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February 12, 2016

Abstract

This paper makes a regional evaluation of trend in yearly maxima of daily rainfall in
southern France, both at point and spatial scales on a regular grid of 8 x 8km?. In order
to filter out the high variability of rainfall maxima, the current analysis is based on a non-
stationary GEV modeling in which the location parameter is allowed to vary with time.
Three non-stationary models are considered for each series of maxima by constraining the
location parameter to vary either linearly, linearly after a given date or linearly up to a final
date. Statistical criteria are used to compare these models and select the best starting or final
point of putative trends. The analysis shows that, at regional scale, the best distribution of
maxima involves a linear trend starting in year 1985 and that this trend is significant in half
the region, including most of the mountain ranges and part of the Rhone valley. Increases
in yearly maxima are considerable since they reach up more than 60 mm/day in 20 years,

which is more than 40% of the average maximum in this area.

1 Introduction

An exceptional number of heavy rainfall and flooding events occurred in 2014. A storm struck
the Brittany region of western France at the end of December 2013 and the subsequent flood
lasted until mid January 2014. In February, the Ulla storm passed over Brittany and flooded
again along its way to Great Britain. Southeastern Europe (Serbia, Croatia, Romania) faced
flood events in May, the Basque county (southwestern France) in July, northeastern France in

August, the eastern shore of Spain and southern France in Fall and then Italy in November and

*juliette.blanchet@Qujf-grenoble.fr
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December. Is this sudden large number of floods due to natural climate variability, or is it a
consequence of anthropogenic climate change?

Already at the end of the 70’s, [Charney et al., 1979] envisioned the possible impact of human
activity on climate at a global scale. Then the successive Assessment Reports (AR) of IPCC
strengthened the evidence of a global change whose main manifestation is an increase in global
temperature. [IPCC, 2013] states that global surface temperature has increased by about 0.9°C
between 1880 and 2012, with a particularly marked warming since the 1970s. Analyzing climate
change impact on precipitation is more arduous, first because precipitation is highly variable
and second because its change in recent past shows multiple facets ([Alpert et al., 2002]). Mean
precipitation increased under the 40°N area in Europe, Russia, United States, South America
and the center of Australia between 1951 and 2010, whereas it decreased over the same period in
Eastern Asia, Southern Europe and most of Africa ([IPCC, 2013]). Then what about extreme
precipitation? Some studies support a causal relationship. [Planton et al., 2008], working in
the context of CMIP3 simulations, shows the impact of global warming on the French climate
and specifically on precipitation extremes at the end of the century. However, according to
[Gallant et al., 2013], this conclusion is not supported by the recent climate records at European
scale. Indeed, despite a clear warming signal in continental indices of temperature, no significant
trend is detected in continental indices of precipitation. Is there any trend hidden by the
spatial integration of [Gallant et al., 2013]? Focusing on point rainfall measurements, several
studies illustrate the spatial variability of extreme precipitation trends over these last decades.
[Haylock and Goodess, 2004] reports an increase in the occurrence of heavy rainfall days (defined
as the number of days with daily amounts above the 90th percentile) in northern Europe during
winter, while it decreases in southern Europe. [Zolina, 2014] considers the length of heavy
rainfall period as an extreme rainfall characteristics and shows that trends in these lengths are
highly variable across Germany. [Schmidli and Frei, 2005] uses 12 extreme precipitation indices
to characterize swiss rainfall records and finds again highly variable trends. In particular, the
number of heavy rainfall days in winter decreases in northeastern Switzerland while it increases
in the Southeast. [Toreti et al., 2010] shows that trend in the probability of observing an extreme
event varies along the mediterranean coast, with a significant negative trends found in 6 of the 20
studied costal sites. Still in the mediterranean region, [Alpert et al., 2002] shows that extreme
daily rainfall from Spain to Israel increased between 1951 and 1990 in spite of the fact that total

rainfall generally decreased.

Regarding recent trends in extreme precipitation in southern France, [Norrant and Douguédroit, 2004]

finds an increase in the 95th percentile of daily and monthly rainfall, however the inter-annual

variability of the 95th percentile suggests that this is only due to the occurrence of few high
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values at the beginning of the study period. Analysing regional trends in monthly and annual
maximum series of precipitation in seven homogeneous climatological zones in southern France,
[Pujol et al., 2007b] finds a significant increase in both annual and monthly maxima in October
in the southern part of the Massif Central and a decrease in March and an increase in April
in the Langedoc-Roussillon. [Pujol et al., 2007a] studies the regional evolution of daily peaks-
over-threshold records in the same climatological zones and finds an increase of the occurrence
and intensity of extreme daily rainfall in the southern part of the Massif Central, as well as
an increase in the intensity of extreme rainfall in the Languedoc-Roussillon. Focusing on the
southern region including the Cévennes-Vivarais mountain range prone to flash flood events,
[Tramblay et al., 2013] shows in a peaks-over-threshold approach that a slight increase in the
number of the most extreme rainfall events are observed since 1980, however no significant
trend is detected with a Mann-Kendall test, neither in the event magnitudes nor in the number
of occurrences per year. Still in the same region, [Tramblay et al., 2011] shows that time is a
valid covariate for modelling peaks-over-threshold intensity, indicating an increasing trend in the
magnitude of heavy rainfall events between 1958 and 2008. [Soubeyroux et al., 2015] finds local
upward trends in annual maxima of daily precipitation in the french Mediterannean area with
a Mann-Kendall test, however this increase is usually not significant. Finally studying seasonal
maxima of daily precipitation in the Cévennes-Vivarais range, [Vautard et al., 2015] finds local
upward trends with a median increase of about 5% per decade but few of the local trends are
significant.

Clearly the variety of methodologies is a source of difficulty for summarizing the results
on this topic. Two main approaches are usually undertaken. The first one is based on cli-
mate indices ([Karl et al., 1996]). The usual methodology is to define a bench of indices that
are relevant for the studied region and to estimate changes in each of them by fitting re-
gression models (e.g. [Frich et al., 2002], [Klein Tank and Kénnen, 2003], [Zolina et al., 2008],
[Alexander et al., 2006],[Karl et al., 1996],[Zhang et al., 2011]), or by comparing empirical prob-
ability density functions for various periods (e.g. [Alexander et al., 2006]). ETCCDI (Expert
Team on Climate Change Detection, Monitoring and Indices) recommends the use of 27 in-
dices, among which 11 are related to precipitation and usually describe ‘moderate extremes’
typically occurring several times a year ([Zhang et al., 2011]). This wide spectrum of indices
intends to cope implicitly with the great variety of rainfall regimes that can result from precipi-
tation interacting with air dynamics ([Schertzer and Lovejoy, 1987, Gupta and Waymire, 1979,
Fabry, 1996, Fraedrich and Larnder, 1993]). There are as many random variables characterizing
the rain intensity as there are spatial and temporal resolutions, i.e. an infinity. The approach

by indices chooses to summarize these many random variables by few statistics, but then part
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of the information on the random variables is lost.

The second set of approaches focuses on the heaviest rainfalls but fully characterized them
by modeling their probability density function. These approaches are linked to the statistical
theory of extreme values. The current study focuses on annual maxima (so-called "block-maxima
approach") and models them with the so-called Generalized Extreme Value (GEV) distribution
([Coles, 2001]). This approach shows the advantage of being scale-independent: whatever the
temporal and spatial scales of precipitations at hand, extreme value theory insures that the
right distribution to be used is the GEV distribution (whose parameters, of course, are ex-
pected to vary from one scale to another, see [Blanchet et al., 2015]). Thus the same theoretical
framework can be used for analyzing precipitations at different scales. This is particularly in-
teresting for rainfall since rainfall severity depends on the duration and spatial extension of
the events ([Ramos et al., 2005, Molinié et al., 2012, Ceresetti et al., 2010]). This is also par-
ticularly convenient for trend analysis because trends in extremes at different scales can be
analyzed in an easy and universal way through the use of non-stationary GEV distributions
([Marty and Blanchet, 2012, Katz et al., 2002, Westra and Sisson, 2011]).

The goal of this article is to provide a regional evaluation of trend in yearly maxima of daily
rainfall in southern France in the recent past (several decades), both at point and spatial scales
on a regular grid of 8 x 8km?. For this, we place ourself in a statistical extreme value frame-
work, which is convenient and theoretically-founded as soon as yearly maxima are concerned. A

novelty of this study compared to the litterature in the region ([Norrant and Douguédroit, 2004,

Pujol et al., 2007a, Pujol et al., 2007b, Tramblay et al., 2011, Tramblay et al., 2013, Soubeyroux et al., 2015,

Vautard et al., 2015]) is that not only local but also areal rainfalls are considered. A difference
with [Tramblay et al., 2012] is that here the surface of aggregation is about 10 times smaller
than the smallest considered area therein, which enables to study trends at finer space-scales. A
second difference is that, unlike in [Pujol et al., 2007a, Pujol et al., 2007b] for example, trends
are first assessed locally, which makes possible to reveal the spatial variability of trends and to
highlight that the great majority of the significant trends are actually found in quite specific
spots. Regional testing is performed in a second step quite similarly to [Pujol et al., 2007b] but
focusing on the sub-region where trends are the most significant rather than mixing inhomoge-
neous trends encountred over the region.

The article is organized as follows. Section 2 presents the data and region of study. Section
3 describes the methodology based on non-stationary GEV distributions. The methodology is
neither region- nor scale-specific and could be applied at any space and time scales. Currently
it is applied to daily point and areal rainfall on a grid of 8x8 km? in southern France. Section

4 discusses the results and a conclusion finishes the article.
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2 Studied region and data

The studied region broadly covers the lower basin of the Rhéne River (Figure 1). It includes
the southeastern edge of the Massif Central towards the West and the first foothills of the
Alps towards the East. It is surrounded by the Mediterranean Sea towards the South. The
region features a rather flat alluvial plain containing the Rhoéne delta with on its edges two
mountain ridges with elevations reaching between 1500 and 2000m a.s.l. in less than 30 to 50 km.
The highest peaks located along the eastern branch of the V-shaped Massif Central mountain
(Mounts Aigoual, Lozere, Gerbier de Jonc and Mézenc) are aligned with an orientation of N-
30°-E. On the other side of the Rhone Valley, the main peak line is oriented N-160°-E. This
funnel-shaped domain is known to experience severe storms generating flash-floods from various
foothill rivers. Both sides of the valley can be affected as shown by quite recent severe events
causing numerous human losses and considerable damages that occurred in 1992 on the Ouvéze
River ([Sénési et al., 1996]) and in 2002 on the Gard River ([Delrieu et al., 2005]). Nevertheless a
strong dissymmetry exists in terms of occurrence of such events in this area. The Massif Central
edge, called Cévennes-Vivarais region, experiences most of the extreme storms and resulting
flash-floods (Figure 2 of [Nuissier et al., 2008]).

This study makes use of both point and areal daily rainfall. Point rainfall stems from a rain-
gage network maintained by Météo-France and covering the French administrative departments
of Ardeche, Drome, Gard, Haute-Loire, Herault, Lozére and Vaucluse, with a surface of about
38,000 km? (see Fig. 1). The network covers at most the 1958-2014 period. The SAFRAN
database ([Quintana-Segui et al., 2008]) provides the areal rainfall on a regular grid of 8 x 8
km?. It covers the region in 1078 cells (excluding the Mediterranean Sea), see Fig. 1. Daily
SAFRAN data are available for the 1958-2013 period, with no missing value. Since flash floods
occur in Autumn in this region, we restrict all series to the three months of September, October
and November. In order to filter out the point series with too many missing values, the following

steps are applied sequentially:

1. For a given station, an autumnal maximum is considered as missing if its rank is smaller
than pmiss x N where pmiss is the proportion of missing values for that autumn, and N

is the number of observed autumns.

2. The whole station is excluded from the analysis if less than 20 autumns are missing.

Step 1. in the above procedure is inspired from [Papalexiou and Koutsoyiannis, 2013] but differs
in that here the probability to select a maxima is more continuously related to the proportion
of missing values. The idea is essentially to consider that an incomplete year with a large

proportion of missing values (large pmiss) may still have observed the maximum value if that
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Figure 1: Main features of the region of analysis: elevation above sea level, main mountain peaks
(white triangles) and main cities (white squares). Point rainfalls are provided by daily raingages
(stars) and areal rainfalls by SAFRAN grids of size 8 x 8 km? (squares). The black border
delineates the instrumented area (French administrative departments of Ardeche, Dréome, Gard,

Haute-Loire, Hérault, Lozere and Vaucluse).
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value is large compared to the other maxima (i.e. its rank is large). Applying this selection

procedure, we finally end up with a set of 428 daily point series.

3 Method

3.1 Modeling of maxima

Let R be the random variable of annual maximum rainfall intensity (in mm/h) at a given
spatio-temporal scale, and at a given location. We model the statistical distribution of R us-
ing the so-called Generalized Extreme Value (GEV) distribution. The reason for this latter
choice relies in Extreme Value Theory ([Coles, 2001], chapter 3), which insures that this is
the only possible distribution of independent and identically distributed (i.i.d.) maxima. In
the stationary case, the cumulative distribution function of R, Pr(R < r), is then given by

([Coles, 2001, Katz et al., 2002]):

g

exp {—exp <_7‘;,u>} if £ =0.

Here p, o > 0, and ¢ are the location (mm/h), scale (mm/h), and shape (dimensionless) param-

AN V23 _
exp{— <1+§T H) l } if € #£0, providedl—kfu>07
F(rip,0,8) = 7 (1)

eters, respectively. Three sub-families of distributions (EV-I, EV-II and EV-III, also known as
Gumbel, Fréchet and Reverse Weibull distributions) can be derived from the GEV depending on
the sign of its shape parameter, which governs the tail of the distribution. If the shape parameter
£ > 0, then the GEV distribution is said to be heavy tailed. This is often the case for rainfall
data, in particular in our study area ([Ceresetti et al., 2010]). The case £ = 0 corresponds to the
Gumbel case whose distribution is light-tailed. This is also often used in hydrological studies
([Borga et al., 2005]) although there is some evidence that the more general GEV distribution
should be preferred ([Papalexiou and Koutsoyiannis, 2013]). The case when & < 0 is the Re-
verse Weibull case, corresponding to upper-bounded random variables with upper-end point at
p+o/|€]. The case & < —0.5 corresponds to distributions with a very short bounded upper tail,
which is unlikely to occur in practice ([Coles, 2001]).

In the non-stationary case, the GEV parameters vary with time (years). In this article, the
location parameter is assumed to be a function u(t), whilst the scale and shape parameters are

constant. Three non-stationary models for p(t) are considered:

e A linear trend:

p(t) = po + pt, (2)
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e A linear trend starting in year tg:

Mo, t < t(]a
p(t) = 3)
po + pa(t —to), t > to.
e A linear trend before year t:

() = po + pa(t —to), ¢ <to, @)

Ko, t > to.

The linear case in p(t) (Eq. 2) is used in many studies to model non-stationarities in precipitation
extremes (e.g. [Katz et al., 2002]). Here we extend this idea by allowing the change to start in
some year ty (Eq. 3) or to finish in some year ¢ty (Eq. 4). [Panthou et al., 2013] uses in West
Africa a different model with a jump in ¢g, i.e. u(t) takes value pg before the change point ¢y and
w1 after tg. This induces a discontinuity in the distribution of maxima which seems unrealistic
in the region and will not be considered hereafter.

The three above equations involve two unknown parameters for u(t), instead of one parameter
in the stationary case. This latter case is actually a particular case of Egs. 2 to 4 under
p1 = 0. This property will be used in the next section to make trend hypothesis test. The
corresponding GEV distribution is obtained by replacing in (1) u by p(t). Since the mean of the
GEV distribution is a linear function of u while its stardard deviation is independent of p, the
mean of annual maxima is expected to experience a linear trend under Eq. 2, or a linear trend
with change point under Eqgs. 3 and 4, while the standard deviation of the maxima is expected
to be constant within the observed period for all models.

Together with the stationary case, four GEV models are thus considered, with respectively
three (stationary case) and four (non-stationary case, Egs. 2 to 4) unknown parameters. These
parameters have to be estimated for each series of maxima. In order to insure that enough data

are available, we consider:

e the linear case of Eq. 2 for all series having at least 20 years of observations (which is met

by all series);

e the linear case with change point in ¢y of Eqs. 3 and 4 for all series having at least 20

years of observations both before and after #.

Since the series span over the 1958-2014 period, possible years of change tg will be considered
between 1977 and 1995. Models of Eqs. 3 and 4 may or may not be considered for a given series,
depending on its observation range and on tg.

All the models are fitted by maximum likelihood ([Coles, 2001], chapter 3.3), independently
for each raingage and SAFRAN series. Let consider a given series of n annual maximum intensi-

ties, denoted r = (r1,...,7y,), and (¢1,...,t,) the corresponding years. Assuming independence
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of annual maxima, the log-likelihood in the non-stationary case is given by

log L(po, pt1,0,§) = —nlog(o) — (1 +1/§) ifi — if;lk (5)

where

f¢=1+§<”_“(“)), (6)

o

and p(t) is a function of pp and pp as in Egs. 2, 3 or 4, depending on the considered model.
The log-likelihood in the stationary-case is function of (ug,o0,§) and is also given by Eq. 5,
replacing u(t;) by po in Eq. 6. Denoting 6 the three or four GEV parameters, the most likely
parameters are those such that 6 = argmaxy L(6). Since there is no explicit solution, 0 is
obtained numerically. Standard errors of the trend p; in the non-stationary models of Eqgs. 2
to 4 are obtained from the approximate normality of the maximum likelihood estimator (see

[Coles, 2001], chapter 2.6.4) as

std(fi1) = /(17 1)22

where (I71)q2 is the element (2,2) of the inverse of the observed information matrix I defined

by

_ dlogL(®)  9%logL(®)  9%logL(d)  9%logL(H)

oud Juodp1 oo o
_ &logL(®)  9%logL(®)  9%logL(d)  9%logL(H)

= OpoOu1 ou3 0100 Ou10€
_ d%log L(6) _ &%log L(0) _ 9%log L(f) _ 9%log L(6)

Oupdo Op10o 02 000E
_ 9%log L() _ &%log L(9) _&%log L(9) _ 9%log L(6)

Opo0g Op10¢ 9o dg 0¢?

3.2 Model selection

Given the estimated models of the previous section, we now wish to decide for each series
whether any of the non-stationary model is preferred to the stationary assumption, and if so
which one and for which year of change. Here we use GEV likelihood criteria, even for the
selection of the best year of change. It has two main advantages over the usual statistical tests
relying not on GEV assumptions (see [Beaulieu et al., 2012] for a recent review). First, several
studies showed the better performance of the GEV framework when dealing with extreme data
([Katz, 2013, Mallakpour and Villarini, 2015]). Second it allows us to use a common method-
ological framework throughout all the process of selection of the best non-stationary model,
selection of the best year of change, estimation of the trend and testing of trend significance.
In a first step we compare the non-stationary models to one another and select at regional
scale which of them give(s) the best model-data fit. Since all considered non-stationary models
have four degrees-of-freedom, namely (ug, p1,0,&), we can simply compare their likelihoods

and select the subset of them giving the highest mean log-likelihood in the region. However,
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strictly speaking, this cannot be considered has a regional test for two reasons: first, likelihood
comparisons are, strictly speaking, not statistical tests. Second there is spatial dependence
among the data and therefore among the likelihoods. This first step can therefore only give
evidence about a possible non-stationary model, but not a final decision.

Now let M be a putative non-stationary model selected at the previous step. In a second step
we focus on each series independently. We wish to assess for each of them whether M should
indeed be preferred to the stationary model M. First evidence is obtained by comparing
the penalized likelihoods under M and Mg, with a penalization accounting for the difference
in degrees-of-freedom between the two models. We use the well-known Akaike and Bayesian
Information criteria (respectively AIC, [Akaike, 1974] and BIC, [Schwarz, 1978]), which only
differ in the penalizing term. Let L4 and Lay, be the likelihoods under M and M, (Eq. 5)
and 0 and 0y the corresponding most likely parameters. Difference in AIC and BIC between

both models is given by:

AAIC = 2{log La(A) —log Ly, (60)} — 2 (7)

ABIC = 2{log L (0) — log Lty(00)} — log(n) 8)

Positive values of AAIC (resp. ABIC) gives evidence of preference for the non-stationary model
M rather than Mj. Since our series have length greater than 20 (thus log(n) > 2), BIC penalizes
free parameters more strongly than AIC, which tends to favor models with more parameters,
especially for small samples ([Wit et al., 2012]). A way to statistically test model M versus
M, is to perform a likelihood ratio test (LRT, [Coles, 2001], chapter 2.6). The test applies
here because M, is a particular case of all considered non-stationary models (corresponding to

w1 =0 in Egs. 2 to 4). Define
D = 2{log Ly (f) — log L, (60)} (9)

to be the deviance statistic. Then, for large n, under the null hypothesis that the series comes
from the stationary model Mg (i.e. Hp : pu3 = 0), D should follow a x? distribution. Hence, a
test of the validity of My relatively to M at the level of significance « is to reject the stationary

model My in favor of M if D is greater than the (1 — a) quantile of the x? distribution.

4 Results and Discussion

4.1 Exploratory analysis: spatial features of maxima

This section contextualizes the daily rainfall maxima in the region. More detailed analyzes

can be found in [Ceresetti et al., 2012] and [Molinié et al., 2012] for example. Figure 2 maps

10
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the average of maximum intensity (left) and the 95% quantile of maxima (right), both for the
point (raingages) and areal (SAFRAN) rainfall data. On average the largest maxima of both
point and areal rainfall are found along the Cévennes-Vivarais slope facing South-East. It is
interesting to notice that the highest averages of areal rainfall maxima are located over the
northern part of the Cévennes-Vivarais slope, around the Serre de la Croix de Bauzon. All
along the Cévennes-Vivarais slope, river regularly spaced of about 15km have dug deep valleys.
Around the Serre, these secondary valleys are oriented West-East (while Northwest-southeast
elsewhere) i.e. perpendicular to the southern mediterranean flux. At this spot, the averages
of point and areal rainfall maxima are of the same order of magnitude, i.e. around 6 mm/h
accumulated over one day, which is about 140 mm/day. Going more southwest, around Mont
Aigoual, the average maximum of areal and point rainfall depart more. Mont Aigoual is well
known for experiencing heavy rainfall. The average maximum of point rainfall is similar that of
the Serre de la Croix de Bauzon. However, the area around Mont Aigoual is far less prone to
heavy rainfall and therefore the maximum of areal rainfall is one third of that of point rainfall.
Elsewhere in the study region, areal and point rainfalls are in a good agreement indicating that
the homogeneity scale of the average maximum is at least of 8 km.

It is important to keep in mind that the average filters out the variety of events impacting
the region. The right panel of Figure 2 intends to illustrate this variety by displaying the 95%-
quantile of point and areal rainfall maxima. Again rainfall is quite homogeneous around the
Serre de la Croix de Bauzon where the largest point and areal rainfall maxima are similar. The
largest point rainfalls are found in the foothills around the town of Alés, which departs from
the location of the largest average maxima. In this area, the 95%-quantile of point rainfall
maxima is more than twice that of areal rainfall maxima, which illustrates the spatial variability
of the largest maxima. The two spots experiencing the largest maxima, namely the foothills
around the town of Alés and around the Serre de la Croix de Bauzon, are prone to stationary
rainfall. Some processes favoring the stationarity of deep convection over the foothills such as
the cold pool have been revealed in [Ducrocq et al., 2008], while [Miniscloux et al., 2001] and
[Anquetin et al., 2003] show that the mountain shoulders perpendicular to the atmospheric flow

can sustain shallow convection.

4.2 Trend analysis

Now we address the question of whether daily rainfall maxima have exhibited a significant trend
in the study region since 1958. A simple way of detecting trends in time series is to fit regression
models. However fitting a linear trend on rainfall maxima reveals some weaknesses in terms of

robustness due to the high variability of rainfall maxima. Therefore we prefer the use of GEV-
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Figure 2: Maps of the daily data. Left: Mean maximum intensity (mm/h). Right: 95%-quantile

of maximum intensity (mm/h).

based models (Section 3.1) in order to filter out the seldom occurrence of exceptionally high
maxima in the series. An illustration is given by the following robustness analysis. First, we fit
to each point series of yearly maxima i) the GEV model of Eq. 1 with linearly varying location
parameter (Eq. 2) and ii) a linear regression. Second, we remove the overall maximum of each
point series and fit to these new series the two previous models. Figure 3 shows the histograms
of the differences in trend estimates, for the two cases. Among the 428 point series, 300 (70%)
have an absolute difference smaller than 0.1 mm/day/year in the GEV modeling versus only 184
(43%) when using a regression model, which clearly illustrates a lower sensitivity of the GEV
modeling to sampling.

Having selected the GEV-based framework for trend analysis, we now estimate a GEV model
to each point and areal series with u(t) constrained to vary either linearly (Eq. 2), linearly after
a given date to (Eq. 3) or linearly up to a final date ¢y (Eq. 4). We first select which of these
non-stationary models fits better the data at regional scale. As explained in Section 3.2, first
evidence can be obtained by comparing the mean likelihoods of the different models within the
region. Since models of Eqgs. 3 and 4 have a change point tg, which is fixed but unknown, we
make estimation of these models by varying tg between years 1977 and 1994, in order to insure
that 20 years of data are available before the first change point (1977) and after the last one
(1994). Figure 4 plots the regional mean of the likelihoods of the non-stationary models, for
both point (left) and areal (right) rainfall, as a function of the change point (since the linear
model has no change point, it is depicted with horizontal line). In the top of Figure 4 the
mean is computed over the stations whose series of maxima has no missing year between 1958

and 2013, which is the observation period of SAFRAN data. Thus each point of Figure 4 is a
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Figure 3: Histogram of difference in trend magnitude (mm/day/year) estimated with and with-
out the overall maximum of each series of yearly point maxima, under either (left) the non-

stationary GEV distribution of Eq.2, or (right) a linear regression model.

mean of 88 likelihoods for the point data, and a mean of 682 likelihoods for the areal ones. The
same conclusions are drawn from mean log-likelihood comparison in the two cases: whatever the
year of change, the model with a recent trend (green line) is more likely than the model with a
trend since 1958 (black line), which is itself more likely than a model with a trend in the first
subperiod (red line). The best model has a change point in 1985 with a linear trend afterwards.
One may be concerned by the fact that the best change point occurs in 1985, which is exactly
the center of the observation period. In order to check that there is no bias here, we repeat the
same process but we make the GEV estimations on a reduced database starting in 1963 (thus
skipping the 5 first years). The bottom of Figure 4 shows that the same conclusion is drawn:
at regional scale, the selected model is the non-stationary model of Eq. 3 with a change point
in 1985 — which is not anymore the center of the period.

Let stress however that, since rainfall maxima are likely to be spatially correlated over
the region ([Bernard et al., 2013]), their joint probability density function is not a product of
marginal probabilities, and thus the log-likelihood sum in Figure 4 is not a proper likelihood.
Therefore, although Figure 4 gives first insight about some potential starting date of the trend
at regional scale, one should keep in mind that this selection criterium relies somehow on an
assumption of independence that is unlikely to hold. This assumption is actually made in the
large majority of the studies of trends in extremes, including that of [Vautard et al., 2015] for
extreme rainfall in the same region, due to the theoretical difficuty in modeling dependence in

extremes ([Davison et al., 2012], [Cooley et al., 2012]). A complementary view not relying on
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any regional modeling is obtained by checking for each series independently whether the non-
stationary model performs statistically better than the stationary one. Due to its clear better
performance compared to the two other considered non-stationary models (see Figure 4), we
here focus only on model of Eq. 3 with a trend starting at some date. Figure 5 shows, for each
year of change, the percentage of series for which model of Eq. 3 is statistically better than the
stationary model. Here we use the selection criteria presented section 3.2, namely AIC and BIC,
which are, strictly speaking, not statistical tests but penalized likelihood criteria, and the LRT
at levels 5% and 10%, giving in total four criteria per series. Figure 5 reveals a good concordance
between the results obtained with AIC and the LRT at level 10% on the one hand (plain lines),
and between BIC and the LRT at level 5% on the other hand (dotted lines). Therefore, although
they are strictly speaking not statistical tests, AIC and BIC are actually roughly equivalent to
likelihood ratio testing. Figure 5 also shows that less trends are detected as significant with BIC
than with AIC, which was expected since the former uses a stronger penalization (compare Eq. 7
to 8). The same applies obviously to the two likelihood ratio tests. One finding is that, whatever
the criteria, a larger proportion of trends are detected as significant for the point maxima than
for the areal ones (compare the blue lines to the red lines). Another finding is that, when using
moderately strict tests (in AIC and the LRT at level 10%), all years of changes between the 80’s
and the 90’s seem to be almost as likely, but when the test becomes stricter (in BIC and the
LRT at level 5%), the year 1985 pops out as the most likely, which agrees with the results of
Figure 4.

Figure 6 maps the series with a significant trend starting in 1985 according to each cri-
terium of Figure 5. The most striking feature is that AIC and the likelihood ratio test at
level 10% on one hand, and BIC and the likelihood ratio test at level 5% on the other hand,
give the same spatial patterns of trends. So not only the percentage of trends (Figure 5) are
similar in each case, but also the same series are detected as non-stationary. Grossly speak-
ing, yearly maxima of daily rainfall over both the Alps and the Cévennes-Vivarais relief, the
foothills and the Rhone river valley are likely to vary linearly with time since 1985. This forms
a sub-region of exactly half the size the original region where 95% of the significant trends are
located (dotted delineation in Figure 6). Furthermore, comparison of point and areal cases in
the two maps shows that trends are variable at small-scale. This localized pattern of trends is
smoothed out in SAFRAN rainfalls because these are computed as weighted averages of rain-
gage series ([Quintana-Segui et al., 2008, Vidal et al., 2010]) that may exhibit inhomogeneous
trends, explaining why less significant trends are found for the areal maxima. Figure 7 shows the
magnitude of the estimated trends (left) together with their standard errors (middle) computed

following the method of Section 3.1. Most of the study area has undergone an increase in daily
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Figure 5: Percentage of series for which the non-stationary GEV distribution of Eq. 3 is preferred
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Preferrence is assessed using AIC (plain-left), BIC (dotted-left) or the likelihood ratio test at

levels 10% (plain-right) and 5% (dotted-right).

rainfall maxima since 1985 with larger values in the eastern sub-region where most significant
trends are found (see Figure 6). The largest increases of point rainfall maxima are found in two
spots: first, along the Cévennes-Vivarais mountain range where increases reach more than 60
mm/day in 20 years. This is however also where uncertainty in the highest, with standard errors
around 50% of this increase. Second, around the town of Aleés with increases up to about 45
mm/day in 20 years, however again with standard errors of about 50% of this increase. Inter-
estingly, these two spots feature respectively the largest averages and the largest absolute values
of rainfall maxima (see Fig. 2). The largest trends in areal rainfall maxima are found in the
whole Cévennes-Vivarais slope with up to 1.5 mm/day/year increase. This area features also
the largest averages of yearly areal maxima (see Fig. 2). Thus, whatever point or areal rainfall,
the largest trends are found where rainfall maxima are the largest. This is however In order to
filter out this effect, we display in the right panel of Figure 7 the trend magnitudes relatively to
the averages of rainfall maxima. The same two spots, around Aleés and the Cévennes-Vivarais
slope, still feature among the largest relative trends with increases in the last 20 years reaching
up to 40% of the average maxima in these areas. Few other spots stand out: the southwest of
the region, which is prone to heavy rainfall events when southeasterly low level flux is blocked by
the Pyrenees mountains at the South and by the Massif Central at the North, sustaining deep
convection ([Ducrocq et al., 2008, Duffourg and Ducrocq, 2011]); the coastal region of Montpel-

lier and the northern part of the Rhone river valley around the town of Valence. There, the
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Vercors and Massif Central mountains are closed (about 20 km) drawing a strait where flows
the Rhone river. This topography may block southerly air mass flux. [Froidurot et al., 2015]
notices that 3-hourly rainfall is considerable in this area and features a marked diurnal cycle.
One possible mechanism is the influence of the sea breeze which can penetrate inland up to
Valence ([Bastin et al., 2005, Drobinski et al., 2006]) and which has been associated to rain in
other coastal areas ([Pielke, 1974, Hill et al., 2010]). On the other hand, the mountainous areas
south of the Massif Central or the area west of Montpellier have experienced very little increase,
if not decrease, in the last 20 years (see Fig. 7). This high variability of trends shows that
complex physical processes play a role in the occurrence of trends in the region.

The previous results show significance of local trends. Still remains the question: is the
number of trends detected in Figure 6 significant at regional scale? Answering this question
belongs to the domain of field significance. If the maxima were independent, then field sig-
nificance could be obtained either by comparing the distribution of the local test p-values
to the uniform distribution ([Vogel and Kroll, 1989]), or of the number of rejection of local
tests to the binomial distribution ([Livezey and Chen, 1983]), or by considering the regional
likelihood as a sum of local likelihoods and applying any test of non-stationarity, e.g. LRT,
possibily correcting for the effective degrees of freedom due to spatially dependent trends
([Bretherton et al., 1999, Vautard et al., 2015]). However, applying these tests in our case would
be inconsistent owing to the spatial dependence of rainfall maxima ([Bernard et al., 2013]). It
would tend to an overestimation of the regional p-value and thus an underestimation of the
Type I error rate. Thus, properly testing field significance requires taking into account the
spatial correlation among maxima: is the number of trends detected in Figure 6 significant at
regional scale, given the spatial correlation of the rainfall maxima? We address this question by
a bootstrap procedure ([Douglas et al., 2000, Renard et al., 2008, Pujol et al., 2007b]), which is
an iterative simulation procedure allowing to empirically estimate the distribution of the number
of locally significant trends under the null hypothesis that the series of maxima are stationary
but spatially correlated. We use 1000 bootstrap runs. Each run consists of the following steps
([Renard et al., 2008]): (i) Sample the years with replacement and create the new database
obtained by replacing the original series of maxima by the maxima corresponding to these boot-
strapped years; (ii) Apply the four tests of Figure 6 to each bootstrapped series; (iii) Maps the
series with significant trends as in Figure 6. In the end, 1000 maps such as those of Figure 6
are obtained. Comparing the number of significant trends in the original maps of Figure 6 to
the bootstrapped maps gives an approximate p-value of the test of field significance, estimated
as the proportion of the bootstrapped maps showing more significant trends than Figure 6. Ta-

ble 1 shows these p-values depending on the database, on the criterium for local testing and on
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Figure 6: Test of trend at daily scale. The considered non-stationary model is that of Eq. 3 with
a change in 1985. Preferrence is assessed using AIC (top-left), BIC (top-right) or the likelihood
ratio test at levels 10% (bottom-left) and 5% (bottom-right). The dotted lines delineate the

border of the eastern sub-region where the large majority of the significant trends are found.
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AIC BIC LRT 10% LRT 5%

whole region  Raingages | 3.5 ** 4.3 ** 2.8 ** 4.2 **

eastern region Raingages | 2.3 ** 3.2 ** 2.2 ** 3 kx
whole region ~SAFRAN | 13.4 17 8.8 * 16
eastern region SAFRAN | 6.5 * 10 * 3.6 ** 9.1%

Table 1: Proportion (%) of the bootstrap runs detecting more significant trends than those
detected on the orginal data, when considering either the whole region or the eastern part. The
criteria to detect trends are AIC, BIC and LRT at levels 10% and 5%. Very significant trends
at regional scale are shown with ** (p-value smaller that 5%), moderately significant trend with

* (p-value between 5% and 10%).

the considered region. Point rainfall maxima show highly positive trends at the regional scale
with all criteria (first row of Table 1), whereas areal rainfalls are moderately significant with a
LRT at level 10% and non significant otherwise (third row). When restricting to the eastern
sub-region where the large majority of the significant trends are (see Figure 6), trends in point
rainfall maxima become even more significant (second row) and trends in areal maxima become

all significant, and even very significant with a LRT at level 10% (fourth row).

5 Conclusion

This study addresses trends in yearly maxima of daily point and areal rainfall in southern
France. The adopted methodology is to model the statistical distribution of rainfall maxima by

different cases of non-stationary GEV models in which the location parameter changes linearly
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with years either after or before a given date. Such non-stationary models assume a translation
of the distribution of maxima from year to year towards higher or lower values, before or after
a given date. The stationary model is a particular case when the linear trend is null. The
proposed methodology for trend analysis involves three steps. First, all the considered non-
stationary models are estimated for each point and areal rainfall series of maxima. Second,
the best model is selected at regional scale by likelihood comparisons, which also allows us to
select the best trend-starting/ending date. Third the corresponding non-stationary model is
objectively tested for each series of maxima to assess significance of the trends, both at local
and regional scales.

This statistical framework is applied to 52 years of both point and areal rainfall data on
8 x 8 km? grids in southern France. The results show a fairly good accordance of the detected
trends for the two spatial scales. At regional scale, the most likely starting date of the trend
lies between the 80’s and the 90’s, with 1985 as the most likely. The trend in point rainfall
is highly significantly positive in half the region including most of the mountain ranges and
part of the Rhone valley. Spatial rainfall also indicates positive trends in these area, however
usually of lower magnitude and thus of lower significance. In terms of trend magnitude, two
spots stand particularly out for the two spatial scales: the Cévennes-Vivarais ridge and around
Ales. These two spots feature both the largest rainfall maxima and the largest trends, which can
reach an increase in yearly maxima of more than 62 mm/day in 20 years. This is considerable
since it represents more than 40% of the average maximum in this area. Such a high relative
increase occurs also in areas where maxima are rather moderate, such as the Rhone river valley,
while the mountainous region south of the Massif Central and the area west of Montpellier have
experienced very little increase, if not decrease.

These results question the processes leading to trends. How are these results in agreement
with the well-known Clausius-Clapeyron relationship? If the atmosphere contains more precip-
itable water due to global warming, why does it imprint rainfall maxima in some regions and
not in others? Insights on the amount of precipitable water (e.g. [Duffourg and Ducrocq, 2011])
are necessary to understand the occurrence of trends. However the question of rainfall sampling
is of primary importance. Better understanding may be gained by analysing trends in sub-
daily rainfall maxima, which are less prone to stationary precipitation ([Ceresetti et al., 2010,
Molinié et al., 2012]). Unfortunately such chronological rainfall series are usually neither long

enough nor dense enough to provide reliable statistics at regional scale.
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