect to the α-parameters is not

sufficient anymore. Indeed, a given subset of the α-parameters where for instance b0 > 0

(or 4a0c0−b20 > 0) will be necessarily correlated with t. A strategy for an explicit resolution

will be given in Sec.III E 2.

Although it will prove unavoidable to deal with positivity conditions of quartic polyno-

mials on sub-domains of (−∞,+∞), it will still be useful for the subsequent discussions to

replace from the onset t ∈ [0,+∞) by a variable on (−∞,+∞) if possible. This is indeed

the case if one considers the variable Z defined as

Z = αABH × t (3.38)

since αABH can take either signs, cf. Eq. (3.29). However, in order to apply safely the NAS

positivity conditions on a polynomial in Z, one should make sure that Z is not correlated

with the other parameters, αA, αAH and αAB appearing in the inequalities, even though

these parameters are globally correlated with αABH .

It is obviously the case for |Z| since t is uncorrelated with the other parameters and allows to

scan independently of the value of |αABH | the full [0,+∞) range. However, the sign of Z is

controlled by αABH which is globally correlated with αA, αAH and αAB. It is thus crucial to

check that the sign of αABH is not correlated with the latter parameters. That this is indeed

the case is easily seen by recalling that all the inequalities are required to be valid ∀A,B,H

in the field space, and noting that αA, αAH and αAB remain unchanged, while αABH flips

sign, at the two field space points A and −A (or equivalently at B and −B, or H and iH),

see Eqs. (3.21, 3.22). It follows that one can change freely the sign of αABH for any given

configuration of αA, αAH and αAB. (As we will see in the next subsection, Figs. (3 - 5), this

translates into domains symmetrical around αABH = 0.) The variable Z ∈ (−∞,+∞) is

thus genuinely uncorrelated with the other field dependent reduced parameters.
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D. Global correlations among the α-parameters

In this section we first determine the allowed domains of the α-parameters taken two by

two, then combine the resulting six global correlations to obtain an analytical approximation

of the full 4D domain. Since the α-parameters are ratios of gauge invariant quantities, cf.

Eqs. (3.21,3.22), it is convenient to choose a gauge that reduces the dependence on the

set of components fields of the A, B and H multiplets. Apart from the treatment of αA

versus αAH , we carry all the discussion in this section assuming a gauge that diagonalizes

the (hermitian and traceless) B multiplet as defined in Eq. (3.1), which then takes the form

B =

 b 0

0 −b

 . (3.39)

It follows that the dependence on b cancels out in αAB and, up to a global sign, in αABH .

1. αA versus αAH

These parameters are identical respectively to ζ and ξ that were defined and studied in

detail in Section II A and Appendix A 0 c. We just recall here the corresponding domain:

(i) : 0 ≤ αAH ≤ 1 (3.40)

(ii) : 2αAH (αAH − 1) + 1 ≤ αA ≤ 1, (3.41)

illustrated in Fig. 1.

2. αA versus αAB

With no particular gauge choice but using the fact that the parameter αA is a ratio, one

can recast it in terms of reduced parameters in the following form:

αA =
1

4

(
2 cos4 θ + (3 + cos 4ϕ) sin4 θ + (2 + cos ρ sin 2ϕ) sin2 2θ

)
, (3.42)

where we defined

|a0| = a cosϕ sin θ,

|a+| = a cos θ,

|a++| = a sinϕ sin θ,

ρ = arg(a0)− 2 arg(a+) + arg(a++),

(3.43)
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FIG. 1: Projection of the α-parameters domain onto the (αAH , αA) plane.

with

0 ≤ ϕ ≤ π

2
, 0 ≤ θ ≤ π

2
, 0 ≤ ρ ≤ 2π, and a =

√
|a0|2 + |a+|2 + |a++|2 . (3.44)

Furthermore, choosing a gauge for which Eq. (3.39) is valid the αAB parameter takes the

very simple form,

αAB = cos2 θ . (3.45)

Equations (3.42, 3.45) lead straightforwardly to

αA =
1

4

(
3 + (2− 3αAB)αAB + (αAB − 1)2 cos 4ϕ

)
+ (1− αAB)αAB cos ρ sin 2ϕ. (3.46)

To determine the boundary of the allowed domain one can for instance study the variation

of αA in Eq. (3.46) as a quadratic function of x ≡ sin 2ϕ in the domain 0 ≤ x ≤ 1 to

identify the set of maximal and minimal possible values of αA for a given αAB depending on

cos ρ. The maximum is reached for x = αAB

1−αAB
cos ρ which lies in the allowed domain only if

cos ρ ≥ 0 and αAB ≤ 1
2
. Otherwise, the maximum is reached at one of the boundary values

x = 0 or x = 1. We find that the boundary of the domain is given by the following four

curves:

(I) : αAB = 0 and
1

2
≤ αA ≤ 1,

(II) : αA =
1

2
and 0 ≤ αAB ≤ 1,

(III) : αA = 1 and 0 ≤ αAB ≤
1

2
,

(IV) :
1

2
≤ αAB ≤ 1 and αA =

1

2
+ 2(1− αAB)αAB,

(3.47)
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see also Fig. 2.

FIG. 2: The upper figure blue contour indicates the projection of the α-parameters domain onto

the (αAB, αA) plane. The middle and lower figures are related to Section III E 1 to which the

reader is referred for more details. The dashed straight lines illustrate arbitrary partitions defined

by Eq.(3.35)-(I); the black solid parabolae illustrate arbitrary partitions defined by Eq.(3.35)-(II).
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3. αAH versus αABH

Similarly to the preceding case, we recast αAH and αABH in terms of reduced parameters

and in the gauge where Eq. (3.39) holds:

αAH =
1

2
(1 + cos 2ϕ cos 2ψ sin2 θ) +

1

2
√

2
(cosϕ cos θ3 + sinϕ cos θ4) sin 2ψ sin 2θ,

(3.48)

αABH =
√

2 sgn(b) (sinϕ sin2 ψ cos θ2 − cosϕ cos2 ψ cos θ1) sin θ, (3.49)

where θ and ϕ are as previously defined and

θ1 = arg(a0)− 2 arg(φ0),

θ2 = arg(a++)− 2 arg(φ+),

θ3 = arg(a0)− arg(a+)− arg(φ0) + arg(φ+),

θ4 = arg(a+)− arg(a++)− arg(φ0) + arg(φ+),

cosψ =
|φ0|√

|φ0|2 + |φ+|2
,

(3.50)

with 0 ≤ ψ ≤ π

2
and 0 ≤ θi ≤ 2π. (Note that θ1 = θ2 + θ3 + θ4 (modulo 2π).)

A numerical parametric scan over the various angles allows to guess the boundary of the

αAH versus αABH domain. The result turns out to be very simple given by the two curves:

(V) : αAH = 1, ∀αABH ∈ [−
√

2,+
√

2], (3.51)

(VI) : αAH =
1

2
α2
ABH , (3.52)

illustrated in Fig. 3. The proof for the upper boundary (3.51) is simple: It suffices to exhibit

particular configurations of the various angles for which αAH saturates its upper bound while

αABH scans all its allowed domain. An example is ϕ = ψ = θ =
π

2
, keeping all the θi’s free.

This gives αAH = 1 and αABH =
√

2 cos θ2, which proves the above statement. The lower

boundary (3.52) is much more difficult to establish analytically. The proof is somewhat

involved and will be relegated to Appendix D 0 c.

4. αA versus αABH

Here again a numerical parametric scan over the various angles helps guessing the bound-

ary of the αA versus αABH domain. However, one still needs for that to admit ad hoc that
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FIG. 3: Projection of the α-parameters domain onto the (αABH , αAH) plane.

the whole boundary is obtained when sin θ = 1. The analytical proof is quite involved and

is given in Appendix D 0 d for completeness. We find that the boundary is determined by

the following:

(VII) : αA = 1, for αABH ∈ [−
√

2,+
√

2],

(VIII) : αA =
1

2
, for αABH ∈ [−1,+1],

(IX) : αA = 1− α2
ABH +

1

2
α4
ABH , for αABH ∈ [−

√
2,−1] ∪ [+1,+

√
2].

(3.53)

FIG. 4: Projection of the α-parameters domain onto the (αABH , αA) plane.

5. αAB versus αABH

From Eqs. (3.45,3.49,3.44,3.29), one obtains readily

α2
ABH = 2Y 2(1− αAB) (3.54)
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FIG. 5: Projection of the α-parameters domain onto the (αABH , αAB) plane.

where Y (defined in Eq. (D35)) and αAB vary independently in the domain [0, 1]. It is then

clear that for each given value of αABH , αAB reaches its maximal value compatible with

Eq. (3.54) when Y 2 = 1. Also the minimal value αAB = 0 is reached for any value of α2
ABH .

The boundary of the allowed domain in the plane αAB versus αABH is thus delimited by the

two curves:

(X) : αAB = 0, ∀αABH ∈ [−
√

2,+
√

2], (3.55)

(XI) : αAB = 1− 1

2
α2
ABH , (3.56)

as shown on Fig. 5.

6. αAH versus αAB

The boundary of the allowed domain in the (αAB, αAH) plane is given by:

(XII) : αAB = 0, ∀αAH ∈ [0, 1], (3.57)

(XIII) : αAH = 0, ∀αAB ∈ [0,
1

2
], (3.58)

(XIV) : αAH = 1, ∀αAB ∈ [0,
1

2
], (3.59)

(XV) :

(
αAB −

1

2

)2

+

(
αAH −

1

2

)2

=
1

4
, for αAB ∈ [

1

2
, 1] and αAH ∈ [0, 1], (3.60)

see Fig. (6). The proof strategy is similar to the one in Sec. (III D 2) albeit somewhat more

involved, the convenient variable here to study the variation of αAH being x ≡ cos 2ψ. (See

Appendix D 0 e for details.)
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FIG. 6: Projection of the α-parameters domain onto the (αAB, αAH) plane.

7. The 4D α-potatoid

The 2D projections of the α-parameters domain determined analytically in the previous

subsections will allow, in some cases, a fully analytical resolving of the BFB conditions

on the λ’s. Obviously generalizing beyond 2D along the same lines becomes non-tractable

analytically. In principle one can then proceed numerically, scanning over part or all of the

seven angles entering Eqs. (3.42, 3.45, 3.48, 3.49), to determine the 3D projections as well

as the true 4D allowed domain of the α-parameters. However, this would cut short the

possibility of further analytical resolving for the conditions on the λ’s.

We will proceed differently here by constructing an analytical approximation of the true

α-parameters domain from a back-projection using only six planes. Obviously any point in

the true domain should have its projections on the six planes lying within the six domains

determined above. This necessary condition can be characterized by the interior of a four

dimensional convex domain that we will refer to as the 4D potatoid. To determine explicitly

this 4D potatoid we first express separately in the form of a logical (inclusive) disjunction

each of the six domains of Figs. 1– 6, then form the logical conjunction of these disjunc-

tions. The resulting Boolean expression is somewhat involved but, interestingly enough, it
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eventually simplifies to the following form:

αA ≤ 1 ∧ αAB ≥ 0 ∧ αAB ≤ 1− 1

2
α2
ABH

∧

αAH ≥
1

2
α2
ABH ∧ αA ≥ 1 + 2(αAH − 1)αAH (3.61)

∧{
αAB ≤

1

2
∨

{
αA ≤

1

2
+ 2(1− αAB)αAB ∧

(
αAB −

1

2

)2

+

(
αAH −

1

2

)2

≤ 1

4

}}
This form is non-trivial in that it does not display explicitly all six correlations among

the four α-parameters; in particular, the correlation between αA and αABH does not appear

explicitly and, depending on αAB, either only three or five of the six correlations are explicitly

needed. These features will prove useful when resolving the constraints in Section III E 2. It

is also informative to partially visualize the 4D potatoid by considering its 3D projections

along each of the four directions. This amounts to combining the domains three by three

which leads after some simplifications to:

{αA, αAB, αAH} =


1

2
≤ αA ≤ 1 ∧ 0 ≤ αAB ≤

1

2
+

√
1− αA

2

∧
1

2

(
1−
√

2αA − 1
)
≤ αAH ≤

1

2

(
1 +
√

2αA − 1
)
,

(3.62)

{αA, αAH , αABH} = 1 + 2(αAH − 1)αAH ≤ αA ≤ 1 ∧ α2
ABH ≤ 2αAH , (3.63)

{αA, αAB, αABH} =



1

2
≤ αA ≤ 1 ∧ 0 ≤ αAB ≤ 1− α2

ABH

2
∧{

αAB ≤
1

2
∨ 1

2
−
√

1− αA
2

≤ αAB ≤
1

2
+

√
1− αA

2

}
∧{

α2
ABH ≤ 1 ∨ 1−

√
2αA − 1 ≤ α2

ABH ≤ 1 +
√

2αA − 1
}
,

(3.64)

{αAB, αAH , αABH} =


0 ≤ αAB ≤ 1− α2

ABH

2
∧ α2

ABH

2
≤ αAH ≤ 1

∧{
αAB ≤

1

2
∨ (1− 2αAB)2 + (1− 2αAH)2 ≤ 1

} (3.65)
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Figure 7 shows these 3D projections. It is easy to check by eye from this figure that fur-

ther projection on the various planes reproduces the domains shown in Figs. 1– 6. However,

the rounded (and even non-smooth) edges featured in Fig. 7 hint at the fact that looking at

projections is necessary but not sufficient to determine the true 4D domain of the α- param-

eters. For instance a point lying just outside the chopped edge in Fig. 7 (a), that is a point

excluded for sure, would still project on the interior of the domains of Figs. 3,5,6. Obviously

this is not yet fully a counter example as the considered point might still project outside

one of the three remaining 2D domains. But on general grounds the potatoid determined

by Eq.(3.61), even though enclosing the true 4D domain, is not necessarily identical to it.

Since relying on continuity arguments one does not expect holes in the interior of the true

domain, that would leave no imprint in the projections on the six planes, one concludes that

differences between the potatoid and the true domain should be located on the boundaries

of the former. We defer a detailed study showing that this is indeed the case till section IV.

There we will make use of an interesting feedback on the issue from the more constrained

Georgi-Machacek model.

E. Resolved forms of the pre-custodial BFB conditions

For now we ignore the above subtleties and exploit in the present section the domains of

the α- parameters, as determined so far, to push as much as possible an explicit resolving

of the conditions given by Eqs. (3.32, 3.33) for the λ parameters themselves.

1. Resolving a0 > 0 ∧ c0 > 0

Resolving conditions (3.32) with respect to t, they become equivalent to Eqs. (3.34, 3.35).

As stressed at the end of Section III C 1, in order to fulfill the ’or’ structure of Eq. (3.35)

one should in principle consider all possible partitions into subsets of the domain depicted in

Fig. 2. Since obviously the two inequalities could be simultaneously satisfied in some parts

of the domain, the subsets should be allowed to overlap. So, strictly speaking, we should

consider coverings rather than partitions. More precisely:

A set of values (λ
(1)
A , λ

(2)
A , λ

(1)
AB, λ

(2)
AB) will satisfy Eq. (3.35) ∀αA, αAB, if and only if

there exists a covering of the (αA, αAB) domain consisting of a family of subsets of
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this domain for which Eq. (3.35)-(I) is satisfied on a collection of these subsets, and

Eq. (3.35)-(II) satisfied on the complementary collection.

The task can seem daunting since there are a priori infinitely many ways of forming a

covering of the domain. However, one can identify a clear procedure. Note first the obvious

fact that, for a given (λ
(1)
A , λ

(2)
A , λ

(1)
AB, λ

(2)
AB) in the λ–space, each of the two inequalities in

Eq. (3.35) defines separately natural partitions of the (αA, αAB) domain, namely partitions

formed by a collection made of subsets where the inequality is satisfied and subsets where it

is not. Moreover, among all these natural partitions, one can show that a minimal partition,

FIG. 7: Projection of the α-potatoid along: (a) the αA direction, (b) the αAB direction,

(c) the αABH direction, (d) the αAH direction.
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made of the smallest possible number of subsets, is actually unique and made of at most

two subsets.8 A clear strategy follows: For each given point in the λ–space, determine the

two minimal partitions defined respectively by Eq. (3.35)-(I) and Eq. (3.35)-(II), call them

{sIyes, sIno} and {sIIyes, sIIno}; then check whether their union forms a covering that satisfies the

required property stated above in italics, that is check whether

sIno ⊂ sIIyes, or equivalently, sIIno ⊂ sIyes, (3.66)

to select or reject the considered point in λ–space.

Given the linear dependence on αAB in Eq. (3.35)-(I), the associated minimal partitioning

corresponds simply to cutting the (αA, αAB) domain into regions by a straight line going

vertically across the domain, at αAB = α∗AB ≡ −
λ

(1)
AB

λ
(2)
AB

, as illustrated by the dashed line in

Fig. 2. The inequality (3.35)-(I) is then true for any αAB in an entire interval of the form

[α∗AB, 1] or [0, α∗AB], and false on their respective complement. This corresponds respectively

to the two minimal partitions where the ”yes” assignment holds for the right side or the

left side region. Moreover, since αAB lives in [0, 1], the minimal partition reduces trivially

to either {sIyes, ∅} or {∅, sIno} if α∗AB /∈ [0, 1]. It is thus convenient to consider separately

the NAS conditions on λ
(1)
AB and λ

(2)
AB that correspond to each of these four configurations of

the minimal partition. These NAS conditions are easy to write down given the monotonic

dependence on αAB ∈ [0, 1] in Eq. (3.35)-(I). They are given in Fig. 8 with the labels

(i), (ii), (iii) and (iv). Note that (i) and (iv) correspond to the two extreme configurations,

respectively {sIyes, ∅}, cf. Eq. (3.37), and {∅, sIno}, while (ii) and (iii) are the two intermediate

generic partitions.

8 This is an immediate consequence of the binary ”yes/no” characterization of the subsets of the natural

partitions defined above. Indeed, starting from a given natural partition and taking the union of all the

”yes” subsets and the union of all the ”no” subsets forms two subsets (including possibly an empty one)

defining a minimal partition. The uniqueness proof then follows easily: if {s1, s2} and {s′1, s′2} are two

minimal partitions, then at least one set si and one set s′j should have a non-empty intersection si ∩ s′j ,

since the partitions cover the same domain. This implies the whole of si and s′j to have the same ”yes/no”

characterization. But this contradicts the fact that the complementary of si has by definition the opposite

characterization, unless si ∩ s′j = si = s′j . The two remaining subsets should thus be identical too, whence

the uniqueness of the minimal partition.
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On the other hand, as can be easily seen from the dependence on αA, αAB in Eq. (3.35)-

(II), the corresponding minimal partitions are determined by convex parabolae in the

(αAB, αA) plane, illustrated by the black curves in Fig. 2. The middle and bottom figures

in Fig. 2 show several possible configurations when α∗AB ∈ [0, 1]. The middle-left illustrates

a generic case where Eq. (3.66) can never be satisfied irrespective of the ”yes/no” configu-

rations. The middle-right and bottom-left figures, and more generally when the solid and

dashed lines do not cross, illustrate the necessary configurations to allow for Eq. (3.66), yet

one still needs to examine the ”yes/no” configurations for sufficiency. Finally the bottom-

right figure where the two branches of the parabola cut through the domain, is another

configuration for which Eq. (3.66) is impossible. Finally, when α∗AB /∈ [0, 1], not repre-

sented on Fig. 2, the entire (αAB, αA) domain is contained either in the non-empty subset

of {sIyes, ∅} or in the non-empty subset of {∅, sIno}. In the latter case it is required to be

entirely contained in the ”yes” region determined by the parabola.

Putting everything together, the problem becomes equivalent to solving for the following

complementary conditions:

(i) Eq. (3.35)-(I) valid ∀αAB ∈ [0, 1], partition {sIyes, ∅}

(ii) α∗AB = −λ
(1)
AB

λ
(2)
AB

,

Eq. (3.35)-(I) valid only ∀αAB ∈ [0, α∗AB],

Eq. (3.35)-(II) should be valid ∀αAB ∈ [α∗AB, 1], i.e. sIno ⊂ sIIyes

(iii) α∗AB = −λ
(1)
AB

λ
(2)
AB

,

Eq. (3.35)-(I) valid only ∀αAB ∈ [α∗AB, 1],

Eq. (3.35)-(II) should be valid ∀αAB ∈ [0, α∗AB], i.e. sIno ⊂ sIIyes

(iv) Eq. (3.35)-(I) false ∀αAB ∈ [0, 1], partition {∅, sIno},

Eq. (3.35)-(II) should be valid ∀αAB ∈ [0, 1], partition {sIIyes, ∅}

where the numbering corresponds to that of Fig. 8.

We can now derive in a fully analytical way the resolved form of Eqs. (3.34, 3.35), or

equivalently of Eqs. (3.35, 3.36) in conjunction with λH > 0 ∧ λB > 0. The NAS conditions

thus obtained on the λ’s have no residual dependence on αAB and αA. To retrieve these
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NAS conditions we followed step-by-step the partitions described above and analyzed the

non-monotonic dependence on αAB in Eq. (3.35)-(II) when applicable.

The details are very technical and will not be described here. We give the final result in

Fig. 8 where we have defined the following Boolean expressions:

B3 ⇔ (2λ
(1)
A + λ

(2)
A )λB > 12(λ

(1)
AB + λ

(2)
AB)2, (3.67)

B4 ⇔ 3(2λ
(1)
A + λ

(2)
A )λ

(2)
AB

2
+ 2λ

(2)
A (λ

(1)
A + λ

(2)
A )λB < 12λ

(2)
A λ

(1)
AB(λ

(1)
AB + λ

(2)
AB)

∨ 6λ
(2)
AB(λ

(1)
AB + λ

(2)
AB) + λ

(2)
A λB > 0, (3.68)

B5 ⇔ 2(λ
(1)
A + λ

(2)
A )λB > 3(2λ

(1)
AB + λ

(2)
AB)2, (3.69)

B6 ⇔ (2λ
(1)
A + λ

(2)
A )λ

(2)
AB

2
> 4λ

(2)
A λ

(1)
AB(λ

(1)
AB + λ

(2)
AB) ∨ 3λ

(2)
AB

2
+ λ

(2)
A λB < 0 (3.70)

B7 ⇔ λB min
{

2(λ
(1)
A + λ

(2)
A ), (2λ

(1)
A + λ

(2)
A )
}
> 12λ

(1)
AB

2
. (3.71)

In writing this final form we used occasionally the fact that λB > 0 to obtain compact

expressions where Eqs. (3.36) are implicitly taken into account in Eqs. (3.67, 3.69,3.71).

For a cross-check of our results we have performed various numerical scans simultaneously

on the λ’s, and on αA, αAB in the domain defined by Eqs. (3.47-I – 3.47-IV). This amounts to

checking the validity of the conditions Eqs. (3.35, 3.36), and comparing the Boolean output

with that of the resolved conditions of Fig. 8.9 One can take advantage of the fact that αAB

and αA are not correlated in the square [0, 1
2
]× [1

2
, 1] to replace for this part of the domain,

and without loss of information, αAB and αA by their edge values in Eqs. (3.35)-(I), -(II).

The parabola-edged part of the domain (where αAB ∈ [1
2
, 1]), is more tricky to treat. If

not sufficiently finely meshed, a numerical scan could miss some features depending on the

configuration of the maximum/ minimum of the parabola. As an illustration we show in

Fig. 9 the allowed 3D domains, for subsets of the λ parameters, obtained from the resolved

exact conditions of Fig. 8 and compare them with the approximate ones obtained from

requiring Eqs. (3.35, 3.36) to hold for just three sets of benchmark values of αAB and αA

lying on the boundary of their allowed domain. As expected, one of the benchmark sets

leads to an approximate domain that is much less restrictive (the pink colored regions in

Figs. 9 (a), (c)) than the exact domain shown in Figs. 9 (b), (d)). However, one finds that

9 Throughout the paper we rely significantly on the Mathematica package [48] for symbolic and numerical

computations as well as for the generation of the plots.
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the other benchmark set (the brown colored regions in Figs. 9 (a), (c)) leads unexpectedly to

an extremely good approximation of the exact domain. Obviously this accidental agreement

could not have been guessed without the comparison and is not by itself a cross-check of the

validity of the conditions given in Fig. 8 & Eqs (3.67 –3.71). For that we have performed

large scans, 4 × 106 points on a regular grid in the λ-space in the configurations of Fig. 9,

or fixing only λH = 1 and taking 1.3 − 2 × 106 points in the λ-space with much larger

number of benchmark points, 60 benchmark points within, or 30 benchmark points on, the

boundary of the (αAB, αA) domain. Counting the hits where the Boolean values of the

approximate and exact conditions are equal or different we found in all cases a difference

of less than 2% between the approximate and exact conditions. Another significant feature

of the check is that the Boolean yield of the difference is found in 100% of the cases to be

”approximate=True, exact=False”. Only one hit with the reverse configuration would have

meant the exact conditions are wrong!

In summary, we have derived the NAS conditions for a0 > 0 ∧ c0 > 0 in a fully analytical

resolved form. They are thus necessary for the BFB of the general potential given by

Eqs. (3.2 – 3.4), and can be safely applied irrespective of the field configurations of A, B

and H. Further comments on these conditions are deferred to Sections IV and V.
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(1)
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(1)
A +λ

(2)
A > 0 ∧ λ

(1)
A +λ
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A > 0
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�λ

(1)
AB > 0 ∧ λ

(1)
AB + λ

(2)
AB < 0 ← (ii)

∧�
�

�
�λ

(1)
A +λ

(2)
A > 0

∧�

�

�

�
B3
∧(

2λ
(1)
AB + λ

(2)
AB > 0 ∨ B4 ∧ B5

)

∨�
�

�
�λ

(1)
AB < 0 ∧ λ

(1)
AB + λ

(2)
AB > 0 ← (iii)

∧�
�

�
�

(
2λ

(1)
AB + λ

(2)
AB > 0 ∨ B6

)
∧ B7

∨�
�

�
�λ

(1)
AB < 0 ∧ λ

(1)
AB + λ

(2)
AB < 0 ← (iv)

∧�

�

�

�
λ

(2)
AB > 0 ∧ B7

∨
λ

(2)
AB < 0 ∧ B3 ∧ B4 ∧ B5

FIG. 8: Boolean flowchart of the fully resolved form, i.e. with no dependence on the

fields, of the NAS conditions on λB, λH , λ
(1)
A , λ

(2)
A , λ

(1)
AB, λ

(2)
AB satisfying the inequalities given

by Eqs.(3.34, 3.35). 33



FIG. 9: Upper figures: the allowed domain in the λB, λ
(1)
AB, λ

(2)
AB space for

λ
(1)
A = −0.1, λ

(2)
A = 1, λH = 1; (a) the brown domain corresponds to enforcing Eqs. (3.35, 3.36) for

just the three sets of values, (αAB, αA) = (0, 1
2), (1

2 ,
1
2), (1, 1

2); the light pink indicates the

increased domain when replacing the last set by (1
2 , 1); (b) exact resolved conditions of Fig. 8.

Lower figures: the allowed domain in the λB, λ
(1)
A , λ

(2)
AB space, for λ

(1)
AB = −0.1, λ

(2)
A = 1, λH = 1;

(c) as in (a), (d) as in (b).

2. Partial resolving of b0 > 0 ∨ 4a0c0 − b20 > 0

We investigate now Eq. (3.33) that should be valid ∀Z, αA, αAB, αAH , αABH in their al-

lowed domains. (We use here the variable Z defined in Eq. (3.38) instead of t, and refer the
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reader to Section III C 2 for a discussion on the relevance of Z.) As argued repeatedly in

Sections III C 1, III C 2 and discussed in detail in the previous subsection, the ’or’ structure

in Eq. (3.33) implies that the validity of the inequalities should be required for all possible

coverings of the (Z, α-parameters) space. However, the situation is more complex here than

in the previous subsection, since 4a0c0 − b20, cf. Eq. (3.24), involves simultaneously all four

α’s and is a complete quartic polynomial in Z. Given the particularly involved NAS condi-

tions for quartic polynomials, Eqs. (G30a - G30d), we do not expect to resolve completely

this case in an explicit form similar to that given in Fig. 8. The aim here is to proceed as

far as possible towards an explicit resolving, then deal with the rest through mere numerical

scans on the α-parameters defined by Eq. (3.61), including some further refinements to be

discussed in Sec. IV. To proceed let us first address the flowchart of the overall logic. This

is sketched in Fig. 10, together with the following definitions:

� B8 denotes the NAS conditions for b0 to always have a constant sign,

� B(a,b)
9 denotes the NAS conditions for 4a0c0−b20 to be positive when Z is in the interval

(a, b) and the α-parameters satisfying Eq. (3.61).

The strategy underlying this flowchart is similar to the one adopted in the previous

subsection (which the reader is referred to for definitions and notations), and should be

clear by now. The upper left box of Fig. 10 corresponds to the λ–space points for which

b0 > 0 defines two trivial minimal partitions, {sIyes, ∅} or {∅, sIno}, corresponding respectively

to λBH > 0 and λBH < 0, while the lower left box corresponds to the λ–space points where

b0 > 0 defines a generic minimal partition {sIyes, sIno}. The boxes to the right indicate the

Boolean structure including the minimal generic partition {sIIyes, sIIno} defined by 4a0c0−b20 > 0

to satisfy Eq. (3.66). We now investigate how far the Boolean expressions B8 and B(
9...) can

be resolved analytically.
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λBH > 0 ∧ B(z−,z+)

9

)
∨(

λBH < 0 ∧ B(−∞,z−)

9 ∧ B(z+,+∞)

9

)

FIG. 10: Boolean flowchart for the resolving of b0 > 0 ∨ 4a0c0 − b20 > 0. z± denote the two

real-valued roots of b0(Z) when they exist. See text for the definitions of B8 and B9.

•B8: Viewing b0, Eq. (3.24), as a quadratic polynomial in Z, we denote by z± its two roots.

Thus B8 corresponds to the NAS condition for which z± are not real-valued, that is to

requiring the discriminant of this polynomial to be negative,

B8 ≡ (αABHλABH)2 − 8(λ
(1)
AH + αAHλ

(2)
AH)λBH ≤ 0 (3.75)

for all αAH , αABH in the domain given by Eqs. (3.51, 3.52). Taking into account the cor-

relations at the boundary of this domain one can obtain condition B8 in a fully resolved

analytical form. After some non-trivial Boolean simplifications we find,{
(λABH)2 ≤ 4(λ

(1)
AH + λ

(2)
AH)λBH ∧

(
(λABH)2 ≥ 4λ

(2)
AHλBH ∨ λ

(1)
AHλBH ≥ 0

)}
⇔ B8.

(3.76)

Clearly then, the NAS conditions for the sufficient condition b0 > 0 read, see Fig. 10,

B8 ∧ λBH > 0. (3.77)
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However, as will be discussed later on in Sec. IV, the condition on the left-hand side of

Eq. (3.76) is in fact only sufficient to yield B8.

•B(−∞,+∞)

9 : To obtain B(−∞,+∞)

9 we consider 4a0c0 − b20 as a quartic polynomial in Z and

thus require all the conditions given by Eqs. (G30a - G30d). The coefficients ai=0,...,4 are

straightforwardly read from the combination 4a0c0 − b20 upon use of Eqs. (3.24, 3.38):

a0 = γ0 − δ2
0, a1 = −2δ0δ1, a2 = γ1 − δ2

1 − 2δ0δ2, a3 = −2δ1δ2, a4 = γ2 − δ2
2, (3.78)

where

δ0 = λ
(1)
AH + αAHλ

(2)
AH , δ1 =

1

2
λABH , δ2 =

λBH
2α2

ABH

,

γ0 =
1

4
(λ

(1)
A + αAλ

(2)
A )λH , γ1 =

(λ
(1)
AB + αABλ

(2)
AB)λH

2α2
ABH

, γ2 =
λBλH

24α4
ABH

.

(3.79)

We provide here explicitly the resulting first three conditions given by Eqs. (G30a):

4 a0 = (λ
(1)
A + αAλ

(2)
A )λH − 4(λ

(1)
AH + αAHλ

(2)
AH)2 > 0, (3.80)

24α4
ABH a4 = λBλH − 6λ2

BH > 0, (3.81)

16α4
ABH ∆0 = λ4

ABHα
4
ABH − 4λ2

ABH(λHXAB + 4λBHXAH)α2
ABH

+ 4 (λHXAB − 2λBHXAH)2 + 8a0(λBλH − 6λ2
BH) > 0, (3.82)

where we defined

XAK ≡ λ
(1)
AK + αAKλ

(2)
AK , (K = B,H). (3.83)

Condition (3.80) can be readily resolved: Being linear in αA, one requires it to hold simulta-

neously on the upper and lower boundary lines of the αA domain given by Eq. (3.41). The

resulting conditions depend only on αAH quadratically and can be studied straightforwardly

taking into account Eq. (3.40). After several Boolean simplifications we find the following

resolved form of Eq. (3.80), adding also Eq. (3.81),

B(−∞,+∞)

9 ⊃ λBλH > 6λ2
BH (3.84)

∧

(λ
(1)
A + λ

(2)
A )λH > 4 max

{
(λ

(1)
AH)2, (λ

(1)
AH + λ

(2)
AH)2

}
∧ (3.85)(

λ
(2)
A λH < 2(λ

(2)
AH)2 ∨ λ

(2)
A λH < 4 max

{
−λ(1)

AHλ
(2)
AH , λ

(2)
AH(λ

(1)
AH + λ

(2)
AH)

}
∨ λ

(2)
A (2λ

(1)
A + λ

(2)
A )λH > 4((λ

(1)
A + λ

(2)
A )(λ

(2)
AH)2 + 2λ

(2)
A λ

(1)
AH(λ

(1)
AH + λ

(2)
AH))

)
.
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Condition (3.82) appears much less amenable to a resolved form as it involves all four

α-parameters simultaneously. One can however still resolve it partially but this will not be

pursued further here.10 The remaining conditions corresponding to Eqs. (G30b,G30c,G30d)

will be treated numerically.

• B(−∞,z−)

9 ,B(z+,+∞)

9 : To obtain these conditions one again considers 4a0c0 − b20 as a quartic

polynomial in Z. However, now the positivity is not required on all Z∈(−∞,+∞) and one

needs to rely on the results derived in Appendix H. Since the latter hold for [0,+∞), we first

map one-to-one the domains (−∞, z−] and [z+,+∞) on [0,+∞) through the two changes

of variable

Z = z− − ξ and Z = z+ + ξ (3.86)

respectively, with ξ ∈ [0,+∞), then search for the conditions on the quartic polynomial in

ξ satisfying criterion (H13). We note, however, two simplifcations due to the linear changes

of variable: a4, the coefficient of Z4 given by Eq. (3.81), is the same as that of ξ4. It follows

that the necessary condition Eq. (3.84) remains valid. On the other hand, the coefficients

a0 are modified with respect to Eq. (3.80) to, respectively, a−0 and a+
0 given by:

a∓0 = λH

(
6(λ

(1)
A + αAλ

(2)
A ) + 12(λ

(1)
AB + αABλ

(2)
AB)z2

∓ + λBz
4
∓

)
. (3.87)

Interestingly, one can show that when combined with Eqs. (3.34, 3.35), the necessary

constraints a∓0 > 0 as dictated by the first of Eqs. (G30a), will always be satisfied by

Eq. (3.87) irrespective of the values of z∓! Indeed, given Eq. (3.34), when Eq. (3.35)-(I) is

satisfied then a∓0 > 0 follows trivially, and when Eq. (3.35)-(II) is satisfied then a∓0 , taken

as a quadratic equation in z2
∓, has no real-valued roots and thus again always positive.

• B(z−,z+)

9 : In this case a nonlinear change of variable

Z = z− + (z+ − z−)
ξ

1 + ξ
(3.88)

10 For instance, since it is biquadratic in αABH with a positive definite coefficient of α4
ABH , a sufficient con-

dition is then a negative discriminant. The latter has a simple form depending linearly on αA, αAB and

quadratically on αAH .
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is used with ξ ∈ [0,+∞) before applying criterion (H13). Here too a simplication occurs for

a0 and a4 after the change of variable. Up to a global positive definite denominator, they

are expressed in terms of Eq. (3.87):

a0 = a−0 ,

a4 = a+
0 ,

(3.89)

and are thus always positive when combined with Eqs. (3.34, 3.35), as explained above.

To summarize, we have identified a subset of analytically resolved necessary conditions

in the various branches of Fig. 10 flowchart. One now should combine these conditions

with the other analytically resolved conditions given in Fig. 8 and Eqs. (3.67 - 3.71) and

possibly also with those given by Eqs. (2.14 – 2.17). This allows a quick determination

of necessary domains in the λ–space. Then adding the remaining necessary conditions

that can be treated through numerical scans on the α-parameters, one delineates the NAS

BFB conditions. However, before doing so in Sec. V, we need to reexamine first the BFB

conditions of the more constrained Georgi-Machacek model, as this will have some bearing

on the general case.

F. The Georgi-Machacek BFB conditions

In [30] the authors provided a detailed study of the properties of the potential relying on

a generalization of the parameterization used in [28]. They identified the two parameters

ω̂ =
Tr(Φ†τaΦτ b)Tr(X†taXtb)

Tr(Φ†Φ)Tr(X†X)
, (3.90)

ζ̂ =
Tr(X†XX†X)

(Tr(X†X))2
, (3.91)

relevant to the study of the BFB conditions, writing V
(4)

G-M in the form

V
(4)

G-M = r̂4 cos4 γ̂
(
λ̂1 + (λ̂2 − ω̂λ̂5) tan2 γ̂ + (ζ̂ λ̂3 + λ̂4) tan4 γ̂

)
, (3.92)

with

r̂2 ≡ Tr(Φ†Φ) + Tr(X†X), (3.93)

tan2 γ̂ ≡ Tr(X†X)

Tr(Φ†Φ)
. (3.94)
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Noting that Tr(Φ†Φ) = 2H†H and Tr(X†X) = 4Tr(AA†) + 2Tr(B2) one can relate r̂ and

tan γ̂ to the parameters defined in Eqs. (3.16 – 3.19) to obtain,

tan2 γ̂ = (1 + cos2 b) tan2 a, and r̂2 cos2 γ̂ = 2r2 cos2 a. (3.95)

Then equating V
(4)

G-M, Eq. (3.92), with V
(4)

p-c , Eq. (3.4), and taking into account the above

relations and Eqs. (3.11, 3.12), one identifies ω̂ and ζ̂ as the coefficients of −λ̂5 tan2 γ̂ and

λ̂3 tan4 γ̂ which allows to relate them to the parameters defined in the pre-custodial case,

Eqs. (3.20 – 3.22), as follows:

ω̂ = −1− 2αAH −
√

2αABH t

2(2 + t2)
, (3.96)

ζ̂ =
6− 4αA + 4αAB t

2 + t4

(2 + t2)2
. (3.97)

As a cross-check of the validity of these relations, one can indeed retrieve from the fact that

t ∈ [0,+∞) and the exact knowledge of the two domains given by Eqs. (3.47-I – 3.47-IV)

and Eqs. (3.51, 3.52), that ω̂ ∈ [−1
4
, 1

2
] and ζ̂ ∈ [1

3
, 1] as already found in [30].

The allowed domain in the (ω̂, ζ̂) plane has been given in [30]. This was done stating

that the boundary of the domain is obtained from the real valued components of the neutral

field directions, that is keeping only Reχ0 and ξ0 and zeroing all the others in Eqs. (3.90,

3.91). However, no justification was given for this statement. The aim of the present section

is to provide an explicit proof for the equation of the boundary of the (ω̂, ζ̂) domain based

on the symmetries of VG-M. We choose to use SU(2)R to rotate away the lower as well as

the imaginary part of the upper components of H, so that

Tr(Φ†τaΦτ b)

Tr(Φ†Φ)
=

1

4
δab, (3.98)

(note that ref. [30] used SU(2)L instead), and use SU(2)L to rotate away for instance χ++

and the imaginary part of χ+, bringing the bi-triplet X in the form

X =


χ0∗ ξ+ 0

−u ξ0 u

0 −ξ+∗ χ0

 (3.99)

where u(≡ Reχ+) denotes a real-valued scalar field.11 With this choice of gauge ω̂ and ζ̂

11 One could be tempted to zero, on top of χ++, the (real-valued) ξ0 entry rather than Imχ+. However one
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take the following form

ω̂ =
1

4

(
2
√

2 cos θ0 cos(arg(χ0)) + sin θ0

)
sin θ0 sin2 θ+ (3.100)

+
1

2
cos(arg(ξ+)) cos θ+ cot θu +O(cot2 θu) , (3.101)

ζ̂ = 1− sin2 θ0 sin2 θ+

(
1 +

1

4
(1 + 3 cos 2θ0) sin2 θ+

)
(3.102)

−
√

2 cos(arg(ξ+) + arg(χ0)) cos θ+ sin2 θ+ sin 2θ0 cot θu +O(cot2 θu) , (3.103)

where we defined the polar angles by

u = R cos θu, (3.104)

|ξ+| = R cos θ+ sin θu, (3.105)

|χ0| = R sin θ+ sin θ0 sin θu, (3.106)

ξ0 =
√

2R sin θ+ cos θ0 sin θu, (3.107)

R2 =
1

2
Tr(X†X), (3.108)

with

0 ≤ arg(χ0), arg(ξ+) ≤ 2π, (3.109)

0 ≤ θ0, θ+ ≤ π
2
, (3.110)

0 ≤ θu ≤ π. (3.111)

Note that due to the invariance of V
(4)

G-M under X → −X one can always fix uniquely either

the sign of ξ0 or that of u. In our parameterization ξ0 > 0 while u can take either signs. In

Eqs. (3.101, 3.103) we kept for simplicity only linear terms in u. We will come back to the

exact contribution later on. Here we first concentrate on the 0th order u contributions to ω̂

and ζ̂, i.e. Eqs. (3.100, 3.102) which we dub ω̂0 and ζ̂0. In Appendix E we give a detailed

proof for the determination of the boundary in the (ω̂0, ζ̂0) domain, i.e. under the working

assumption that u = 0 (= cot θu). We find that this boundary is defined by the following

upper and lower curves:

ζ̂0

max
(ω̂0) =

1

3
+

2

27

(
1− 2ω̂0 + 2

√
(1− 2 ω̂0)(1 + 4 ω̂0)

)2

, for ω̂0 ∈ [−1

4
,
1

2
] (3.112)

can show that this is not possible through a non infinitesimal SU(2) rotation. More generally, one cannot

zero more than two entries of X through SU(2)L × SU(2)R rotations.
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ζ̂0

min
(ω̂0) =


1

3
+

2

27

(
1− 2ω̂0 − 2

√
(1− 2 ω̂0)(1 + 4 ω̂0)

)2

, for ω̂0∈ [−1

4
,−1

6
](3.113a)

1

3
, for ω̂0∈ [−1

6
,
1

2
](3.113b)

This reproduces exactly the boundary given in reference [30] as illustrated in Fig. 11 (note

FIG. 11: The boundary in the (ω̂0, ζ̂0) plane delimiting the allowed inner domain, in the limit

u = 0. This agrees with reference [30]

however that we deal with the inverse function with respect to reference [30]). As shown

in Appendix E 0 c the condition sin2 θ+ = 1, i.e. ξ+ = 0, is sufficient and necessary for the

determination of the (ω̂0, ζ̂0) boundary. In particular the necessity of this condition is a

non-trivial result. From Eq. (3.100) one sees that sin2 θ+ = 0 could as well have defined a

boundary. More importantly, the involved dependence on sin2 θ+ in ζ̂0, Eq. (3.102), could

in principle lead to portions of the boundary with sin2 θ+ < 1, since we are interested in the

projection on the (ω̂0, ζ̂0) plane. (This was for instance the case for the (αA, αABH) domain

studied in Sec. III D 4.) Moreover, this is not the end of the story because the boundary

defined by Eqs. (3.112 – 3.113b) is obtained in the case u = 0. It remains to be seen whether

u 6= 0 would possibly enlarge the allowed domain outside this boundary. We turn now to

this point. The idea is to consider a subspace of the field space for which the boundary of

(ω̂0, ζ̂0) is reached and determine within this subspace the boundary of (ω̂, ζ̂) allowing for

u 6= 0. As discussed above, such a subspace has necessarily ξ+ = 0, (sin2 θ+ = 1). The
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bi-triplet of Eq. (3.99) becomes

X =


χ0∗ 0 0

−u ξ0 u

0 0 χ0

 . (3.114)

One then sees from Eqs. (3.101, 3.103) that the 1st order u contributions vanish for any u

in this subspace, indicating that the boundary is indeed unchanged when u 6= 0 at least

if u remains sufficiently small. In fact this result remains true in general beyond the first

order as a consequence of an accidental symmetry: Tr(X†X) and Tr(X†taXta) (summation

over a) are invariant under the substitution χ+ ↔ ξ+∗, (χ+∗ ↔ ξ+), and Tr(X†XX†X) is

invariant under the same substitution supplemented by χ++ ↔ χ++∗. Thus ω̂ and ζ̂ are

invariant under these substitutions, in which case X defined in Eq. (3.114) is replaced by

X̃ =


χ0∗ u 0

0 ξ0 0

0 −u χ0

 . (3.115)

The key point is that the latter X̃ has the same form as X given by Eq. (3.99) with u = 0.

We are then brought back to the same configuration that leads to the fact that the boundary

is reached for ξ+ = 0 and is given by Eqs. (3.112 – 3.113b); applied to the present case where

X is replaced by X̃ implies similarly that the boundary is reached for u = 0 and is given by

the same Eqs. (3.112 – 3.113b). This completes the proof that u 6= 0 in Eq. (3.99) remains

within the boundary obtained for u = 0. Thus the full boundary in the (ω̂, ζ̂) plane is given

by Eqs. (3.112 – 3.113b):

ζ̂0

min
(ω̂) ≤ ζ̂ ≤ ζ̂0

max
(ω̂) (3.116)

In the following we will refer to this domain as the ω-ζ–chips.

IV. PEELING THE POTATOID WITH THE CHIPS

As already announced at the end of Sec. III D 7, the knowledge of the exact domain of

the ω-ζ–chips of the Georgi-Machacek model will have a spin-off on the refinement of the 4D

α-parameters potatoid in the general pre-custodial model. That a model with an enlarged

symmetry would backreact on a less symmetric and more general model is somewhat unusual.
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It can be understood as follows in the case at hand: The SU(2)L×SU(2)R symmetry of the

Georgi-Machacek model has allowed regroup the four α-parameters and the t parameter into

just two relevant parameters ω̂ and ζ̂ that are related to the former as given by Eqs. (3.96,

3.97). However, the equations defining the ω-ζ–chips, Eqs. (3.116, 3.112 – 3.113b), were

arrived at thanks to the gauge and global symmetries, as well as to an accidental invariance

of the quartic part of the Georgi-Machacek potential (see Sec. III F and Appendix E); in

this, Eqs. (3.96, 3.97) played no role. The latter, in conjunction with Eq. (3.116), will thus

lead to a supplementary correlation among the α-parameters and t that should be valid in

the general pre-custodial model. It is in that sense that the Georgi-Machacek model informs

about the more general model. Obviously, this information would have been redundant

had we had beforehand a full knowledge of the exact 4D α-parameters domain. This is

however not the case as pointed out in Sec. III D 7 regarding the α-potatoid. Hence one

can use the above information as a sufficient condition to exclude points in the α-potatoid

as follows: Each set of α-parameters in the α-potatoid defines, through Eqs. (3.96, 3.97),

a unique trajectory (ω̂α(t), ζ̂α(t)) in the (ω̂, ζ̂) plane, parameterized by t ∈ [0,+∞). If

the trajectory goes out of the ω-ζ–chips then the corresponding set of α-parameters values

should be excluded.

We show in Figs. 12 &13 numerical scans taking into account this exclusion criterion.12

The red and blue dots delineate the somewhat convoluted regions of the α-potatoid that are

incompatible with the ω-ζ–chips. As anticipated in Sec. III D 7 and visible from the different

viewing angles in Fig. 12, the excluded portions lie only at the boundary of the α-potatoid.

Note that the domains (shown in pink) in Figs. 12 &13 are 3D sections of the 4D α-potatoid

at fixed values of αA or αAB or αAH respectively; not to be confused with the 3D projections

of the α-potatoid shown on Figs. 7 (a), (b) and (d), with which it would not be possible

to disentangle boundaries unambiguously. Moreover the choices of αA = 1, αAH = 1
2

and

αAH = 0 made in Figs. 12 &13 entail the inclusion, in the corresponding 3D-sections, of

the full 2D domains Eq. (3.47), Fig. 2, and Eqs. (3.51, 3.52), Fig. 3, and Eqs. (3.40, 3.41),

12 In practice this is achieved by scanning over the four α-parameters that satisfy Eq. (3.61) and following

each trajectory (ω̂α(t), ζ̂α(t)) scanning over 0 ≤ u ≤ π
2 with t =

√
2 tanu. Alternatively, one can use the

exact t-resolved form for Eqs. (3.96, 3.97), see Appendix F, and scan only on the α-parameters. We used

this latter alternative to cross-check our results.
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Fig. 1 respectively. These scans will thus allow to judge whether the resolved conditions on

the λ’s given by Fig. 8, or those given by Eq. (3.85) or by Eq. (3.76), in which the pairs

of parameters (αA, αAB), (αA, αAH) and (αAH , αABH) have been eliminated respectively, are

indeed necessary and sufficient or not. The answer will be yes for the first two and no for

the last:

– One sees from Fig. 13 (a) that for αABH & −0.27 there are no exclusions by the ω-

ζ–chips. In particular, the 2D section at αABH = 0 corresponds to the full αA, αAB

domain of Fig. 2 which is thus not reduced by the constraint from the ω-ζ–chips.

In fact this result could be easily retrieved once noted that the αA, αAB domain of

Fig. 2 corresponds indeed to the 2D section of the α-potatoid Eq. (3.61) at αAH =

1
2
, αABH = 0. For these values imply ω = 0, cf. Eq. (3.96); and as seen from Fig. 11,

all points (ω = 0, ζ) remain within the ω-ζ–chips ∀ζ ∈ [1
3
, 1]. If follows that the study

in Sec. III E 1 that lead to the NAS conditions given by Fig. 8 remains valid, at least

for the αAH = 1
2
, αABH = 0 section. Moroever, since the domain of Fig. 2 is not only

a projection but corresponds as well to the latter section of the α-potatoid, then the

above mentioned NAS conditions are sufficient conditions for all other sections at fixed

αAH , αABH since by construction they all fall in the interior of the αA, αAB domain

of Fig. 2. Obviously this holds even if these sections have portions excluded by the

ω-ζ–chips, e.g. when αABH < −0.27 as seen from Fig. 13 (a), since sufficiency is more

constraining. We can thus safely conclude that the conditions given by Fig. 8 are NAS

for the validity of Eq. (3.32) in all the α-potatoid.

– Along a similar line of thought, one deduces from Fig. 13 (b), where there are no

exclusions by the ω-ζ–chips as soon as αABH & −0.06, and from the fact that the

projected domain shown in Fig. 1 is also retrieved as a 2D section at αAB = αABH = 0,

that the conditions given by Eq. (3.85) remain NAS for the validity of Eq. (3.80) in

all the α-potatoid.

– The case of Eq. (3.76) is more involved. This condition resulted from eliminating

(αAH , αABH) based on the full domain of Fig. 3. However, as seen from Fig. 12 (b), a

portion of this domain in the −
√

2 ≤ αABH ≤ 0 range is excluded by the ω-ζ–chips

constraint. Equation (3.76) becomes thus only sufficient for the domain of Fig. 3

that corresponds furthermore to the 2D section at αA = 1, αAB = 0 on Figs. 12 (a)–
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(d). It is thus also only sufficient for the full α-potatoid, again because the domain

of Fig. 3 is the largest section. Note that one can do better by resolving the NAS

conditions for this largest section, taking into account the actual ω-ζ–chips constraint

which is simply defined by a straight line joining the points (αAH = 0, αAHB = 0)

and (αAH = 1, αAHB = −
√

2), see Fig. 12 (b). The resulting truncated domain will

however cease to be the largest section so that the obtained conditions are now only

necessary for an extended fraction of the α-potatoid. As seen from Fig. 12 (d), the

maximal section taking into account the ω-ζ–chips constraint does exist somewhere

inside the 3D domain but would be difficult to determine analytically.

We end this section by a comment concerning αABH : as argued at the end of section

III C 2 the sign of αABH is not expected to be correlated with the three other α’s. If a

given point (αA, αAB, αAH , αABH) lies in the true 4D α-parameters domain, i.e. not just

in the α-potatoid, then the point (αA, αAB, αAH ,−αABH) lies also in this domain. This is

best seen from Eq. (3.49) which is the only one that depends on the B field (in the chosen

gauge), and only through an arbitrary global sign. However, Eqs. (3.96) are not symmetrical

under αABH → −αABH , and as discussed above and shown in Figs 12 & 13 the ω-ζ–chips

peels the α-potatoid asymmetrically with respect to αABH . This is not a contradiction

because the ω-ζ–chips constraint is only sufficient but not necessary to exclude points. But

given the general symmetry with respect to the sign flip of αABH , it follows that for any

domain excluded by the ω-ζ–chips one should also exclude the domain corresponding to the

replacement αABH → −αABH .

V. PUTTING EVERYTHING TOGETHER: A USER’S GUIDE

It is time to recapitulate the various results we arrived at and then provide a roadmap

for an optimal exploitation:

� While studying the general pre-custodial potential we were lead automatically in sec-

tions III C 1 and III E 1 to constraints that involved only the A and B multiplets for

which we provided the fully resolved NAS BFB conditions in analytical form, see

Fig. 8 and Eqs. (3.67 - 3.71). As such they thus correspond to the NAS conditions

for a reduced model having only two triplets. Nonetheless, they do provide robust
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FIG. 12: The (αAB, αAH , αABH) 3D-section of the 4D α-potatoid at αA = 1, viewed from

four different angles. The red and blue dots denote the regions excluded by the ω-ζ–chips.

See text for further discussions.

necessary BFB conditions for the full pre-custodial potential since they correspond to

the potential in the H = 0 field direction.

� In sections III C 2 and III E 2 we addressed the parts of the constraints that involve

simultaneously the three sectors H,A and B. The sign of λBH turned out to be

critical, but again the BFB conditions that we obtained in a fully resolved analytical

form correspond to field sub-sectors, namely H,B or H,A, cf. Eqs. (3.84, 3.85), and

are thus necessary for the full model. It is noteworthy that Eq. (3.85) reproduces

Eqs. (2.14 – 2.17) of the Type-II seesaw model13, that we had arrived at following a

13 with the correspondence ∆ = A, λ = λH , λ2 = λ
(1)
A /4, λ3 = λ

(2)
A /4, λ1 = λ

(1)
AH and λ4 = λ

(2)
AH ,
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FIG. 13: Two 3D-sections of the 4D α-potatoid: (a) (αA, αAB, αABH) at αAH = 1
2
;

(b) (αA, αAH , αABH) at αAB = 0. The red and blue dots denote the regions excluded by

the ω-ζ–chips. See text for further discussions.

different path in section II A, a significant cross-check. Moreover, from the flowchart

of Fig. 10 and the properties of B(a,b)
9 one finds that the constraint Eq. (3.84) should

be applied whenever λBH < 0, thus retrieving the fully resolved NAS BFB conditions

for the SM extended by one real SU(2) triplet.

� We give in Table I a roadmap for a user’s implementation of the constraints following

two alternative roads each made of two steps. Step 1O is common and corresponds to

the fully resolved necessary constraints that are also NAS if restricted to the A,B or

H,A sectors. Note that these constraints are already stricter than the ones given in [31]

under the assumption of two nonvanishing complex fields at once or the ones extended

to the “custodial” direction in [32], as they are NAS in all directions within A,B or

H,A. Also specifying to the Georgi-Machacek case we do retrieve the conditions found

in [30]. Steps 2O and 2’O are two technically different but theoretically equivalent

ways to complete the NAS conditions. Note first that in both cases branches aO

and bO approximate Eq.(3.76) as being necessary for the positivity of b0 (on top

of it being sufficient). Despite the issue discussed in Sec. IV, this approximation is

valid for all practical purposes, which we checked numerically by scanning over several

tens of thousands of points in the α-parameters space and verified that Eqs. (3.75)
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and (3.76) delineated indeed the same (λ
(1,2)
AH , λABH)-space regions.14. Then the aO

branches with λBH ≥ 0 are complete and provide fully resolved NAS BFB conditions.

When λBH < 0, both aO and bO lead to the same fully resolved extra constraint

involving the B,H sector, plus different sets of partially resolved constraints: In step

2O as well as in step 2’O- aO with λBH < 0, the latter constraints are resolved only

with respect to the T and t parameters but still need a scan over the α-parameters

(including optionally the refinements of Sec. IV). In contrast, 2’O- bO is resolved only

with respect to T and a supplementary scan is still required on t. Note also the

different Boolean meanings in the last columns of 2O- bO and 2’O- bO. In the former

one needs to find at least one set of values (u, v, c) satisfying a set of inequalities while

the latter requires all values of t to satisfy one inequality.

We give in Fig. 14 an illustration of allowed λ domains following road 1O- 2’O. A typical

expectation is that the constraints are more stringent for negative values of the couplings

associated with the positive definite operators that are present in the potential. This is

indeed seen in Figs. 14 (a), (c) and (d). In contrast Fig. 14 (b) shows that λABH can be

in equally sized negative or positive regions since this coupling corresponds to the only

operators that is not positive definite (cf. Eq. 3.29).

Let us close this section with some general comments on issues related to the subject of

the present paper but lying beyond its scope:

perturbative unitarity constraints. They typically bind the absolute magnitudes of the λ

couplings and some of their combinations from above. These constraints should eventually

be studied for the general pre-custodial model (see however [32]) and be combined with

the NAS BFB conditions derived in this paper. Here we just note an interesting tension

that might arise from such a combination, due to the form of conditions B3,B5,B7. The

relatively large numerical factors appearing in these inequalities, see Eqs. (3.67, 3.69, 3.71),

can easily force |λ(i=1,2)
A | or λB to be (much) larger than one even for |λ(i=1,2)

AB |, |λH | . 1.

14 This should not come as a surprise since the further refinement discussed in Sec. IV concerns only boundaries

of the α-potatoid that would require much finer scans as shown in Figs. 12, 13
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1O

Eqs.(3.67-3.71), Fig.8 4 Eqs.(2.14-2.17)13 4

2O

aO
Eq.(3.76) 4

λBH ≥ 0

λBH < 0 Eq.(3.84) 4 Eqs.(3.82, G30b-G30d) 4, with Eqs.(3.78, 3.79)

and ∀α-params, ω, ζ Eqs.(3.61, 3.116, F1)

bO
Eq.(3.76) 7

λBH ≥ 0 — 4a0c0 − b20 Eqs.(3.24,3.38,3.88) → ai, (H13) 4

λBH < 0 Eq.(3.84) 4 4a0c0 − b20 Eqs.(3.24,3.38,3.86) → ai, (H13) 4

and ∀α-params, ω, ζ Eqs.(3.61, 3.116, F1)

2’O

aO
Eq.(3.76) 4

λBH ≥ 0

λBH < 0 Eq.(3.84) 4 same as in 2O

bO
Eq.(3.76) 7

λBH ≥ 0 — b0 + 2
√
a0c0 > 0 Eq.(3.30) 4

λBH < 0 Eq.(3.84) 4 ∀t ∈ [0,+∞), α-params, ω, ζ Eqs.(3.61, 3.116, F1)

TABLE I: A roadmap for the complete NAS-BFB conditions for the pre-custodial model.

Check/Cross marks following an equation number indicate that the equation should be

satisfied/violated. See text for a detailed description.

At least one among the conditions B3,B5 and B7 is active in cases (ii), (iii) or (iv) of the

flowchart of Fig. 8. We illustrate a few such configurations on Fig. 15. The domains shown

in the figure are necessary but not sufficient; they can be reduced further when adding the

rest of the NAS BFB conditions. Note that such a potential tension disappears in the limit

of decoupling between the two triples (λ
(i=1,2)
AB → 0) in accordance with the unitarity/BFB

conditions found in [28].

quantum corrections. They affect the tree-level constraints in various ways: –they modify

the form of the constraints, introduce a notion of scale at which they should be satisfied and

criteria for the validity of perturbativity, as treated for instance in [49], [32, 50] –however,

it is not often appreciated that combining perturbative-unitarity and stability requirements

beyond the tree-level needs some further care because the physical meaning of the running

couplings becomes different in these two classes of constraints. Since unitarity is related to

scattering processes the proper objects are the Green’s functions. The scale appearing in

the running couplings (and masses) of the renormalization group improved Green’s functions

encodes the way the scattering amplitudes scale with energy. In contrast, stability issues
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FIG. 14: Necessary and sufficient 3D λ-domains that ensure BFB of the pre-custodial

potential Eq. (3.4) illustrationed for fixed λB = λH = λ
(2)
A = λ

(1)
AB = λ

(2)
AB = 1, (a) the

(λ
(1)
A , λ

(1)
AH , λ

(2)
AH) domain with λBH = − 1

10
, λABH = 1; (b) the (λ

(1)
AH , λ

(2)
AH , λABH) domain

with λBH = − 1
10

, λ
(1)
A = 1; (c) the (λ

(1)
AH , λ

(2)
AH , λBH) domain with λ

(1)
A = λABH = 1; (d) the

(λ
(1)
A , λ

(1)
AH , λBH) domain with λ

(2)
A = λABH = 1.

are expressed in terms of the renormalization group improved effective potential where now

the scale on which depend the running couplings, masses, and fields, is in fact a combi-

nation of the fields themselves and encode the modification of the shape of the potential
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FIG. 15: Trend of the (λ
(1)
A , λ

(2)
A ) necessary domains in yellow, as dictated by the necessary

BFB conditions of Fig. 8 & Eqs (3.67 –3.71). The allowed domain lies to the right of each

line, illustrated for: λB = 1, λH = 1
2

and (a) λ
(1)
AB = −1

5
, λ

(2)
AB = 1

2
, (b) λ

(1)
AB = 1

5
, λ

(2)
AB = −1

2
,

(c) λ
(1)
AB = −1

5
, λ

(2)
AB = − 3

10
, and (d) λB = 1

2
, λH = 1

2
, λ

(1)
AB = −1

5
, λ

(2)
AB = − 3

10
.

(see for instance [51, 52]15). It thus appears that, in so far as replacing the tree-level cou-

plings by their runnings in the tree-level conditions is a good approximation, the potential

stability conditions need not be required at all ’scales’, from the electroweak scale all the

way up to some very high cut-off Λ (e.g. MGUT or MPlanck) as often done in the literature

[17, 29, 31], but only at that scale Λ which represents the largest value of the fields. Barring

Landau poles, there is indeed no physical reason to require the improved quartic part of

the potential to remain positive for intermediate values of the fields. (Obviously this is at

variance with the unitarity constraints that should be satisfied already at the energy scale

of a given scattering experiment.) Furthermore, a longstanding issue is how to improve the

effective potential in the presence of several scalar fields (see [53] for a recent reappraisal,

and references therein). As concerns the NAS BFB conditions of Table I, they can be used

beyond the tree-level in two different ways: i) The quartic part, V
(4)

p-c , Eq. (3.4), of the

pre-custodial potential has the same form as the general counterterms needed to renormal-

ize the Georgi-Machacek model accounting for a deviation from the tree-level correlations

15 where it was also stressed that even an additive constant becomes field dependent beyond tree-level.
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Eq. (3.12) due to the custodial symmetry breaking loop effect of the U(1)Y gauge couplings

[43], [31]. One is thus guaranteed that the ten λ couplings of V
(4)

p-c will absorb the one-loop

corrections of the Georgi-Machacek effective potential up to field dependent factors of the

form log(M(φi)
2/Q2)− c, whereM is typically a binomial function of the fields, Q is some

renormalization scale and c a renormalization scheme dependent constant. It follows that

satisfying the conditions of Table I on the λ’s that absorb the one-loop induced quartic

couplings, will also guarantee the stability of the full one-loop Georgi-Machacek effective

potential at large field values with M(φi)
2 � Q2. ii) Table I can also obviously be used

as a seed for the loop corrected stability conditions of the pre-custodial model itself, rely-

ing on whatever renormalization group improvement approaches quoted above. The main

difference with i) will reside essentially in the renormalization conditions not enforcing the

custodial symmetry of the potential at a given scale.

VI. CONCLUSION

We carried out in this paper a comprehensive study of tree-level necessary and sufficient

conditions for a bounded from below potential in extensions of the SM with one or two

SU(2)L triplet scalar fields. We derived for the first time the complete set of such conditions

in the case of the general pre-custodial model having one complex and one real triplets. A

fully resolved analytical form involving only the couplings was obtained for parts of these

conditions. This could be achieved thanks to a parameterization of the 13-dimensional field

space reducing the degrees of freedom to a small set of relevant gauge invariant variables.

We determined precisely the compact domains in which most of these variables live, thus

allowing a well defined procedure for the other parts of the conditions that remained in

a partially resolved form. It would be interesting to see how the more general methods

quoted in the introduction would perform in the presence of triplets. In particular the fully

resolved form we found in the purely two triplets sector may lend itself to a generalization to

multiple fields. In the course of the study we were lead to review some of the known results

for the type-II seesaw and Georgi-Machacek models providing complete proofs that were

missing in the literature for key properties. The latter were important to settle on a firm

basis in relation with an unexpected feedback of the Georgi-Machacek reduced variables on

those of the pre-custodial model. Furthermore, we demonstrated the existence of simplified
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criteria for the positivity of a general quartic polynomial that can be used for any model

with a renormalizable potential. The pre-custodial BFB conditions on the couplings have to

be fulfilled for any consistent tree-level phenomenological analysis of the model. They find

also their motivation as a pattern for the one-loop BFB conditions in the Georgi-Machacek

model.
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APPENDIX A: PROOF OF THE PROPERTIES OF ξ AND ζ

In the following we give the proof of Eq. (2.10), then establish Eq. (2.11) and the ensuing

correlations.

a. 0 ≤ ξ ≤ 1

First we note that ∆ being traceless implies the identity

∆∆† + ∆†∆ = 1× Tr∆∆†, (A1)

(see also Eq. (C2)), from which follows immediatly

H†∆∆†H +H†∆†∆H = H†HTr∆∆† . (A2)

Since H†∆†∆H is positive definite one then has

H†HTr∆∆† −H†∆∆†H ≥ 0 (A3)

and thus

ξ ≡ H†∆∆†H

H†HTr∆∆†
≤ 1 (A4)

Furthermore ξ is trivially greater than zero since it is the ratio of two positive definite

quantities. Finally the two values 0 and 1 are effectively reached respectively when H†∆ = 0

and ∆H = 0, which is always possible for some given configurations of the H and ∆ field

components provided that Det∆ = 0 when H 6= 0. Thus

0 ≤ ξ ≤ 1 . (A5)
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b. 1
2 ≤ ζ ≤ 1

∆∆† being a 2× 2 matrix one has

1

2
(Tr∆∆†)2 − 1

2
Tr(∆∆†)2 = Det∆∆† (A6)

Then, using Det∆∆† ≡ |Det∆|2 ≥ 0 implies straightforwardly from Eq. (A6) that

ζ ≡ Tr(∆∆†)2

(Tr∆∆†)2
≤ 1 (A7)

Note that the value 1 is indeed reached when ∆∆† has one zero and one non-zero eigenvalues,

which is always possible to find for some configurations of the ∆ field components.

Also, we trivially have ζ ≥ 0 since it is the ratio of two positive definite quantities. How-

ever, the value 0 cannot be trivially reached, since if the numerator of ζ vanishes then the

denominator should vanish as well! In fact ζ cannot go below 1/2. To see this we rewrite ζ

in terms of M2
1 ,M

2
2 the two (real and positive) eigenvalues of ∆∆†,

ζ =
M4

1 +M4
2

(M2
1 +M2

2 )2
(A8)

It is now easy to study the function ζ(x) = (1+x2)/(1+x)2 where x ≡M2
1/M

2
2 ≥ 0, to show

that it has a minimum of ζ = 1/2 at x = 1, that is when ∆∆† has degenerate eigenvalues.

One also retrieves the fact that ζ(x) ≤ 1 and reaches 1 for x→ 0 or x→∞. Thus

1

2
≤ ζ ≤ 1 . (A9)

c. Correlation between ξ and ζ

Since from Eqs. (2.6, 2.7) ζ depends solely on ∆ while ξ depends on both H and ∆, one

could be tempted to assume that ζ and ξ can reach independently their extrema given by

Eqs. (A5, A9), by varying independently H and ∆. This is however not true as one can see

easily from the fact that ξ reaches its two extrema under the generic condition Det∆ = 0

as discussed above Eq. (A5). But then Det∆ = 0 together with Eq. (A6) imply necessarily

ζ = 1 so that ζ = 1
2

can never be reached when ξ takes its extremal values 0 or 1.

We use now the invariance under the general gauge transformation H → U(x)H, ∆ →

U(x)∆U †(x), where U(x) denotes any element of SU(2)L×U(1)Y , of the potential Eq. (2.1)

and of the parameters defined in Eqs. (3.19 - 2.7). Since U(x) is unitary and ∆∆† hermitian,
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we can always find, for any given field configuration ∆, a gauge transformation U∆(x) that

diagonalizes ∆∆†. Then ζ takes the form given in Eq.(A8) and ξ reads

ξ =
(M2

2 |φ̃0|2 +M2
1 |φ̃+|2)

(M2
1 +M2

2 )(|φ̃0|2 + |φ̃+|2)
(A10)

where the tilde denotes the components of the transformed doublet H̃ = U∆(x)H. It is then

natural to define

c2
∆
≡ M2

1

M2
1 +M2

2

, s2
∆
≡ 1− c2

∆
(A11)

c2
H
≡ |φ̃+|2

|φ̃0|2 + |φ̃+|2
, s2

H
≡ 1− c2

H
. (A12)

with their obvious range of variation c2
∆, c

2
H
∈ [0, 1]. Equations (2.12, 2.13) follow then

straightforwardly from Eqs. (A8, A10 - A12):

ξ = c2
∆
c2
H

+ s2
∆
s2
H

=
1

2
(1 + c

2H
c

2∆
), (A13)

ζ = c4
∆

+ s4
∆

=
1

2
(1 + c2

2∆
), (A14)

where we have defined c
2H

= c2
H
− s2

H
, c

2∆
= c2

H
− s2

H
. It is crucial that these cosines vary

independently from each other in their allowed domains c
2H
∈ [−1, 1], c

2∆
∈ [−1, 1]. That

they indeed scan independently all their allowed domain is obvious from the definitions

Eqs. (A11, A12) and the fact that U∆(x) is invertible: Indeed one can always choose the

magnitudes of M2
1 ,M

2
2 , |φ̃0|, |φ̃+| to reach any value of c2

H
, c2

∆
∈ [0, 1]; this will correspond

to the domain of all field configurations obtained by gauge transforming H̃ ≡ (φ̃+, φ̃0)T and

∆̃ ≡ diag(eiθ1M1, e
iθ2M2) with an arbitrary U ≡ U−1

∆ .

Eliminating c2
2∆

in Eqs. (A13, A14) one finds

2ξ2 − 2ξ + 1 +
(c2

2H
− 1)

2
= c2

2H
ζ . (A15)

This allows to determine the lower envelope in the ξ, ζ plane, i.e. when saturating the

inequality in Eq. (2.11) as discussed in [29]. We will however rely directly on Eqs. (A13,

A14) when determining the BFB conditions in the next section.

.
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APPENDIX B: THE BFB CONDITIONS FOR THE TYPE-II SEESAW MODEL

a. The new necessary and sufficient BFB conditions

We give here a detailed proof of the NAS-BFB conditions Eqs. (2.14, 2.17). The condition

λ2 + ζλ3 ≥ 0 of Eq. (2.9) depends only on ζ so that the correlations given by Eqs. (A13,

A14) are not relevant here. It is thus equivalent to replacing ζ by its two extreme values

due to the monotonic dependence on ζ. Thus the first two condition of Eq. (2.9) become

λ > 0 ∧ λ2 + λ3 ≥ 0 ∧ λ2 +
λ3

2
≥ 0 (B1)

as was initially found in [28]. As for λ1 + ξλ4 +
√
λ(λ2 + ζλ3) > 0 of Eq. (2.9), we first

rewrite it in terms of c
2H

and c
2∆

according to Eqs. (A13, A14), as

F (c
2∆
, c

2H
) > 0, ∀c

2∆
, c

2H
∈ [−1, 1] , (B2)

where we defined

F (c
2∆
, c

2H
) ≡ λ1 + (1 + c

2H
c

2∆
)
λ4

2
+

√
λ
(
λ2 + (1 + c2

2∆
)
λ3

2

)
. (B3)

However, since c
2H

and c
2∆

are mutually independent, the monotonic dependence on c
2H

in F (c
2∆
, c

2H
) allows again to replace the above positivity condition equivalently by two

positivity conditions corresponding to the two extreme values c
2H

= ±1. We will thus

replace once and for all the condition λ1 + ξλ4 +
√
λ(λ2 + ζλ3) > 0 by

F (c
2∆
,+) > 0 and F (c

2∆
,−) > 0, ∀c

2∆
∈ [−1, 1] , (B4)

where we use the shorthand notation F (c
2∆
,±) ≡ F (c

2∆
,±1).

At this point a careful study is needed, as the dependence on c
2∆

is not trivially monotonic

so that a priori one does not necessarily have,

Eq. (B4)⇔
{
F (+1,±) > 0 ∧ F (−1,±) > 0

}
. (B5)

It is nonetheless noteworthy that this equivalence does hold in half of the parameter space

region where λ3 < 0 despite the non-monotonicity of F in c
2∆

, as we will see in a moment.
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Irrespective of the sign of λ3 the first and second derivatives of F read,

F ′(c
2∆
,±) =

1

2

( c
2∆
λλ3√

λ(λ2 + 1
2
(1 + c2

2∆
)λ3)

± λ4

)
(B6)

F ′′(c
2∆
,±) =

λ3(2λ2 + λ3)

(2λ2 + λ3(1 + c2
2∆

))3/2
(B7)

In the sequel we will assume without further reference the conditions given in Eq. (B1). It

then immediately follows from Eq. (B7) that F ′′ < 0, ∀c
2∆
∈ [−1, 1], whenever λ3 < 0. This

implies that if F admits an extremum it will be necessarily a maximum so that Eq. (B5) is

valid, since in this case the value of F at one of the two boundaries of [−1, 1] is necessarily

the smallest value it can take. On the other hand, if F does not admit an extremum then

Eq. (B5) is obviously valid as well, and one retrieves Eqs. (B15, B16).

We thus conclude that the BFB conditions Eqs. (B15, B16) initially found in [28] are

necessary and sufficient, and thus complete, when λ3 < 0.

The situation is quite different when λ3 > 0. In this case F ′′ is non-negative over the full

domain [−1, 1]. Thus if F (c
2∆
,±) admit extrema in the domain, they will be necessarily

minima. On the other hand, F ′(c
2∆
,+) and F ′(c

2∆
,−) cannot vanish simultaneously (except

in the special cases where λ4 = 0 or 2λ2 + λ3 = 0), but rather at two opposite values of c
2∆

,

as can be seen from Eq. (B6). This occurs for

c(±)
2∆

= ±|λ4|

√
(2λ2 + λ3)

λ3(2λλ3 − λ2
4)

(B8)

with the consistency condition 0 ≤ (c(±)
2∆

)2 ≤ 1. The latter condition reads

2λλ3 − λ2
4 > 0 ∧ λ2

4(2λ2 + λ3) ≤ λ3(2λλ3 − λ2
4) . (B9)

Note that the second of these two inequalities always implies the first due to the case

assumption λ3 > 0 and the validity of Eq. (B1). Moreover this second inequality can be

rewritten equivalently as
√
λλ3 ≥

√
(λ2 + λ3)λ2

4 (B10)

where we again relied on the case assumption λ3 > 0. Thus Eq. (B10) is necessary and

sufficient for the existence of minima within the domain [−1, 1]. In this case one of the two

functions F (c
2∆
,+), F (c

2∆
,−) will have a minimum at c(+)

2∆
and the other at c(−)

2∆
. Moreover,

the values of the two F functions at these minima turn out to be the same, given by,

Fmin = λ1 +
λ4

2
+

√
λ(λ2 +

λ3

2
)
(
1− λ2

4

2λλ3

)
. (B11)
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[To determine Fmin some care should be taken by considering the sign of λ4 and noting

that the ± in Eq. (B8) refer neither to the sign of λ4 nor to the two functions F .] In fact

the uniqueness of Fmin is a direct consequence of the symmetry property F (c
2∆
,−c

2H
) =

F (−c
2∆
, c

2H
), cf. Eq. (B3). This symmetry is also responsible for the fact that c(+)

2∆
and c(−)

2∆

are the opposite of each other so that when Eq. (B10) is satisfied they both remain in the

domain [−1, 1].

It follows that even though the two functions F (c
2∆
,+) and F (c

2∆
,−) do not reach their

minimum for the same value of c
2∆

, requiring

Fmin > 0 (B12)

when Eq. (B10) is satisfied, will be equivalent to Eq. (B4). Note in particular that Eq. (B12)

should imply F (±1,±) > 0 and F (∓1,±) > 0, that is,

λ1+
λ4

2
+

√
λ(λ2 +

λ3

2
)
(
1− λ2

4

2λλ3

)
> 0⇒ λ1+

√
λ(λ2 + λ3) > 0 ∧ λ1+λ4+

√
λ(λ2 + λ3) > 0

(B13)

which is indeed the case.16 Finally, when Eq. (B10) is not satisfied, but still λ3 > 0, then

either c(±)
2∆

are not real-valued or they lie outside of the [−1, 1] domain. In both cases the

two functions F (c
2∆
,±) are monotonic on [−1, 1] and Eq. (B5) applies, which is similar to

the previously discussed case of λ3 < 0. Putting everything together one can summarize the

conditions that are equivalent to λ1 + ξλ4 +
√
λ(λ2 + ζλ3) > 0 (or Eq. (B4)), as follows:

� if
√
λλ3 <

√
(λ2 + λ3)λ2

4 then F (±1,±) > 0 and F (∓1,±) > 0.

� if
√
λλ3 ≥

√
(λ2 + λ3)λ2

4 then Fmin > 0.

Adding Eq. (B1) to these conditions, we obtain the Boolean form of the necessary and

sufficient BFB conditions as given by Eqs. (2.14, 2.17).

16 This is due to the inequality
√
λ(λ2 + λ3)−

√
λ(λ2 +

λ3
2

)
(
1− λ24

2λλ3

)
> ±λ4

2
being valid whenever λ3 > 0

and Eq. (B1) valid and thus consistently also 2λλ3 − λ24 > 0.
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b. The old conditions

We recall here for further reference the sufficient and almost necessary BFB conditions

[28]:

λ > 0 ∧ λ2 + λ3 > 0 ∧ λ2 +
λ3

2
> 0 (B14)

∧ λ1 +
√
λ(λ2 + λ3) > 0 ∧ λ1 +

√
λ(λ2 +

λ3

2
) > 0 (B15)

∧ λ1 + λ4 +
√
λ(λ2 + λ3) > 0 ∧ λ1 + λ4 +

√
λ(λ2 +

λ3

2
) > 0 (B16)

APPENDIX C: THE PRE-CUSTODIAL POTENTIAL

We give hereafter some elements that can help define a systematic procedure to construct

the pre-custodial potential Eqs. (3.3, 3.4) from a minimal set of independent operators. They

can be useful as well for the construction of extended models with several SU(2) triplet and

singlet fields.

Note first the following two general identities, valid for any 2× 2 matrices M and N :

M + σ2M>σ2 = 1TrM, (C1)

MN +NM = 1(TrMN − TrM TrN) +MTrN +NTrM. (C2)

The fundamental representation of SU(2) is pseudo-real. In particular, any of its elements

U satisfies

σ2Uσ2 = U∗, (C3)

where σ2 denotes the second Pauli matrix. From this and Eq. (3.5) it follows that

σ2H∗ ∼ H, (C4)

H>σ2 ∼ H†, (C5)

σ2A>σ2 ∼ σ2A∗σ2 ∼ A ∼ A†, (C6)

σ2B>σ2 ∼ B, (C7)

where the symbol ∼ stands for ”...transforms like... under SU(2)”. To systematize further

the discussion it is useful to define the 2× 2 matrices

H0 = HH†, (C8)

H2 = HH>σ2 (C9)
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H0 is hermitian and transforms like B under SU(2)L×U(1)Y but has a non-vanishing trace,

while H2 is traceless and transforms like A under SU(2)L × U(1)Y . From the tracelessness

of H2, A and B, Eq. (C1) implies

σ2H>2 σ2 = −H2, σ
2H∗2σ2 = −H†2, σ2A>σ2 = −A, σ2A∗σ2 = −A†, σ2B>σ2 = −B, (C10)

thus trivializing Eqs. (C6, C7).

Similarly, Eq. (C2) leads to,

(H2)2 =
1

2
1Tr(H2)2, A2 =

1

2
1TrA2, B2 =

1

2
1TrB2. (C11)

For the sake of conciseness we do not write here other useful relations resulting from Eqs. (C1,

C2), involving H0 or products involving A,B (generalizing Eq. (A1)). We have now all the

ingredients to show that the SU(2)L × U(1)Y invariant operators in Eqs. (3.3, 3.4) form a

complete and independent set: Any such operator is necessarily either in the form of a trace

of a 2 × 2 matrix operator that is neutral under U(1)Y and constructed from a product

of fields that transform similarly under SU(2)L, or in the form of a product of such traces

that are separately either neutral or charged under U(1)Y . (Recall that the other invariant

quantity, the determinant, is always expressible in terms of traces). We sketch hereafter the

main steps with some examples.

dim-2: the list of all U(1)Y neutral operators is H0, B
2, AA†, A†A; recall that TrH0 = H†H.

dim-3: the exhaustive list of representative U(1)Y neutral operators is B3,H0B,H2A
†, AA†B.

Only the first one drops out after tracing, since TrB3 = 0 as an immediate consequence

of Eq. (C11) and TrB = 0. All other neutral dim-3 operators obtained from the above

list by arbitrary permutations of the fields or by substituting a field by its transpose

or complex conjugate are, upon tracing, related to this list. This is obtained by

successive use of Eqs. (C10, C11) and the like. E.g. TrAA†B∗ is forbidden since B∗

does not transform like A, while TrA∗A>B∗ is allowed but redundant: TrA∗A>B∗ =

(TrAA†B)∗ = −(TrA†AB)∗ = −TrA>A∗B∗ = +TrA>A∗σ2Bσ2 = +TrAA†B, where

we used Eq. (C2) and the tracelessness of A,B for the second equality, and Eq. (C10)

for the last two equalities.

dim-4: the exhaustive list of representative U(1)Y neutral operators is

H0H0,H2H†2,H0B
2,H0AA

†,H2A
†B,B4, ABA†B,AA†AA†. Note that products of
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two dim-2 traced operators should also be added. Thus a systematic strategy would

be to reduce in the above list the traces of the product of four matrices to products

of two traces, whenever possible. This is done using the same tricks as illustrated for

dim-3. E.g., TrB4 = Tr(1
2
1TrB2)B2 = 1

2
(TrB2)2 as a consequence of Eq. (C11), or

TrABA†B = −TrAA†B2 +TrA(TrA†B)B = −1
2
(TrAA†)(TrB2)+(TrAB)(TrA†B).

Note that TrAA†AA† can be transformed similarly but we chose not to do so in

Eq. (3.4) so as to keep close to the notations in the literature. Finally, it is immediate

from the list above, that there exists only one operator containing σ2 up to complex

conjugation, TrH2A
†B.

APPENDIX D: PROOFS OF PROPERTIES OF THE α-PARAMETERS

a. αAB ∈ [0, 1]

Thanks to gauge invariance and to the fact that B is self-adjoint one can always find, for

each given value of αAB, an SU(2)L transformation UL that diagonalizes B leading to

αAB ≡
TrÃBd TrÃ

†Bd

TrÃ†Ã Tr(B2
d)

(D1)

where

Ã = ULAU †L and Bd = ULBU †L ≡ bd

 1 0

0 −1

 . (D2)

Then all dependence on B drops out from αAB, and one is then left with

αAB =
|ã+|2

|ã0|2 + |ã+|2 + |ã++|2
, (D3)

from which Eq. (3.28) follows immediately when Ã scans all its field space values. It is to

be stressed that appealing to gauge invariance is essential for the proof; indeed, without

gauge invariance, one would still be at liberty to choose the B-field space direction such as

b+ = 0, leading through Eq. (D3) to the same result, however this would be no proof that

αAB remains in the [0, 1] domain in other field directions. This is similar to the reason why

we believe the determination of the BFB conditions in [30] for the Georgi-Machacek model

lacks a complete proof, a version of which we give in Sec. III F.
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b. αABH ∈ [−
√

2,+
√

2]

Again, in the gauge where the real field B = Bd (and denoting the components of the

gauge transformed H and A fields with a tilde), αABH defined in Eq. (3.22) takes the form:

αABH =
√

2 sgn(b)
Re(ã++(φ̃+∗)2 − ã0(φ̃0∗)2)√

|ã0|2 + |ã+|2 + |ã++|2(|φ̃0|2 + |φ̃+|2)
. (D4)

Using the fact that −|z| ≤ Re(z) ≤ |z| for any complex number z, one immediately finds

− |ã++||φ̃+|2 + |ã0||φ̃0|2√
|ã0|2 + |ã+|2 + |ã++|2(|φ̃0|2 + |φ̃+|2)

≤ αABH√
2
≤ |ã++||φ̃+|2 + |ã0||φ̃0|2√

|ã0|2 + |ã+|2 + |ã++|2(|φ̃0|2 + |φ̃+|2)
,

(D5)

where the upper (lower) bound is effectively reached in the field directions where

arg(ã++(φ̃+∗)2) = 0(π), arg(ã0(φ̃0∗)2) = π(0). Moreover, since
√
|ã0|2 + |ã+|2 + |ã++|2 ≥√

|ã0|2 + |ã++|2, αABH scans a larger domain in the direction ã+ = 0, namely

−
√

2
|ã++||φ̃+|2 + |ã0||φ̃0|2√
|ã0|2 + |ã++|2(|φ̃0|2 + |φ̃+|2)

≤ αABH ≤
√

2
|ã++||φ̃+|2 + |ã0||φ̃0|2√
|ã0|2 + |ã++|2(|φ̃0|2 + |φ̃+|2)

. (D6)

Defining x = |φ̃+|/|φ̃0| and y = |ã++|/|ã0|, the above domain is rewritten as

− f(x, y) ≤ αABH ≤ +f(x, y), (D7)

with

f(x, y) =
√

2
1 + yx2

(1 + x2)
√

(1 + y2)
. (D8)

Noting that f(x, y) = f(1/x, 1/y), a straightforward study of the function f(x, y) in the

domain x, y ∈ [0,+∞) shows that it possesses a saddle point at x = y = 1 and reaches

a global maximum at x = y = 0 and at x = y → +∞ given by f(0, 0) = fmax =
√

2,

whence Eq. (3.29). Incidentally, we note that the ill-defined point H = 0, A = 0 in αABH is

automatically accounted for through the behavior of f .

c. Boundary of the (αAH , αABH) domain

To prove that Eq. (3.52) gives the lower boundary we show hereafter that

δ ≡ α2
ABH − 2αAH is either negative or vanishing. This combination is of the form

δ(x) = −1 + ax2 + bx
√

1− x2, (D9)
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with x ≡ sin θ and a, b easily read from Eqs. (3.49, 3.48),

a = − cos 2ϕ cos 2ψ + 2(c1 cosϕ cos2 ψ − c2 sinϕ sin2 ψ)2, (D10)

b = −
√

2 (c3 cosϕ+ c4 sinϕ) sin 2ψ, (D11)

and ci ≡ cos θi. The study of the δ(x) function shows that it reaches only one stationary

point

δstationary = δ(x0) = −1 +
b

2
(r +

√
1 + r2) . (D12)

for

x = x0 =
1√
2

√
1 +

r√
1 + r2

∈ [0, 1] , (D13)

where we took into account the fact that 0 ≤ x ≤ 1, cf. Eq. (3.44), and defined r = a/b.

One also finds
d2δ(x)

dx2
|x=x0 = −4 b (1 + r2)(r +

√
1 + r2) , (D14)

so that it is only the sign of b that dictates whether this stationary point is a maximum

(b > 0) or a minimum (b < 0). Note that b as defined in Eq. (D11) can take either signs

since c3, c4 ∈ [−1, 1]. To proceed we consider the two cases:

� b < 0, δ(x0) is a minimum: In this case one has δ(x) ≤ 0 ∀x ∈ [0, 1], if and only

if δ(0) ≤ 0 and δ(1) ≤ 0. The first condition is trivially satisfied. The second is

equivalent to a ≤ 1. Since ϕ, ψ ∈ [0, π
2
] and c1, c2 vary independently in [−1, 1] it

follows from Eq. (D10) that, for fixed ϕ and ψ, a reaches a maximum when c1 =

−c2 = ±1. One thus has

a ≤ − cos 2ϕ cos 2ψ + 2(cosϕ cos2 ψ + sinϕ sin2 ψ)2 =
1

4
(3 + cos 4ψ + 2 sin 2ϕ sin2 2ψ)

≤ 1

4
(3 + cos 4ψ + 2 sin2 2ψ) = 1, (D15)

and δ(1) ≤ 0 as required.

� b > 0, δ(x0) is a maximum: In this case one has δ(x) ≤ 0 ∀x ∈ [0, 1], if and only if

δ(x0) ≤ 0. From Eq. (D12) and the fact that b > 0, the condition δ(x0) ≤ 0 can be

rewritten as
√
a2 + b2 ≤ 2− a. (D16)

This in turn is equivalent to

4(1− a)− b2 ≥ 0, (D17)
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since a ≤ 1, Eq. (D15) being valid independently of the sign of b. Expressing sinψ

and cosψ in terms of T ≡ tanψ, the above inequality is equivalently rewritten as

a0 + a2 T
2 + a4T

4 ≥ 0, (D18)

with T ∈ [0,+∞) and

a0 = (1− c2
1) cos2 ϕ, (D19)

a2 = 1 + c1c2 sin 2ϕ− (c3 cosϕ+ c4 sinϕ)2, (D20)

a4 = (1− c2
2) sin2 ϕ. (D21)

We can now examine the NAS positivity conditions for the biquadratic polynomial in

T , namely

a0 ≥ 0 ∧ a4 ≥ 0 ∧ a2 + 2
√
a0a4 ≥ 0. (D22)

The first two are trivially satisfied. To prove the third we should take into account

the correlation θ1 = θ2 + θ3 + θ4 (modulo multiples of 2π), see Eq. (3.50). Moreover,

since sin θ1 and sin θ2 can take either signs, we can include the two cases by simply

using the inequality
√

(1− c2
1)(1− c2

2) ≥ sin θ1 sin θ2 to write:

a2 + 2
√
a0a4 ≥ 1 + sin 2ϕ cos(θ1 − θ2)− (cos θ3 cosϕ+ cos θ4 sinϕ)2. (D23)

Using θ1 = θ2 + θ3 + θ4 the right-hand side of the above inequality simplifies to

1+sin 2ϕ cos(θ3+θ4)−(cos θ3 cosϕ+cos θ4 sinϕ)2 = (sin θ3 cosϕ−sin θ4 sinϕ)2. (D24)

Thus the third NAS positivity condition in Eq. (D22) is valid for all values of the

angles ϕ and θi. This implies that Eq. (D18) is satisfied for all T ≥ 0 thus for all

values of ψ. Eq. (D16) then holds for all the values of the angles, in particular those

compatible with b > 0; we have thus proven that δ(x) ≤ 0 ∀x ∈ [0, 1] in this case too.

This ends the proof that α2
ABH − 2αAH ≤ 0 holds for all field directions and that Eq. (3.52)

gives the lower boundary in the (αABH , αAH) plane.

d. Boundary of the (αA, αABH) domain

We rewrite Eq. (3.49) as

− c1

√
1− x2(1− y2) + c2xy

2 = αABH (D25)
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with the obvious notations, x = sinϕ, y = sinψ, c1 =
√

2 cos θ1 sin θ, c2 =
√

2 cos θ2 sin θ. We

seek the conditions on αABH , c1 and c2 that ensure the existence of at least one value for

x ∈ [0, 1] for each value of y2 ∈ [0, 1] and vice versa. This can be worked out by solving for

y2 and considering the (relative) signs of c1 and c2. One finds:

� When c1 × c2 ≥ 0, αABH can be of any sign, with x and αABH satisfying

0 ≤ αABH
c2

≤ x, or x2 ≤ 1− α2
ABH

c2
1

(
when

αABH
c2

≤ 0

)
. (D26)

Thus upper and/or lower parts of the [0, 1] domain for x will not be reached ∀y2 ∈ [0, 1],

unless

αABH = 0. (D27)

� When c1×c2 ≤ 0, αABH and c2 should have the same sign, with x and αABH satisfying

0 ≤ x2 ≤ min

{
α2
ABH

c2
2

, 1− α2
ABH

c2
1

,
c2

1

c2
1 + c2

2

}
or max

{
α2
ABH

c2
2

, 1− α2
ABH

c2
1

,
c2

1

c2
1 + c2

2

}
≤ x2 ≤ 1 .

(D28)

Thus intermediate parts of the [0, 1] domain for x will not be reached ∀y2 ∈ [0, 1],

unless

αABH = (αABH)crit ≡
|c1|c2√
c2

1 + c2
2

. (D29)

Since |c1|, |c2| ∈ [0,
√

2], the maximum value for |αABH | from Eq. (D29) is obtained when

|c1| = |c2| =
√

2, and corresponds to the maximal critical value |(αABH)maxcrit | = 1, not
√

2 ! A

direct consequence is the absence of correlations between αABH and x or αABH and y2 in the

domain αABH ∈ [−1, 1], i.e the square [−1, 1] × [0, 1] is totally filled in both cases. Indeed,

for any given αABH ∈ [−1, 1] one can always find c1 and c2 of opposite signs satisfying

Eq. (D29) so that to any x corresponds at least one y2 and vice versa, thus varying freely

in [0, 1]. Note also that |c1| = |c2| =
√

2 entails maximizing | cos θ1|, | cos θ2| and sin θ to 1.

We can study now the allowed domain in the plane (αABH , αA). We first determine the

allowed (αABH , αA) sub-domain corresponding to sin θ = 1, then show that all sub-domains

that correspond to sin θ < 1 are necessarily within that sub-domain, which thus turns out

to be the full (αABH , αA) domain.

When sin θ = 1 the dependence on cos ρ drops out from Eq. (3.42) and one can easily

solve for x(= sinϕ) as a function of αA,

x± =

√
1

2

(
1±
√

2αA − 1
)
. (D30)
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The two ± solutions should be kept in the discussion as their union scans the full [0, 1]

domain of x allowing αA to scan all its allowed domain [1
2
, 1]. Similarly, since sin θ = 1,

αABH will scan all its allowed domain [−
√

2,+
√

2] by varying x, y, c1 and c2. Let us choose

a couple of values (αABH , αA) in their respective domains.

- If |αABH | ≤ 1 then, relying on what was demonstrated after Eq. (D29), one can always

find c1, c2 (or equivalently cos θ1, cos θ2) with opposite signs and the sign of c2 being

that of αABH , in such a way that αABH = (αABH)crit. It follows that for any x ∈ [0, 1]

there exists y2 ∈ [0, 1] consistent with the given value of αABH . In particular this is

true for the values of x corresponding, through Eq. (D30), to any given value of αA.

There is thus no obstruction on the independent choice of the values of αABH and αA

as long as |αABH | ≤ 1. It follows that the entire square [−1, 1] × [1
2
, 1] is allowed in

the (αABH , αA) plane.

- If |αABH | > 1, one has to examine separately the conditions given by Eqs. (D26, D28).

Note also that since |αABH | > 1 the min and max in Eqs. (D28) become uniquely

defined, equaling respectively 1 − α2
ABH

c21
and

α2
ABH

c22
. Plugging x as given by Eq. (D30)

in the four inequalities, it is clear that a necessary condition in each case obtains when

c1 and c2 take their extreme values ±
√

2. Taking consistently into account the various

sign conditions in each case as well as the ± in Eq. (D30) one determines the necessary

condition relating αA and αABH . One finds exactly the same inequality in the four

cases, namely αA ≥ 1 − α2
ABH + 1

2
α4
ABH . Moreover, this conditions is also sufficient

since it allows at least the extremal values of c1, c2. Thus

αA = 1− α2
ABH +

1

2
α4
ABH =

1

2

(
1 + (α2

ABH − 1)2
)

(D31)

gives the lower boundary for αA when αABH > 1.

This completes the proof that when sin θ = 1, the allowed domain in the (αABH , αA) plane

is as defined by Eqs. (3.53) and illustrated in Fig. 4.

Since θ1 and θ2 appear only in αABH , they can be safely chosen without biasing the

correlations between αA and αABH , as long as they maximize the allowed domain of the

latter. The angle θ is however common to αA and αABH . One should then be careful that

the value sin θ = 1 does not miss points in the allowed domain. A necessary condition for

this not to happen is that sin θ = 1 still allows αA and αABH to take any value in their
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respective domains as given by Eqs. (3.26, 3.29). This is indeed the case as one can check

from Eqs. (3.42, 3.49) by varying all the other angles at fixed sin θ = 1.

However this is not sufficient. One should still check that for sin θ strictly smaller than

one there exists no set of values for the remaining angle variables giving a point in the

(αABH , αA) plane that is outside the domain defined by Eqs. (3.53). To show this it suffices

to prove (cf. Eq. (D31)) that

2αA − 1−
(
α2
ABH − 1

)2 ≥ 0, ∀ sin θ, (D32)

whenever

|αABH | > 1 . (D33)

Rewriting Eq. (3.49) as

αABH =
√

2Y sin θ, (D34)

where

Y = sinϕ sin2 ψ cos θ2 − cosϕ cos2 ψ cos θ1 (D35)

and Y ∈ [−1, 1], condition (D33) implies

|Y | ≥ 1√
2

and sin θ ≥ 1√
2
, (D36)

since none of |Y | and sin θ can exceed one. We can thus replace Eq. (D33) by

1 ≥ |Y | ≥ 1√
2

(D37)

and

1 ≥ sin θ ≥ 1√
2|Y |

. (D38)

On the other hand, as seen from Eqs. (3.42, 3.49), the only dependence on the angle ρ in

Eq.(D32) is linear in cos ρ and with a positive coefficient:

1

4
sin 2ϕ sin2 2θ cos ρ + ... ≥ 0 . (D39)

Condition (D32) is thus equivalent to the one where cos ρ takes its minimal value cos ρ = −1,

in which case (D32) can be recast in the form

a4τ
4 + a2τ

2 − 1 ≥ 0 (D40)
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with

a2 = 2
(
2Y 2 − sin 2ϕ

)
, (D41)

a4 = −4
(
Y 2 − cos2 ϕ

) (
Y 2 − sin2 ϕ

)
, (D42)

where we defined τ = tan θ and dropped out a positive denominator. The coefficients of τ 2

and τ 4 in Eq. (D40) both satisfy

a2 ≥ 0, (D43)

a4 ≥ 0. (D44)

as a consequence of the lower bound in Eq. (D37). The first is immediate to establish. The

positivity of a4 is less obvious. Rewriting |Y | ≥ 1/
√

2 and a4 respectively as

0 ≤ (Y − 1√
2

)(Y +
1√
2

), (D45)

a4 = −4(Y − cosϕ)(Y + cosϕ)(Y − sinϕ)(Y + sinϕ), (D46)

and noting that Y is linear in cos θ1 and cos θ2, cf. Eq. (D35), one can easily study the sign

of a4 when Eq. (D45) is satisfied, in terms of a bundle of six parallel straight lines with slope

cotϕ cot2 ψ in the (cos θ1, cos θ2) plane; the sign alternates each time one of these lines is

crossed. Moreover, since they are all parallel it suffices to study the change of sign along a

given axis in the (cos θ1, cos θ2) plane, say the axis defined by cos θ2 = 0. On this axis the

inequality Eq. (D45) is satisfied if and only if

1√
2 cosϕ cos2 ψ

≤ cos θ1 ≤ 1 or − 1 ≤ cos θ1 ≤ −
1√

2 cosϕ cos2 ψ
. (D47)

This implies

cosϕ ≥ 1√
2 cos2 ψ

≥ 1√
2
, (D48)

thus

sinϕ ≤ 1√
2

and tanϕ ≤ 1. (D49)

On the other hand, it is easily seen from Eqs. (D35, D46), (with cos θ2 = 0), that a4 is

positive if and only if cos θ1 is between 1/ cos2 ψ and tanϕ/ cos2 ψ or between −1/ cos2 ψ

and − tanϕ/ cos2 ψ, and negative otherwise. Using Eq. (D49) these conditions read,

tanϕ

cos2 ψ
≤ cos θ1 ≤

1

cos2 ψ
or − 1

cos2 ψ
≤ cos θ1 ≤ −

tanϕ

cos2 ψ
. (D50)
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And, again from Eq. (D49),
tanϕ

cos2 ψ
≤ 1√

2 cosϕ cos2 ψ
, (D51)

which shows that Eq. (D50) is satisfied whenever Eq. (D47) (or equivalently Eq. (D37)), is

satisfied. Thus condition (D37) impliques a4 ≥ 0. It is easy to see that this property remains

true even when cos θ2 6= 0. Indeed if (D37) is satisfied for a given point (cos θ1, cos θ2), then

it remains true on all the straight line with slope cotϕ cot2 ψ going through this point, in

particular for the point intersecting the axis cos θ2 = 0, and we are brought back to the

known case.

Now back to Eq. (D40): The domain of variation of τ 2 corresponding to Eq. (D38) is

given by
1

2Y 2 − 1
≤ τ 2 < +∞ . (D52)

Moreover, the quadratic function in τ 2 is a monotonically increasing function as can be seen

from its derivative and Eqs. (D43, D44). Its minimum is thus reached for τ 2
min = 1

2Y 2−1
and

is given by

a4τ
4
min + a2τ

2
min − 1 =

2(1− sin 2ϕ) (4Y 2 + sin 2ϕ− 1)

(1− 2Y 2)2
, (D53)

which is obviously positive when Eq. (D37) is satisfied. Thus Eq. (D40) is always satisfied

whenever Eqs. (D37, D38). This completes the proof that Eq. (D32) is satisfied whenever

Eq. (D33) holds and that the full allowed domain in the (αABH , αA) plane is given by

Eqs. (3.53).

e. Boundary of the (αAB, αAH) domain

From Eq. (3.48) one sees that αAH is of the form

αAH(x) =
1

2
+ ax+ b

√
1− x2, with x ∈ [−1,+1], (D54)

where we defined x ≡ cos 2ψ, and a, b are readily obtained from Eqs. (3.45,3.48),

a =
1

2
(1− αAB) cos 2ϕ, (D55)

b =
1√
2

(cos θ3 cosϕ+ cos θ4 sinϕ)
√

(1− αAB)αAB . (D56)
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It is easy to study the structure of maxima and minima of αAH(x) at fixed a, b. One finds

that it always has only one stationary point, at x =
a sgn b√
a2 + b2

∈ [−1,+1], given by

αstationaryAH =
1

2
+
√
a2 + b2 sgn b. (D57)

Moreover, this stationary point is found to be a minimum (resp. maximum) when b < 0

(resp. b > 0), and thus with a corresponding maximum (resp. minimum) of αAH given by

max{αAH(±1)} (resp. min{αAH(±1)}). This leads to:

1

2
−
√
a2 + b2 ≤ αAH ≤

1

2
+ |a|, iff b ≤ 0, (D58)

1

2
− |a| ≤ αAH ≤

1

2
+
√
a2 + b2, iff b ≥ 0. (D59)

The parameter b as defined by Eq. (D56) can take either signs when all the angles are varied

(since cos θ3, cos θ4 ∈ [−1, 1] and ϕ ∈ [0,
π

2
], cf. Eq. (3.44)). It is thus more relevant to

combine the αAH domains given above, reducing them for fixed a and |b| to

1

2
−
√
a2 + b2 ≤ αAH ≤

1

2
+
√
a2 + b2, (D60)

or equivalently to (
αAH −

1

2

)2

≤ a2 + b2. (D61)

Given Eq. (D56), the domain in Eq. (D61) is obviously maximized for cos θ3 = cos θ4 = ±1.

Assuming these values we now show that αAH will scan its full allowed domain [0, 1], i.e.

that a2 + b2 will reach
1

4
, only when 0 ≤ αAB ≤

1

2
. We first note from Eqs. (D55, D56) that

a2 + b2 can be recast in the form,

a2 + b2 = −1

4
(1 + sin 2ϕ)2

(
αAB −

sin 2ϕ

1 + sin 2ϕ

)2

+
1

4
. (D62)

Since sin 2ϕ ∈ [0, 1], it is clear that a2 + b2 reaches
1

4
iff αAB = sin 2ϕ

1+sin 2ϕ
∈ [0, 1

2
] . It then

follows from Eq. (D60) that all the αAH domain [0, 1] is allowed when αAB ∈ [0, 1
2
], whence

the boundaries given in Eqs. (3.57 - 3.59).

Finally, when 1
2
≤ αAB ≤ 1 the study of a2 +b2 as a function of sin 2ϕ in Eq. (D62) shows

that a2 + b2 reaches its maximum for sin 2ϕ = 1, given by

a2 + b2|max =
1

4
−
(
αAB −

1

2

)2

. (D63)
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Plugging this back in Eq. (D61), gives the largest allowed domain(
αAH −

1

2

)2

+

(
αAB −

1

2

)2

≤ 1

4
, (D64)

whence the half-circle boundary Eq. (3.60).

APPENDIX E: THE (ω̂0, ζ̂0) DOMAIN

To simplify the presentation we define:

x = cos 2θ0, y = cos arg(χ0), (E1)

so that sin 2θ0 = +
√

1− x2 and −1 ≤ x, y ≤ 1, cf. Eqs. (3.109, 3.110). We also define

w(x, y) =
1

8

(
1− x+ 2

√
2(1− x2) y

)
(E2)

so that the 0th order u contribution to ω̂, Eq. (3.100), reads

ω̂0(x, y, θ+) = w(x, y) sin2 θ+ . (E3)

For later use we also denote by x>
y and x<

y respectively the largest and smallest values of x

satisfying the equation

w(x>

y , y) = w(x<

y , y) = ¯̂ω0, (E4)

where ¯̂ω0 is a given value of ω̂0 ∈ [−1
4
, 1

2
]. These two values of x are easily determined to be

x≷
y =

1− 8¯̂ω0 ± 8
√
y2
(
2(1− 4¯̂ω0)¯̂ω0 + y2

)
1 + 8y2

. (E5)

Note also that they are reached if and only if sin2 θ+ = 1.

Using Eq. (E3) to eliminate sin2 θ+ from Eq. (3.102) one obtains straightforwardly a

relation between ω̂0 and the 0th order u contribution to ζ̂,

ζ̂0(x, y, ω̂0) = 1 + c1 ω̂0 + c2 ω̂
2
0 (E6)

with

c1 = − (1− x)

2w(x, y)
, (E7)

c2 = −(1− x) (1 + 3x)

8w(x, y)2
. (E8)
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x, y and ω̂0 can be varied independently of each other only locally, but they have global

correlations due to Eq. (E3): From 0 ≤ sin2 θ+ ≤ 1, one must require

w(x, y) ≤ ω̂0 ≤ 0 (E9)

or

0 ≤ ω̂0 ≤ w(x, y) (E10)

Apart from the special cases {x = 1, ω̂0 = 0} and {x = −1, ω̂0 = (1/4) sin2 θ+} where y

varies freely in [−1,+1], the above constraints dictate in general that the allowed ranges for

y depend on x(6= −1,+1) and ω̂0 as follows:

if ω̂0 ≥ 0, then max

{
−1,− 1

2
√

2

√
1− x
1 + x

+
2
√

2ω̂0√
1− x2

}
≤ y ≤ 1 , (E11)

if ω̂0 ≤ 0, then − 1 ≤ y ≤ − 1

2
√

2

√
1− x
1 + x

+
2
√

2ω̂0√
1− x2

≤ 0 . (E12)

We now show the following key property:

ζ̂0(x, y, ω̂0), taken as a function of y, is increasing for ω̂0 ≥ 0 and decreasing for ω̂0 ≤ 0.

(E13)

The derivative of ζ̂0 reads

∂ζ̂0

∂y
= κ2 ω̂0

(
1 +

ω̂0

2w(x, y)
(1 + 3x)

)
(E14)

where κ2 is a positive definite x- and y-dependent prefactor. Using Eq. (E3), one finds

that the last factor to the right is also positive, since
(

1 + (1+3x)
2

sin2 θ+

)
≥ cos2 θ+ for

x ∈ [−1,+1].

a. Upper boundary

It follows from (E13) that the maximum of ζ̂0 for fixed x and ω̂0 is given by ζ̂0(x,+1, ω̂0)

(resp. ζ̂0(x,−1, ω̂0)) when ω̂0 ≥ 0 (resp. ω̂0 ≤ 0). This suggests the study of these two

functions in the corresponding negative and positive ranges of ω̂0, which we will treat as

families of functions of ω̂0 parameterized by x:

ζ̂
(x)
0 (ω̂0) =


ζ̂0(x,+1, ω̂0) , for 0 ≤ ω̂0 ≤ w(x,+1) andx ∈ [−1,+1] , (E15a)

ζ̂0(x,−1, ω̂0) , forw(x,−1) ≤ ω̂0 ≤ 0 andx ∈ [−7

9
,+1] , (E15b)

1 , for ω̂0 = 0 and x ∈ [−1,−7

9
] . (E15c)
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In writing the above we took into account the consistency conditions Eqs. (E11, E12) and

noted that ω̂0 < 0 cannot be satisfied when x ∈ [−1,−7
9
]. Obviously the upper boundary in

the (ω̂0, ζ̂0) plane, that is the function ζ̂0

max
(ω̂0) giving the maximal allowed value of ζ̂0 for

a given ω̂0, is obtained by determining the upper envelope of the family of functions ζ̂
(x)
0 (ω̂0)

defined in Eqs. (E15a, E15b). We will show below that this envelope is given by

ζ̂0

max
(ω̂0) =

 ζ̂
(x>+1)

0 (ω̂0)|ω̂0=w(x>+1,+1) , for ω̂0 ≥ 0, (E16a)

ζ̂
(x>−1)

0 (ω̂0)|ω̂0=w(x>−1,−1) , for ω̂0 ≤ 0, (E16b)

where x>

±1 have been defined in Eqs. (E4).

In other terms, the upper boundary is traced when ω̂0 sits at the non-vanishing end-points

of its allowed domains given in Eqs. (E15a, E15b), thus corresponding to sin2 θ+ = 1 as noted

after Eq. (E5), and for the largest value of x that allows to reach each end-point. This result

is a consequence of certain properties that can be easily shown by direct analytical (as well

as numerical) inspection of the relevant functions and their first derivative, summarized

hereafter without proof:

i) w(x,−1) is ≤ 0 if and only if x ∈ [−7
9
, 1], and

– w(x,−1) is strictly decreasing for x ∈ [−7
9
, 1

3
], spanning the full negative ω̂0

domain [−1
4
, 0],

– w(x,−1) is strictly increasing for x ∈ [1
3
, 1], spanning the full negative ω̂0 domain

[−1
4
, 0] .

It follows that x<

−1 ∈ [−7
9
, 1

3
] and x>

−1 ∈ [1
3
, 1], (cf. Eq. (E4)).

ii) w(x,+1) is ≥ 0 in the entire x domain [−1,+1], and

– w(x,+1) is strictly increasing for x ∈ [−1,−1
3
], spanning partially the positive

ω̂0 domain [1
4
, 1

2
],

– w(x,+1) is strictly decreasing for x ∈ [−1
3
, 1], spanning the full positive ω̂0 domain

[0, 1
2
].

It follows that x<

+1 ∈ [−1,−1
3
] and x>

+1 ∈ [−1
3
, 1], (cf. Eq. (E4)).

iii) in the domains of x>

−1 and x>

+1, that is respectively for x ∈ [1
3
, 1], ω̂0 ∈ [−1

4
, 0], and

x ∈ [−1
3
, 1], ω̂0 ∈ [0, 1

2
], ζ̂

(x)
0 (ω̂0) is a strictly increasing function of x. ( ∂

∂x
ζ̂

(x)
0 (ω̂0)
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vanishes only at the two isolated points {ω̂0 = 0,∀x} and {ω̂0 = 1
2
, x = −1

3
}, where ζ̂0

takes its two extreme values 1 and 1
3
).

iv) in the domains of x<

−1 and x<

+1, that is respectively for x ∈ [−7
9
, 1

3
], ω̂0 ∈ [−1

4
, 0], and x ∈

[−1,−1
3
], ω̂0 ∈ [1

4
, 1

2
], ζ̂

(x)
0 (ω̂0) taken as a function of x can be either strictly increasing

or strictly decreasing, but it changes its monotonicity at most once depending on the

value of ω̂0.

v) ζ̂
(x>±1)

0 (ω̂0)− ζ̂(x<±1)

0 (ω̂0) = 16
27

(1− 2 ω̂0)3/2
√

1 + 4 ω̂0 ≥ 0, valid for all ω̂0 ∈ [−1
4
, 1

2
].

Consider the value of ζ̂0 = ζ̂
(x>−1)

0 (ω̂0)|ω̂0=w(x>−1,−1) for a given ω̂0 ≤ 0, cf. Eq. (E16b). We

now show that varying x in the vicinity of x>

−1 does not allow to find for the same ω̂0 a

larger value for ζ̂0: To find another value of ζ̂0 for the same ω̂0 one should, according to

Eq. (E15b), choose an x such that

w(x,−1) < ω̂0 = w(x>

−1,−1) = w(x<

−1,−1). (E17)

(Note that the last equality is simply due to the definition of x>

−1 and x<

−1.) If x is taken

sufficiently close to x>

−1 so that x ∈ [1
3
, 1], then the above inequality is satisfied only if x

is strictly smaller than x>

−1 since by property i) w is a strictly increasing function in the

considered domain. It then follows from property iii) that the new value of ζ̂0 is necessarily

strictly smaller than the initial ζ̂
(x>−1)

0 (ω̂0)|ω̂0=w(x>−1,−1). Thus the latter is indeed a local

maximum. But x can also be in the domain [−7
9
, 1

3
]. In this case property i) implies that

x should be strictly greater than x<

−1 since w is a strictly decreasing function of x in the

considered domain. Then according to property iv):

– Either ζ̂
(x)
0 (ω̂0) did not change its monotonicity for the given value of ω̂0 and the

considered range for x within the [−7
9
, 1

3
] domain, which means it is still a strictly

increasing function of x (cf. property iii) ). In this case one has ζ̂
(x)
0 (ω̂0) < ζ̂

( 1
3

)

0 (ω̂0) <

ζ̂
(x>−1)

0 (ω̂0) with ω̂0 = w(x>

−1,−1) .

– Or ζ̂
(x)
0 (ω̂0) changed once its monotonicity becoming a strictly decreasing function

of x. In this case one has ζ̂
(x)
0 (ω̂0) < ζ̂

(x<−1)

0 (ω̂0) because x > x<

−1 as shown above.

But then property v) implies ζ̂
(x)
0 (ω̂0) < ζ̂

(x>−1)

0 (ω̂0), which holds for any ω̂0 including

ω̂0 = w(x>

−1,−1).
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It follows that in all cases ζ̂
(x>−1)

0 (ω̂0)|ω̂0=w(x>−1,−1) is indeed a global maximum.

A similar proof holds for the branch ω̂0 ≥ 0 noting though the reversed inequality in

Eq. (E15a) as compared to Eq. (E15b), and the reversed behavior of w in property ii) as

compared to property i). More specifically, one should look for an x such that w(x,+1) >

ω̂0 = w(x>

+1,+1) = w(x<

+1,+1), cf. Eqs. (E16a) and (E15a), and consider separately the

cases x ∈ [−1
3
, 1] and x ∈ [−1,−1

3
]. In the first case the above inequality implies, using

properties ii) and iii), that x < x>

+1 and ζ̂
(x>+1)

0 (ω̂0)|ω̂0=w(x>+1,+1) is a local maximum. In

the second case property ii) and the above inequality imply x > x<

+1 and the result that

ζ̂
(x>+1)

0 (ω̂0)|ω̂0=w(x>+1,+1) is a maximum is again obtained upon use of properties iv) and v).

We can now write explicitly ζ̂0

max
(ω̂0). First, from Eqs. (E6, E16b, E16a) and properties

i) and ii) one finds the simple form

ζ̂0

max
(ω̂0) =


Z(x>

+1), for 0 ≤ ω̂0 ≤
1

2
, (E18a)

Z(x>

−1), for − 1

4
≤ ω̂0 ≤ 0, (E18b)

where

Z(x) =
1

8
(3 + x(2 + 3x)). (E19)

The explicit dependence on ω̂0 is obtained by solving ω̂0 = w(x>

+1,+1) for x>

+1 and ω̂0 =

w(x>

−1,−1) for x>

−1 and plugging the result back in Eqs. (E18a) and (E18b). In fact a

further simplification occurs because the two solutions are found to have exactly the same

functional dependence on ω̂0, cf. Eq. (E5), even though they correspond to different ranges

of the latter:

x>

±1 =
1

9

(
1− 8 ω̂0 + 8

√
(1− 2 ω̂0)(1 + 4 ω̂0)

)
. (E20)

Equations (E18a, E18b) can thus be merged into one single form for the full ω̂0 range [−1
4
, 1

2
],

ζ̂0

max
(ω̂0) =

1

3
+

2

27

(
1− 2 ω̂0 + 2

√
(1− 2 ω̂0)(1 + 4 ω̂0)

)2

, ω̂0 ∈ [−1

4
,
1

2
] (E21)

which reproduces the upper boundary given [30] (note however that we deal with the inverse

function wrt to the function considered in reference [30]), see also Fig. 11.

b. Lower boundary

We turn now to the determination of the lower boundary of the domain. In contrast

with the previous case we cannot just study ζ̂0(x,+1, ω̂0) and ζ̂0(x,−1, ω̂0) as being the
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minima in the y domain, respectively for ω̂0 ≤ 0 and ω̂0 ≥ 0 as suggested by the property

(E13). Indeed, it is obvious from Eqs. (E3, E2), see also Eq. (E15a), that ζ̂0(x,+1, ω̂0) and

more generally ζ̂0(x, y ≥ 0, ω̂0) are never compatible with ω̂0 < 0. Moreover, ζ̂0(x,−1, ω̂0)

is compatible with ω̂0 ≥ 0 only in the reduced domain of x ∈ [−1,−7
9
] as already discussed

after Eq. (E15c). This means that there could exist y > −1 and x outside this reduced

domain for which values of ζ̂0 smaller than ζ̂0(x,−1, ω̂0) could be reached. Thus for both

domains, ω̂0 ≥ 0 and ω̂0 ≤ 0, y should be varied away from y = +1 or −1 to determine

the lower boundary function ζ̂0

min
(ω̂0) that gives for each ω̂0 the minimal allowed value for

ζ̂0. It is easy to see that for given ω̂0 and x, the minimal value of ζ̂0 is reached only when

ω̂0 = w(x, y). This is a consequence of combining property (E13) with Eqs. (E9, E10) and

the fact that w(x, y) is an increasing function of y. E.g. for a given positive ω̂0 that should

satisfy Eq. (E10) for say y = +1, decreasing y will monotonically decrease simultaneously ζ̂0,

cf. (E13), and w(x, y). Since values of y such that ω̂0 > w(x, y) are forbidden by Eq. (E10),

the minimum of ζ̂0 is indeed reached when ω̂0 = w(x, y). A similar reasoning holds for

negative ω̂0 satisfying Eq. (E9) so that ζ̂0 is reached when and only when ω̂0 = w(x, y).

Thus in both cases the relevant functions are obtained for x = x>
y or x<

y . Denoting by

ζ̂±0 (y, ω̂0) the two functions ζ̂0(x = x≷
y , y, ω̂0) and using Eqs. (E19,E4), we find after some

algebra,

ζ̂±0 (y, ω̂0) =
1

3
+

2

3

1− 6ω̂0 + 2
(
y2 ± 3

√
y2(2ω̂0 − 8ω̂2

0 + y2)
)

1 + 8y2

2

, (E22)

with y2 ∈ [−2ω̂0 + 8ω̂2
0, 1].

We note that these functions do not depend on the sign of y. Starting from Eq. (E22) it

is straightforward to determine the configurations where ζ̂0 reaches its absolute minimum

value 1
3
. One finds,

ζ̂+
0 =

1

3
iff ω̂0 =

1

6
+

√
y2

3
, (E23)

ζ̂−0 =
1

3
iff ω̂0 =

1

6
−
√
y2

3
, (E24)

where these values of ω̂0 always lie within the validity domain of Eq. (E22). Varying y2 in

[0, 1] we see that ζ̂0 reaches the value of 1
3

through either ζ̂+
0 or ζ̂−0 for any value of ω̂0 in

[−1
6
,+1

2
], while 1

3
is never reached when ω̂0 ∈ [−1

4
,−1

6
[ . Thus for the [−1

6
,+1

2
] sub-domain,
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the lower boundary ζ̂0

min
(ω̂0) is simply given by

ζ̂0

min
(ω̂0) =

1

3
, ω̂0 ∈ [−1

6
,+

1

2
]. (E25)

To treat the [−1
4
,−1

6
[ sub-domain we first note from Eq. (E22) the obvious inequality,

ζ̂−0 (y, ω̂0) < ζ̂+
0 (y, ω̂0), for all ω̂0 < 0. (E26)

The lower boundary for the portion ω̂0 ∈ [−1
4
,−1

6
] is thus to be found within the ζ̂−0 branch.

A straightforward analytical study shows that ζ̂−0 (y, ω̂0) is a strictly decreasing function of

y2 for any ω̂0 ∈ [−1
4
,−1

6
].17 It follows that the lower boundary ζ̂0

min
(ω̂0) is given by ζ̂−0 (y, ω̂0)

at y2 = 1 (strictly speaking at y = −1 since ω̂0 < 0),

ζ̂0

min
(ω̂0) =

1

3
+

2

27

(
1− 2 ω̂0 − 2

√
1 + 2 ω̂0 − 8 ω̂2

0

)2

, ω̂0 ∈ [−1

4
,−1

6
] (E27)

c. Comments

The functions given in Eqs. (E21, E25, E27) provide the full boundary in the (ω̂0, ζ̂0)

domain. Given that χ++ and Imχ+ are put to zero by a gauge choice, i.e. Eq. (3.99), we

have proven under the working assumption Reχ+ ≡ u = 0 in Eq. (3.99), that this boundary

is obtained when y = ±1 and sin2θ+ = 1, that is for Imχ0 = ξ+ = 0, cf. Eqs. (E1,

3.105). This agrees with [30] where the domain was determined by a numerical scan. There

is however more to the proofs we provided: sin2θ+ = 1 is not only sufficient but also

necessary; indeed as one can see from the various steps of the proofs given above, all the

inequalities and monotonicity are strict.

It is important to stress that there is a priori no simple reason to believe that the do-

main (ω̂0, ζ̂0) will be identical to the full domain of (ω̂, ζ̂), i.e. when relaxing the working

assumption u = 0. The necessity of sin2θ+ = 1 proved instrumental while completing the

determination of the domain when u 6= 0, see Sec.III F.

17 More specifically, we find that the derivative ∂
∂y2 ζ̂

−
0 (y, ω̂0) vanishes only when y2 = (1/4)(1− 6ω̂0)2, a value

≥ 1 for ω̂0 ∈ [− 1
4 ,−

1
6 ], that is outside the y2 domain. Thus ∂

∂y2 ζ̂
−
0 (y, ω̂0) does not change sign in the

considered domain of ω̂0. This sign is determined by choosing any value of y2 ∈ [2(−ω̂0 + 4ω̂2
0), 1]; e.g. for

y2 = 2(−ω̂0 + 4ω̂2
0) it is given by sgn{−8ω̂0(−1 + 8ω̂0)3(1− 6ω̂0 + 8ω̂2

0) = − for ω̂0 ∈ [− 1
4 ,−

1
6 ].
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APPENDIX F: RESOLVED NAS CONDITIONS FOR EQS. (3.96, 3.97),

Here we give without proof the necessary and sufficient conditions on the α-parameters

in order for the trajectories (ω̂(t), ζ̂(t)) given by Eqs. (3.96, 3.97) to go through a given

point (ω̂, ζ̂): {
ζ̂ ≥ αAB ∨ ζ̂ ≥ 3

2
− αA

}
∧ ζ̂ ≥ 2αA + 2α2

AB − 3

2αA + 4αAB − 5

∧{
ω̂ × αABH ≥ 0 ∨ min{0,1

4
βAH} ≤ ω̂ ≤ max{0, 1

4
βAH}

}
∧ (F1)

1

8

(
βAH −

√
4α2

ABH + β2
AH

)
≤ω̂ ≤ 1

8

(
βAH +

√
4α2

ABH + β2
AH

)
∧

(r1ω̂
2 + r2ω̂ + r3ζ̂ + r4) ω̂2 + (r5 + r6(ζ̂ + 1) + r7ω̂) (ζ̂ − 1) = 0,

with

r1 = 4(βA + 2βAB − 2)2,

r2 = 4(1− βAB)(βA + 2βAB − 2)βAH ,

r3 = (βA + 2βAB − 2)(β2
AH − 4α2

ABH),

r4 = 2α2
ABH (8− (βA − 4)(βAB − 3)) +

(
(βAB − 2)2 − βA − 1

)
β2
AH ,

r5 =
1

8

(
4α4

ABH(βA − 4)− 2α2
ABH(3 + βAB)β2

AH − β4
AH

)
,

r6 =
1

16
(β2

AH + 4α2
ABH)2,

r7 =
1

2
βAH

(
4α2

ABH(βA + βAB − 1) + (1− βAB)β2
AH

)
where we defined

βX ≡ 2αX − 1, X = A,AB,AH. (F2)

The first three lines in Eq. (F1) are the NAS conditions that ensure the existence of at

least one real-valued t solution to Eq. (3.97) and at least one real-valued positive t solution to

Eq. (3.96). The last condition in Eq. (F1) guarantees a common t solution to both equations

(3.96) and (3.97). Note that Eq. (F1) is always satisfied for ω̂ = 0, ζ̂ = 1 for all α-parameters

in the α-potatoid, which can be seen in particular from Eq. (3.47). This corresponds to the

79



fact that the point (ω̂ = 0, ζ̂ = 1) is always reached when t→∞, as evident from Eqs. (3.96,

3.97).

The α-parameters sets that are excluded by the ω-ζ–chips, (see the discussion in Sec. IV

and footnote 12), correspond to those that satisfy Eq. (F1) when substituting therein ζ̂ by

ζ̂max0 (ω̂) + ε or by ζ̂min0 (ω̂)− ε, with ε an arbitrarily small positive number (cf. Eqs. (3.116,

3.112 – 3.113b) ).

APPENDIX G: NEW NAS POSITIVITY CONDITIONS FOR QUARTIC POLY-

NOMIALS ON R

In this section we consider the general conditions on the set of real coefficients ai=0,1,2,3,4

that are necessary and sufficient to ensure

P (ξ) > 0, ∀ξ ∈ (−∞,+∞) (G1)

where P (ξ) is a quartic polynomial:

P (ξ) ≡ a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4. (G2)

Our derivation does not rely on the known form of the four roots of P (ξ) = 0, and will

actually allow to cast the conditions in a simpler and more compact form than the ones

usually relied upon in the literature, [39, 54]. To achieve this we take a different path than

just writing down the well-known expressions of the four roots of P (ξ).

We are interested in determining the exact {ai} space region for which P (ξ) is positive

valued for any ξ in (−∞,+∞). Recalling a classic theorem on positive definiteness of even

degree polynomials defined on R and having all their coefficients real-valued, if P (ξ) satisfies

Eq. (G1) then it can be written in the form

P (ξ) ≡ Q(ξ)2 +R(ξ)2, ∀ξ ∈ (−∞,+∞) (G3)

with

Q(ξ) = x1 + y1ξ + z1ξ
2 and R(ξ) = x2 + y2ξ + z2ξ

2, (G4)

where the xi, yi and zi denote real numbers.18.

18 Note that taking Q and R as in Eq. (G4) is more general than actually needed. Indeed, P (ξ) will satisfy
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The exact {ai} space is then defined by the NAS conditions on the ai coefficients such

that there exist real numbers xi, yi and zi satisfying eq. (G3). To determine these conditions

we find useful to geometrize this statement. Introducing the vectors,

x = (x1, x2), y = (y1, y2), z = (z1, z2), (G5)

the identification of the coefficients of each ξ monomial in Eq .(G3) leads to

‖x‖2 = a0, (G6)

‖z‖2 = a4, (G7)

2x.y = a1, (G8)

2y.z = a3, (G9)

‖y‖2 = a2 − 2x.z, (G10)

so that the problem is equivalent to determining three vectors knowing some of their moduli

and scalar products and relations among them. The NAS conditions on the ai will thus be

determined by requiring consistent moduli of and angles between the three vectors x,y, z.

Equations (G6, G7) imply trivially the NAS conditions for the existence of the moduli of x

and z, namely a0 ≥ 0 ∧ a4 ≥ 0 . However, the strict inequality Eq. (G1) forbids a0 = 0 and

a4 = 0 (in the first case P (ξ = 0) = 0 and in the second P is cubic and possesses at least

one real root). The conditions should thus read

a0 > 0 ∧ a4 > 0. (G11)

Rewriting Eq. (G10) as

‖y‖2 = a2 − 2
√
a0a4 cos (̂x, z) (G12)

Eq. (G1) if and only if its four roots are non-real complex-valued, that is P (ξ) of the form P (ξ) = r(ξ −

s)(ξ − s̄)(ξ − t)(ξ − t̄) = r|(ξ − s)(ξ − t)|2, with Im(s), Im(t) 6= 0, s, t and their complex conjugates s̄,

t̄ being the four roots, and r a positive real number. Expanding this form as the squared modulus of a

complex number, leads to Eq. (G4) but with one of the two polynomials Q and R being only linear in ξ.

The symmetric choice made in Eq. (G4) lends itself however to a more convenient geometric discussion.

Its equivalence with the more specific case above, results from the invariance of Eq. (G3) under any rigid

rotation of the three vectors x,y and z defined in Eq. (G5).
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and using the boundedness of the cosine one finds the necessary condition for the existence

of the modulus of y:

a2 + 2
√
a0a4 ≥ 0. (G13)

It should be stressed that while this condition is necessary to ensure the existence of at

least one choice of the angle (̂x, z), not knowing the sign of a2, for which the modulus of

y exists, Eqs. (G11, G13) are in general not sufficient to guarantee the existence of the

vectors themselves (apart from the special case a1 = a3 = 0); one has still to check for the

consistency of the three scalar products: Eqs. (G8, G6, G10) lead to

a1 = 2
√
a0

√
a2 − 2

√
a0a4 cos (̂x, z) cos (̂y,x), (G14)

and Eqs. (G9, G7, G10) to

a3 = 2
√
a4

√
a2 − 2

√
a0a4 cos (̂x, z) cos (̂y, z). (G15)

Again, using −1 ≤ cos ≤ 1, one retrieves two necessary conditions from these two equations

that can be summarized as

a2 + 2
√
a0a4 ≥ max{ a

2
1

4a0

,
a2

3

4a4

} . (G16)

These conditions are stronger than condition (G13). There is however a further constraint

that correlates Eqs. (G14, G15), namely (̂y, z) = (̂y,x) + (̂x, z). This transforms Eqs. (G14,

G15) into

a1√
a0

η − a3√
a4

= 2εyx
√

1− η2(a2 −
a2

1

4a0

− 2η
√
a0a4)

1
2 , (G17)

a3√
a4

η − a1√
a0

= 2εyz
√

1− η2(a2 −
a2

3

4a4

− 2η
√
a0a4)

1
2 , (G18)

where η ≡ cos (̂x, z), and εyx (resp. εyz) indicates the relative sign between sin (̂y, z) and

sin (̂z,x) (resp. between sin (̂y,x) and sin (̂x, z)). Note also that Eqs. (G17, G18) are

obtained from one another under the exchange a1 ↔ a3 and a0 ↔ a4. The invariance of

these conditions as well as any other positivity condition such as e.g. Eq. (G16), under

(a1 ↔ a3, a0 ↔ a4), corresponds to the invariance of the positivity condition under the

duality transformation ξ → ξ−1:

P (ξ) > 0,∀ξ ∈ (−∞,+∞) ⇔ ξ4P (ξ−1) > 0,∀ξ ∈ (−∞,+∞).
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When the necessary conditions (G11, G16) are verified one still has to check for the existence

of at least one η satisfying Eqs. (G17, G18). Moreover, η has to satisfy

η ∈ [−1,min{1, η∗}], (G19)

where

η∗ ≡ 1

2
√
a0a4

(a2 −max{ a
2
1

4a0

,
a2

3

4a4

}) (G20)

is the critical value above which at least one of the square roots in Eqs. (G17, G18) turns

complex and thus becomes invalid.19 To study further the conditions for the existence of η

we square both sides of Eq. (G17). This leads to a cubic equation in η:

I(η) = Î , (G21)

where we define for later use

I(η) ≡
(

2
√
a0a4 (2

√
a0a4η − a2) (η + 1) + a1a3

)
(η − 1), (G22)

Î ≡
(
√
a0a3 − a1

√
a4)2

2
√
a0a4

. (G23)

It is important to note that Eq. (G21) would equally result from squaring Eq. (G18) due

to the invariance under the permutation (a1 ↔ a3, a0 ↔ a4). It follows that (G21) encodes

by itself the information contained in (G17) as well as that contained in (G18), except

for the one that is lost by squaring, namely the signs εyx, εyz. This loss of information is

however not problematic, as the signs can be retrieved by plugging back in Eqs. (G17, G18)

whatever valid solutions for η are found by solving (G21). Moreover, the constraint that

only the solutions satisfying Eqs. (G19, G20) are valid, is implicitly embedded in Eq. (G21):

Whenever a solution is found satisfying η ∈ [−1,+1], it automatically satisfies (G19, G20).

The reason is that squaring both sides of Eq. (G17) enforces the positivity of the term under

the square-root. We thus conclude that the sought-after NAS conditions are those which

guarantee the existence of (at least one) real-valued η satisfying simultaneously (G21) and

η ∈ [−1,+1], together with Eq.(G11). The function I(η) being a cubic polynomial in η, one

can in principle solve I(η) = Î which has at least one, and up to three, real-valued solutions.

One could of course proceed numerically, but this is not our aim. On the other hand,

19 Note that a necessary condition for the existence of η is obviously η∗ ≥ −1, leading back to Eq. (G16).
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extracting an information from the analytical expressions of the three roots of this cubic

equation is not particularly tractable. In fact I(η) has some interesting properties listed

below, that are straightforward to establish and will allow us to determine analytically the

NAS conditions without solving the equation. A straightforward calculation shows that one

always has:

(a) I(η = −1) = −2a1a3 ≤ Î,

(b) I(η = +1) = 0 ≤ Î,

(c) I(η = η∗) ≤ Î.

(Property (c) is valid for the two configurations of the Max in Eq. (G20) .) Being a cubic

polynomial, I(η) possesses at most two stationary points η± given by

η± =
a2 ±

√
∆0

6
√
a0a4

, (G24)

where we define

∆0 = a2
2 + 12a0a4 − 3a1a3. (G25)

Moreover, the coefficient of η3 in I(η) Eq. (G22) being always positive, cf. Eq. (G11), one

also has that

(d) when ∆0 > 0, i.e. η± exist and are distinct turning points, then η− < η+ and I(η) in-

creases monotonically in (−∞, η−[ ∪ ]η+,+∞) and decreases monotonically in ]η−, η+[;

η−, η+ correspond to local maximum, minimum, respectively,

(e) if it does not possess turning points (∆0 ≤ 0), I(η) increases monotonically everywhere.

We can now write down the full NAS conditions. As clear from Eq. (G21), they correspond

to ensuring all possible configurations in the (η, I) plane for which I(η) crosses (at least once)

the positive horizontal line I = Î within the η domain given by Eq. (G19). We will refer to

these configurations as existence configurations (EC). To proceed, we begin by identifying a

set of four necessary conditions for the EC, then show that they form together with Eq. (G16)

a set of sufficient conditions as well.

We note first that, when it exists, η+ is always the position of the local minimum of

I(η). Properties (b) and (d) then imply that this minimum is necessarily negative whenever
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η+ ≤ 1. But since Î is positive definite it follows that when η+ lies in the relevant domain

[−1,+1] it never plays a role in the realization of the EC. We thus concentrate hereafter on

η− and η∗.

Properties (b) and (e) imply that the EC are never realized if ∆0 ≤ 0, since in this case

I would reach Î only for η > 1, that is outside its allowed domain, cf. Eq. (G19), (except

possibly for the non-generic case where a3
√
a0 = a1

√
a4);

a necessary condition is thus ∆0 > 0. (G26)

It follows that η± exist and are turning points. Similarly, properties (b) and (d) imply that

the EC cannot be realized if η− > 1 since again I cannot reach Î within the allowed η

domain Eq. (G19);

a necessary condition is thus η− ≤ 1. (G27)

Furthermore, the EC cannot be realized if η− > η∗, since, according to property (d), I(η)

would be in this case monotonically increasing at η∗, and for it to reach Î one would still

have to increase η above η∗ as implied by property (c), which is outside its allowed domain,

cf. Eq. (G19);

a necessary condition is thus η− ≤ η∗. (G28)

Since among the two turning points η±, only η− plays a role and is a local minimum, obviously

if I(η−) < Î then EC are never realized in the relevant η domain. I(η) still reaches Î but

outside this domain as a consequence of property (b);

a necessary condition is thus I(η−) ≥ Î . (G29)

It is now easy to see that the latter condition, in conjunction with the necessary conditions

Eq. (G11) and (G26 –G28), would form also a set of sufficient conditions if and only if

η− ≥ −1. Indeed, if η− < −1 then to ensure that Eq. (G21) can be fulfilled for an η in

the allowed domain would also require I(η = −1) ≥ Î which is generically in contradiction

with property (a). Fortunately, however, η− < −1 is anyway forbidden by the necessary

condition Eq. (G16). [This can be proven by showing, upon use of Eq. (G16) which implies

in particular a2 + 6
√
a0a4 ≥ 0, that η− < −1 would lead to (a2 + 2

√
a0a4)

2
<

a2
1a

2
3

16a0a4

that

contradicts Eq. (G16).] Thus η− always satisfies η− ≥ −1.

We therefore conclude that adding the necessary condition Eq. (G16) to Eq. (G11) and

(G26 –G29), one obtains a set of necessary and sufficient conditions. There is however
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more to it. One can show that (G28) actually implies Eq. (G16). The latter can hence be

discarded without loss of generality.20 Putting everything together, the NAS conditions read

finally:

P (ξ) > 0,∀ξ∈(−∞,+∞)⇔



a0 > 0 ∧ a4 > 0 ∧ ∆0 > 0 (G30a)

∧√
∆0 + 2a2 −

3

4
max{a

2
1

a0

,
a2

3

a4

} > 0 (G30b)

∧√
∆0 − a2 + 6

√
a0a4 > 0 (G30c)

∧

2∆
3
2
0 −∆1 > 0, (G30d)

where we defined

∆1 = 2a3
2 + 27(a0a

2
3 + a4a

2
1)− 72a0a2a4 − 9a1a2a3. (G31)

Note that we have switched all the inequalities over to strict. The non generic equality

cases can lead to different conditions. However, as argued at the beginning of Section III C,

only strict positivity will be relevant. We have performed a numerical check of the above

NAS conditions by scanning randomly over a0, a4 ∈ [0, 100] and a1, a2, a3 ∈ [−100, 100] for

105 points, then solved numerically P (ξ) = 0 for each point and checked that whenever

Eqs. (G30a – G30d) are satisfied, P (ξ) has no real roots, and whenever one of the conditions

is violated P (ξ) has at least one real root. We also performed another non-trivial check

based on the obvious fact that a translation of P (ξ) to P (ξ+ ξ0) for any ξ0 ∈ R∗ should not

affect the positivity. It follows that the NAS conditions obtained after the translation, where

the modified coefficients ã0,1,2,3 depend explicitly on ξ0 while ã4 = a4, should be equivalent

to the initial ones. Incidentally we find that ξ0 cancels out in the modified ∆0 and ∆1, which

20 The proof consists in showing that (G28), more explicitly Eq. (G30b), together with Eq. (G30a), leads

to Eq. (G16). We just sketch here the main steps: If 2a2 − 3
4 max{a

2
1

a0
,
a23
a4
} > 0 then obviously a2 −

1
4 max{a

2
1

a0
,
a23
a4
} > 0 and Eq. (G16) is satisfied. If 2a2 − 3

4 max{a
2
1

a0
,
a23
a4
} < 0, then one can nonambiuously

square the inequality in Eq. (G30b) and study it as a quadratic polynomial in a2. One then finds that it is

satisfied only in a closed domain of a2 for which Eq. (G16) is always satisfied whatever the configuration of

the max.
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means that these two quantities can be re-expressed as functions of differences of the four

roots of P (ξ), and lead to the same conditions as before. In contrast, ã0 and the modified

Eqs. (G30b, G30c) still depend on ξ0. That ã0 > 0 is valid when the initial NAS conditions

Eqs. (G30a – G30d) are satisfied follows immediately from the fact that ã0 = P (ξ0). It

remains to be checked that the involved dependence on ξ0 in the modified Eqs. (G30b,

G30c) does not lead to further NAS conditions. We verified that this is indeed the case

through a numerical scan over 5× 103 points in the ai space satisfying Eqs. (G30a – G30d)

followed by a scan over 2×103 values of ξ0 for each of these points; the modified Eqs. (G30b,

G30c) were found to be automatically satisfied for all values of ξ0.

In order to appreciate the simplification arrived at with Eqs. (G30a, G30d), one can

compare with common knowledge [54, 55]: ∆0 and ∆1 being defined as in [55], we note

that the discriminant of P (ξ) can be factorized as follows, ∆ = (2∆
3
2
0 −∆1)(2∆

3
2
0 + ∆1)/27.

Equation (G30d) requires the positivity of the first factor. It should then be clear that

instead of relying on the signs of ∆, D and P in the notations of [55], where the first two

are complicated expressions, with an ’and/or’ structure as summarized in [55], we only need

the signs of ∆0 and just one of the two factors of ∆ and two other simple relations involving

∆0 with exclusively an ’and’ structure. Moreover, the ’and’ structure leads to unambiguous

determination of necessary conditions. Another benefit of our approach is that it leads

almost immediatly to the conditions established in the following section.

APPENDIX H: NEW NAS POSITIVITY CONDITIONS FOR QUARTIC POLY-

NOMIALS ON R+

In this section we consider the NAS conditions on the parameters of the quartic polyno-

mial Eq. (G2), that ensure its positivity for all non-negative ξ,

P (ξ) > 0,∀ξ ∈ [0,+∞). (H1)

Here, the form given by Eq. (G3), although sufficient, is no more necessary. It should be

replaced by the necessary and sufficient form [47], [45, 46]:

P (ξ) ≡ Q(ξ)2 +R(ξ)2 +
(
A(ξ)2 +B(ξ)2

)
ξ, (H2)
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where, since P (ξ) is a quartic polynomial, Q and R keep the same form as in Eq.(G4), and

A(ξ) = u1 + v1ξ , B(ξ) = u2 + v2ξ, (H3)

with ui, vi denoting real numbers. Equating the coefficients of identical monomials in ξ on

both sides of Eq.(H2), one finds that Eqs. (G6,G7) remain unchanged while Eqs. (G8 – G10)

are slightly modified:

‖x‖2 = a0, (H4)

‖z‖2 = a4, (H5)

2x.y = a1 − ‖u‖2, (H6)

2y.z = a3 − ‖v‖2, (H7)

‖y‖2 = a2 − 2x.z− 2u.v, (H8)

where we introduced the vectors

u = (u1, u2), v = (v1, v2). (H9)

The study carried out in Appendix G can thus be taken over unchanged to the present case

with the following replacements:

a1 → a1 − u2 (H10)

a3 → a3 − v2 (H11)

a2 → a2 − 2uvc (H12)

where u ≡ ‖u‖, v ≡ ‖v‖ and −1 ≤ c ≡ cos (̂u,v) ≤ 1 can be chosen arbitrarily in their

domains. We thus reach the general solution to our problem:

The NAS conditions on ai=0,1,2,3,4 for Eq. (H1) are obtained from Eqs. (G30a - G30d)

in which the replacements Eqs. (H10 – H12) should lead to satisfied inequalities

for at least one choice of u ≥ 0, v ≥ 0 and −1 ≤ c ≤ 1.

(H13)

This shows in what sense Eq. (H1) is less constraining than Eq. (G1). Indeed, consider

the domain S of all points in the (a0, a1, a2, a3, a4) space that satisfy conditions (G30a –

G30d), thus Eq. (G1). Obviously S will satisfy also Eq. (H1) since the latter is contained
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in Eq. (G1). But now, any point (a0, a
′
1, a
′
2, a
′
3, a4) lying outside of S and thus not satisfying

Eq. (G1), will satisfy Eq. (H1) if it can be related to a point in S through the relations

a′1 > a1 and a′3 > a3, and a′2 = a2 + 2c
√
a′1 − a1

√
a′3 − a3 with arbitrary c ∈ [−1,+1]. This

is so because using Eqs. (H10 – H12) will bring the point back into the S domain. The

additional set of points (a0, a
′
1, a
′
2, a
′
3, a4) together with S lead obviously to a domain for

which Eq. (H1) is satisfied larger than that for which Eq. (G1) is.
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