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We study the transmission of narrow electromagnetic beams associated to different K valleys, from both the
armchair and zigzag edges, in a graphenelike triangular metallic photonic crystal. Due to the metallic nature
of the structure, the propagation of an electromagnetic wave, with the wave vector close to the quasitriangular
isofrequency contours of the Dirac cones resulting from the band trigonal warping, can be considered as being
based on a series of bonding or antibonding states, formed by the local resonance modes in the unit cells. The
transmission of a narrow incident beam, of the width of the crystal period size, depends on the local structure
configurations in the beam impact zone that determine the distribution of the excited local resonance modes as
well as the coupling between the latter and the incident field, thus the beam propagation in different directions.
This investigation allows us to understand the interaction between an incident field and the resonance states
associated to the Dirac cones at elementary structure scales reaching the size of these states. It can find application
in valley photonics for transport tuning and optimization.

DOI: 10.1103/PhysRevB.103.235107

I. INTRODUCTION

Graphenelike photonic crystals are widely studied both for
their fundamental interest and application potential. Indeed,
these structures reproduce the electronic bands of the atomic
structures by creating Dirac cones in their frequency bands
[1]. An electromagnetic (EM) emission can be coupled to such
structures and the resulting spectrum modifications provide
information on the dispersion properties of the Dirac cones as
well as their coupling with the incident field. Being geomet-
rically and materially tunable, such photonic crystals enable
investigations of the physical properties inaccessible in atomic
structures by allowing structure configurations and modula-
tions unrealizable in the latter. Many fundamental phenomena,
specific to the Dirac cones, including conical diffraction,
gap soliton, pseudodiffusive transmission, quantum Hall-like
effect, zero refractive index, and valley-polarized beam prop-
agation [1–5] have been investigated. Potential applications,
such as valley photonics exploring optically the valley degree
of freedom to control and manipulate the light beam prop-
agation, analogous to valleytronics [6], have recently been
proposed for information processing [7]. Indeed, it is shown
that, by lifting the inversion symmetry in the structures, it is
possible to achieve photonic topological insulators for large-
scale photonic integrations [8] and independent control of
valley-dependent transportation [7].

Dirac cones can emerge in various dielectric [1–4,9] and
metallic [10–12] photonic crystals. In the former, the band
formation can be described by a nearly-free-photon approx-
imation [13], while, in the latter, the low-frequency EM
bands are formed by cavitylike local resonance modes con-
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fined inside the structure tiles delimited by metallic elements
[11,12,14]. Such local resonance modes follow a honeycomb
distribution in a triangular metallic structure, which is thus
equivalent to a honeycomb atomic one.

It is known that, due to the local threefold symmetry
in a honeycomb structure, the Dirac cones undergo trigonal
warping for frequencies departing from the Dirac level [15],
lifting the degeneracy between two inequivalent cones. The
group velocity distribution becomes increasingly anisotropic.
When the isofrequency contours of the Dirac cones become
nearly triangular, the wave propagation will follow the �-K
directions that are perpendicular to the isofrequency contours,
and a beam propagating in such a structure undergoes splitting
and self-collimation associated to different K valleys [5]. This
provides an alternative way for wave propagation control and
beam manipulation. Studies on K-valley dependent EM beam
propagation, associated to the lower Dirac cones in dielectric
photonic crystals [5,16] and to the upper cones in analogous
situations of electron beams in atomic graphenes [17,18],
are both carried out. Beam splitting and self-collimation are
obtained for the zigzag and armchair edge incidences.

Due to the huge value of the dielectric function of the
metallic elements, metallic photonic crystals need only a few
number of periods to achieve band gaps [19], allowing smaller
sample sizes in practice. More particularly, in a metallic pho-
tonic crystal, the eigenmodes of the low frequency crystal
wave function can be constructed by the combination of the
local resonance modes mentioned above in a tight-binding
(TB) model [11,12,14]. An EM wave propagating in a metallic
photonic crystal will then follow the structural tile distribu-
tion, through the coupling between the local resonance modes.
We have shown previously that an EM beam propagation
associated to trigonally warped Dirac cones in a graphene-
like triangular metallic photonic crystal display drastically
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different behaviors as compared to the dielectric and other
analogous systems, due to the EM wave function symmetry
along the �-K lines and the metallic nature of the structure.
Namely, at the armchair edge, the incident beam associated
to the lower Dirac cone is collimated to one central beam,
and that associated to the upper cone is split to two beams
with a 2π/3 angle. The other expected beams are all strongly
inhibited [20].

In this work we report a study of the transmission of narrow
incident beams, of the widths of the crystal period scales, from
both the armchair and zigzag edges in a triangular metallic
photonic crystal, associated to the trigonally warped Dirac
cones. We discuss the EM frequency band structure close to
the quasitriangular isofrequency contours of a Dirac cone and
show that the beam transmission depends on the position and
orientation of unit cells along the propagation directions in the
beam impact zone that will determine the characteristics of
the excited local resonance modes and the coupling between
the latter and the incident field, thus the beam propagation in
different directions.

II. BAND STRUCTURE CLOSE TO QUASITRIANGULAR
ISOFREQUENCY CONTOURS OF A DIRAC CONE

A triangular lattice [Fig. 1(a)] belongs to the symmetry
group D6h and contains two families of triangular tiles, point-
ing, respectively, up- and downward in the figure. These two
families of tiles will be referred to as A and B tiles hereinafter.
The metallic photonic crystal is constructed by infinitely long
cylinders, with radius r = 0.25a (a being the lattice constant)
and dielectric constant set to negative infinity, placed at the
lattice nodes in an air background. The EM frequency band
diagram for TM polarization (the electric field parallel to
the z axis), obtained in the previous work [20] by solving
Maxwell’s equations using the finite-difference time-domain
(FDTD) method [11], is reproduced in Fig. 1(b). Dirac cones
are formed by the first two bands [11,20]. The lower and upper
Dirac cones at the K point depicted by isofrequency contours,
presented in Ref. [20], are reproduced in the same figure
[(c) and (d)]. As a matter of fact, departing from the Dirac
frequency ωD ≈ 0.917 (ωa/2πc), the isofrequency lines un-
dergo trigonal distortion and approach quasitriangular forms
at ω1 ≈ 0.863 and ω2 ≈ 0.978 (ωa/2πc) for, respectively, the
lower and the upper cones.

The formation of the first two bands can be described by
a TB model [11] [solid lines in Fig. 1(b)]. Recalling that, in
a such model, the crystal wave function is expressed as the
sum of local wave functions, |φA〉 and |φB〉, corresponding to
the electric field distributions of the s-like resonance modes
formed inside A and B tiles delimited by three metallic cylin-
ders at the vertices. Along a �-K direction, the modes |φA〉
and |φB〉 contribute equally, in absolute value, to the crystal
wave function:

|�k(r)〉 =
∑

m

eikRm

√
2N

(|φA(r − Rm − dA)〉

± |φB(r − Rm − dB)〉), (1)

where Rm, dA, and dB represent, respectively, the lattice vec-
tors and the positions of |φA〉 and |φB〉 in the unit cell, with
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FIG. 1. The triangular lattice and its rhombic unit cell (thick
dashed lines) [(a)] of the metallic photonic crystal and the corre-
sponding EM frequency band diagram [(b)], where a Dirac point
at K (4π/3a, 0) is obtained for ωD ≈ 0.917. The circles and solid
lines represent, respectively, the FDTD solution and the TB model
description. Isofrequency contours of the lower and upper cone at
the same K point, with contour interval �ω = 0.015, are depicted in
(c) and (d). Quasitriangular forms are obtained at frequency levels
ω1 ≈ 0.863 and ω2 ≈ 0.978, indicated by the dashed lines in (b) (all
the values are normalized to ωa/2πc). The upper and lower insets
in (c) and (d) depict the expected beam propagation directions (thin
arrows) for, respectively, the armchair and zigzag edge incidence
(thick arrows). The incidence edges investigated in the present work
are depicted by the thick dash-dotted lines in (a), with the thick
arrows indicating the incident beam axes.

summing over the unit cells. The wave function is character-
ized by a mirror or a mirror inversion symmetry with respect
to the plane defined by the �-K line and the z axis.

Defining the usual parameters, α, γ , and β, that describe,
respectively, the overlap and the energy transfer between first
neighbor tiles and the mode energy level shift from that in an
individual tile [21], the crystal frequency ωk can be obtained
from the characteristic equation [11]

det

[
ω2

0 − β − ω2
k −ξ [γ − α(ω2

0 − ω2
k )]

−ξ ∗[γ − α(ω2
0 − ω2

k )] ω2
0 − β − ω2

k

]
= 0

(2)
with ω0 the eigenfrequency of the s-like resonance modes in
an individual triangular tile.

The roots are simply

ωk
2 = ω0

2 − β ∓ |ξ |γ
1 ∓ |ξ |α (3)
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with
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(4)
The value of ω0 can be obtained by solving Maxwell’s equa-
tion using the FDTD method on an individual triangular tile.

As shown in Figs. 1(c) and 1(d), along the x axis, the
left edges of the quasitriangular contours are close to the
wave vector k = (π/a, 0). This relation is valid for the other
�-K directions by rotational symmetry, where the edges of
the quasitriangular contours inside the first Brillouin zone
are close to k = (−π/a, 0) and (±π/2a,±√

3π/2a), respec-
tively. Indeed, one can check that the magnitude differences
between the concerned contour edge wave vectors and the
above k vectors are less than 1%. Therefore, wave vectors
close to the edges of the quasitriangular contours are close to
the above k vectors as well. For these wave vectors, the sum

cos(
√

3kya
2 )cos( kxa

2 ) + cos2( kxa
2 ) in Eq. (4) tends to zero, and

Eq. (3) can be rewritten as

ωk
2 ≈ �0

2 − ∓2
[
cos

(√
3kya
2

)
cos

( kxa
2

) + cos2
( kxa

2

)]
γ

1 ∓ α
(5)

with

�2 = ω0
2 − β ∓ γ

1 ∓ α
(6)

(∓ corresponding to the upper and lower Dirac cone, respec-
tively.)

The above relation between the wave vectors can also be
checked by considering the corresponding frequency levels.
Taking the frequency bands along the x axis, the values of
� are exactly the crystal frequency levels at k = (π/a, 0),
where |ξ | is unity [Eqs. (3), (4), and (6)]. We get from
the FDTD solutions ω(π/a,0)1 = �1 ≈ 0.8626 and ω(π/a,0)2 =
�2 ≈ 0.9792 (ωa/2πc). These values are close to the fre-
quency levels of the quasitriangular contours ω1 and ω2 given
above.

As a matter of fact, the �2 expression in Eq. (6) corre-
sponds to the energy levels of two coupled modes |φA〉 and
|φB〉 in a unit cell, of which the long diagonal is perpendicular
to the �-K axis, with ∓ corresponding, respectively, to the
antibonding and bonding states. The band structure along a
�-K direction close to the quasitriangular contours, associated
to the lower or upper parts of the Dirac cones, can then
be viewed as arising from a series of |φA〉-|φB〉 bonding or
antibonding states on one-dimensional chains, with the band
frequencies derived from the � values adjusted by the second
term in Eq. (5).

Along a �-K axis, the D6h symmetry is lowered to that of
a subgroup C2v [22]. The |φA〉-|φB〉 bonding and antibonding
states, as well as the crystal wave function, can be described
by the A1 and B1 representations of C2V , characterized by,
respectively, a mirror and a mirror inversion symmetry with
respect to the �-K-z plane. An EM beam propagating along
a �-K direction and associated to the lower Dirac cone is
described by the A1 representation, while such a beam associ-
ated to the upper cone is represented by B1 [20]. They will be
referred to as A1 and B1 beams hereinafter.

It is worth emphasizing that, in the present structure, a
|φA〉-|φB〉 bonding or antibonding state can only be formed
in a rhombic unit cell, since the coupling takes place through
the opening at the common edge between A and B tiles [see
Fig. 1(a)]. An A1 or B1 beam will then propagate based on
these |φA〉-|φB〉 states formed in the unit cells along the �-K
direction. Both of these beams will be characterized by a
minimum width that is the height of the unit cell along its
long diagonal.

In a metallic photonic crystal, where the coupling is of
short range, as described by the TB model, the coupling
strength between an incident beam and the first resonance
modes excited in the crystal sample is decisive for the trans-
mission, since the magnitudes of these resonance modes
determine those of the following along the propagation direc-
tion, thus the beam transmission. Moreover, for an EM beam
with wave vector close to the quasitriangular isofrequency
contours of the Dirac cones, the above discussion suggests the
importance for the incident beam to excite |φA〉-|φB〉 bonding
or antibonding states, in the first rhombic unit cells, at the
sample edges for an optimum transmission. It is therefore in-
teresting to investigate the EM beam propagation for different
local incident conditions at the sample edges. This can be
achieved using narrow incident beams, of widths of the crystal
period sizes, that allow us to selectively interact with specific
local structure configurations, to probe the coupling between
the incident field and the local resonance modes associated to
the Dirac cones at elementary structure scales.

III. NARROW ELECTROMAGNETIC BEAM
TRANSMISSION

A. Armchair edge incidence

There are three expected propagation directions for the
transmitted beams from the armchair edge, a central beam in
the same direction as the incident one, and two side beams
at ±π/3 angles relative to the incident direction, associated
to the lower and upper parts of the Dirac cones for K and
K ′ valleys [Figs. 1(c) and 1(d)]. The propagation directions
are perpendicular to three families of rhombic unit cells [see
Fig. 1(a)] that allow the formation of coupled |φA〉-|φB〉 pairs
mentioned in Sec. II.

The incident beam can only impinge on entire unit cells
that are parallel to the armchair edge, rather than on that at
±π/3 angles. At local scale, there are two tile patterns at this
edge, an A-B and a B-A tile pair. Here we consider two sample
configurations, both 16 × 16 periods in size, characterized by
an aspect ratio

√
3 ensuring the same path lengths for the cen-

tral and side beams. They offer two armchair edges shifted by
a half period in the x direction, bringing forth, respectively, an
A-B and a B-A tile pair at the edge center [see Fig. 1(a)]. These
two cases will be referred to as AB and BA cases hereinafter.

We consider an incident beam of the width of the lattice
period along the y axis,

√
3a, that covers the height of a

unit cell along its long diagonal direction. The beam is TM
polarized and emitted by a line source of length

√
3a, placed

at the sample left edge center. For these two cases, the incident
beam impinges, respectively, on an A-B and a B-A tile pair.
The transmissions are considered in two outgoing regions.
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FIG. 2. Transmission spectra for the armchair edge incidence for
the AB [(a)] and BA [(b)] cases in the center (solid lines) and side
beam (dash-dotted lines) directions in the vicinity of the Dirac fre-
quency. The maximum transmission peaks correspond to ω ≈ 0.862
and 0.980 in (a) and ω ≈ 0.861 and 0.977 (ωa/2πc) in (b) for the A1

and B1 beams, respectively.

One, with the same width
√

3a as the incident beam, is placed
at the opposite side of the sample in front of the incident beam
for the central beam direction; the other, with width 2a, at the
sample upper side (a zigzag edge), at π/3 angle relative to the
incident direction, for one of the side beams. Here we choose
2a for the side beam direction, since both the bonding and
antibonding states in a unit cell span two periods at the zigzag
edge. Using an incident Gaussian beam centered at ωD, the
transmission spectra, obtained using the FDTD method and
normalized to the incident flux, are displayed in Fig. 2. One
can see that maximum transmission peaks are obtained at fre-
quency levels close to ω1 and ω2, corresponding, respectively,
to the A1 and B1 beams associated to the lower and upper part
of the Dirac cones, along the central and the side directions.
Their counterparts, i.e., the transmission peaks for the same
beams but along the side and central directions, are much
weaker.

Moreover, for the AB case, the central A1 beam displays
a much stronger transmission peak than the side B1 beam, in
spite of the non-negligible transmission for the A1 beam in the
side beam directions. Indeed, the side B1 beam transmission
peak is only about 35% that of the central A1 beam. The
situation is significantly different for the BA case, where the
central A1 beam displays a much weaker transmission peak
that is only about 55% that of the central A1 beam in the AB
case, while the transmission peak of the side B1 beam, with
a difference of only about 20%, is closer to its counterpart in
the AB case.

The A1 and B1 beam propagations at their respective
transmission peak frequencies are obtained using the FDTD
method, and images of the electric field distributions are dis-
played in Figs. 3 and 4. These two figures show that, except
in the vicinity of the impact zones for the B1 beams (this
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FIG. 3. Electric field distributions of the A1 [(a)] and B1 [(b)]
beams corresponding to the two maximum transmission peaks in
Fig. 2(a) for the AB case, with the thick dashed line at the sample
left side symbolizing the line source, and the thin dashed lines at
the right and upper sides the outgoing regions for the central and
side beam directions. The upper part insets show a magnified region
in the vicinity of the impact zone, with the thick and thin arrows
indicating the incident beam axes and edges, and the ± signs the
field polarities. The unit cells in the central [(a)] and side beam [(b)]
directions are delimited by solid lines, and that related to the B1 beam
along the incident beam edge in the central direction by dashed lines
[(b)]. The lower part inset in (a) shows the electric field magnitude
along the long diagonal of the unit cell, passing by the A and B tiles,
in the upper inset.

point will be discussed in the following), the electric fields
of the A1 and B1 beams are formed by resonance modes in
the unit cells along the propagation directions, with polarities
characterized, respectively, by a mirror and a mirror inversion
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FIG. 4. Same disposition as in Fig. 3, but for the BA case and
corresponding to the two maximum transmission peaks in Fig. 2(b).
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symmetry with respect to the plane formed by the propagation
axis and the z axis, in agreement with the discussion in Sec. II
that the beam propagation can be considered as being based
on a series of bonding or antibonding states formed in the unit
cells.

Moreover, Figs. 3 and 4 illustrate the relationship between
the incident beam and the mode excitation in the two samples.
For the AB case, as shown in Fig. 3(a), the incident beam can
excite an A1 beam of minimum width, that corresponds to the
unit cell height as mentioned in Sec. II, immediately from the
impact zone. Indeed, the incident beam impinges on a unit cell
formed by an A-B tile pair, and a bonding state is formed in
the impacted unit cell through the coupling between the |φA〉
and |φB〉 modes in the two tiles, as shown in the upper inset
of Fig. 3(a). The A1 beam can be considered as being directly
coupled to the incident field.

In the BA case, on the contrary, the incident beam cannot
excite directly the same A1 beam, like in the AB case, in the
immediate impact zone. In fact, here the beam impinges on
a B-A tile pair, in which a bonding state between |φB〉 and
|φA〉 modes cannot be formed due to the lack of coupling, as
discussed in Sec. II. Indeed, as shown in the upper inset of
Fig. 4(a), such a state is formed further inside the sample,
in the rhombic unit cell situated behind the B-A pair. The
coupling between the incident beam and the A1 beam can be
considered as being indirect by comparison with the AB case.

In order to further probe the coupling effect between the
incident field and the resonance modes, let us consider the
electric field distribution of the |φA〉-|φB〉 bonding state in the
first unit cell in front of the incident beam, at the beginning
of the transmitted A1 beam of, respectively, the two cases.
The field distributions along the long diagonal of the unit
cells are displayed in the lower insets of Figs. 3(a) and 4(a).
These figures show that, for the same incident beam, the field
magnitude in the first unit cell in the AB case is about 90%
lager than that in the BA one, confirming that the coupling
between the incident field and the A1 beam is more effi-
cient in the AB case. Moreover, these figures confirm that
the field distributions in these two cases display a mirror
symmetry with respect to the xz plane and can indeed be
considered as bonding states formed by a pair of |φA〉 and |φB〉
modes.

Concerning the side B1 beams in both cases, their weak
transmissions can be related to the local field distributions
created by the incident beams. Indeed, due to the orientations
and positions of the unit cells along the B1 beam propagation
directions, antibonding states cannot be directly excited by
the incident fields in the first unit cells at the beginning of
the propagation paths. In fact, as shown in Figs. 3(b) and
4(b), the resonances modes are irregularly distributed in the
vicinity of the impact zones, with some of them extending
outside the tiles. The local fields in the first unit cells cannot
be considered as antibonding states between |φA〉 and |φB〉
pairs, and they lack clearly the mirror inversion symmetry
with respect to the plane defined by the B1 beam axis and the
z axis (we will show below that this can also be seen in terms
of the electric field magnitudes in the unit cells). However,
thanks to their polarity distributions, with opposite electric
field polarities in the two tiles of the unit cells, these modes
can be constructively coupled to the antibonding states on the
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FIG. 5. Transmission spectra for the zigzag edge incidence for
the 1A [(a)] and 2A [(b)] cases in the vicinity of the Dirac frequency.
The maximum transmission peaks correspond to ω ≈ 0.862 and
0.979 (ωa/2πc) for, respectively, the A1 and B1 beams in both cases.

propagation paths. Besides, as we can see in Figs. 2, 3(b), and
4(b), although the B1 beams are inhibited along the central
axis of the incident beams, due to the incompatibility between
the mirror symmetry of the latter and the mirror inversion
symmetry of the former [20], there is weak transmission in
the central direction along the incident beam edges. This can
be attributed to mode excitations at the edges of the incident
beams [see the insets in Figs. 3(b) and 4(b)], where the latter
do not have mirror symmetry. The local fields formed at the
sample edges, where the latter intercept the beam edges, dis-
play opposite polarities along the y axis, due to the irregularly
extended spatial distribution of certain modes, and lead to B1

beams propagating in the central direction (see the unit cells
delimited by dashed lines in the above figures). These points
will be further discussed in the following.

B. Zigzag edge incidence

There are two expected propagation directions for the
transmitted beams from the zigzag edge, at, respectively,
±π/6 angles relative to the incident direction, associated to
the lower and upper parts of the Dirac cones for K and K ′
valleys [Figs. 1(c) and 1(d)] and perpendicular to two fami-
lies of rhombic unit cells [see Fig. 1(a)]. All the transmitted
beams are symmetrically compatible with an incident beam,
since two transmitted beams together, either two A1 or two
B1 ones, are described by a mirror symmetry with respect to
the yz plane. For this orientation, an incident beam can only
impinge on the A tiles. It can excite directly neither bonding
nor antibonding |φA〉-|φB〉 pair states in the first unit cells at
the beginning of the propagation paths.

We consider two sample configurations, both 32 × 8 peri-
ods in size, offering two zigzag edges shifted by a half period
in the y direction, bringing forth, respectively, an A tile and an
A-A tile pair at the low edge center [see Fig. 1(a)]. These two
cases will be referred to as 1A and 2A cases hereinafter.
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FIG. 6. Electric field distributions of the A1 [(a)] and B1 [(b)]
beams corresponding to the two maximum transmission peaks in
Fig. 5(a) for the 1A case, with the thick dashed line at the sample
lower side symbolizing the line source, and the thin dashed line at
the upper side the beam outgoing region. The left part insets show
a magnified region in the vicinity of the impact zone, with the thick
and thin arrows indicating the incident beam axes and edges, and
the ± signs the field polarities. The right part inset in (b) shows the
electric field magnitudes along the long diagonal, passing by the B
and A tiles, of the first and the second unit cells outlined by solid
lines in the left insets in, respectively, (a) (solid and dotted lines) and
(b) (dashed and dash-dotted lines). A hexagon can be defined by the
two unit cells connected by the dashed lines.

An incident beam with width a, covering one period along
the x axis, is considered. The beam is TM polarized and
emitted by a line source of length a, placed at the sample lower
edge center, and impinging, respectively, on an A tile and two
half A tiles. The transmission is considered in an outgoing
region with width 2a (as mentioned above, both the bonding
and antibonding states in a unit cell span two periods at the
zigzag edge) at π/6 angle at the sample upper side. For both
cases, an incident Gaussian beam centered at ωD is used. The
transmission spectra, obtained using the FDTD method and
normalized to the incident flux, are displayed in Fig. 5.

Figure 5 shows that, like in the cases of the armchair edges,
maximum transmission peaks are obtained at frequency levels
close to ω1 and ω2, corresponding, respectively, to the A1

and B1 beams associated to the lower and upper part of the
Dirac cones. The beam propagation in these samples, for
monochromatic waves at the transmissions peak frequencies,
is obtained using the FDTD method, and images of the electric
field distributions are displayed in Figs. 6 and 7. Like for the
armchair incidence, these two figures are in agreement with
the discussion in Sec. II, except in the vicinity of the impact
zones, that the beam propagation can be considered as being
based on a series of bonding or antibonding states in the unit
cells.

Concerning the magnitudes of the beam transmission,
Fig. 5 shows that, contrary to the armchair edge cases, here
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FIG. 7. Same disposition as in Fig. 6, except that it concerns the
2A case, with the beams corresponding to the two maximum trans-
mission peaks in Fig. 5(b), and that the right part inset in (b) displays
the electric field magnitudes along the long diagonal, passing by the
A and B tiles, of the first unit cell outlined by solid lines in the left
insets in, respectively, (a) (dotted line) and (b) (dash-dotted line),
together with that passing by the B and A (bracketed letters in the
figure) tiles in the first unit cell of the 1A case in Figs. 6(a) (solid
line) and 6(b) (dashed line).

the B1 beam transmission peaks display stronger magnitudes
than that of the A1 beams for both the cases. Indeed, for the
1A case, the maximum transmission peak of the B1 beam is
about 70% higher than that of the A1 beam, while, for the
2A case, the maximum transmission peak of the B1 beam
is almost twice that of the A1 one. Moreover, in the lat-
ter case, the transmission peaks of both A1 and B1 beams
are much lower compared to that in the 1A case, corre-
sponding, respectively, to about 45% and 55% that of their
counterparts.

As pointed out above, neither bonding nor antibonding pair
states can be excited directly at the zigzag edge; the beam
transmissions can be investigated in terms of the coupling
effect that can be probed through both the spatial and mag-
nitude distributions of the excited local fields. Indeed, for
both the A1 and B1 beams, the local fields in the unit cells
at the beginning of the propagation paths (left insets in Figs. 6
and 7) cannot be considered as bonding or antibonding states
between |φB〉-|φA〉 pairs, though they can be constructively
coupled to such states. Moreover, for both beams in the 1A
case, the local fields are confined in a hexagon formed by six
tiles in the vicinity of the impact zone, while, in the 2A case,
the fields are more irregularly distributed, with certain modes
extending far out of the tiles.

As far as the local field magnitudes are concerned, the
B1 beams involve stronger fields than the A1 beams in both
cases. This can be seen on the field magnitude distributions
along the long diagonal of the unit cells in the right insets of
Figs. 6(b) and 7(b). In the 1A case, the field magnitudes in the
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B and A tiles of the second unit cell are about 10% and 27%
larger for the B1 beam than for the A1 one. In the 2A case, the
magnitudes are about 10% and 32% larger in the A and B tiles
of the first unit cell for the B1 beam than for the A1 one. This
is in agreement with stronger B1 beam transmission in both
cases.

It is interesting to further compare the coupling between
the incident fields and the local modes in the first unit cells,
for, respectively, the A1 and B1 beams, between the 1A and 2A
cases. In fact, as shown in the right inset of Fig. 7(b), for the
A1 beams, the field magnitudes along the cell long diagonal in
the left and right tiles are about 13% and 35% stronger in the
1A case as compared to the 2A one; while, for the B1 beams,
the field magnitudes are almost the same in the left tiles for
the two cases, and that in the right tile in the 1A case is about
30% stronger than that in the 2A case. This shows clearly a
stronger coupling for both A1 and B1 beams in the 1A case,
leading to stronger transmissions.

The right inset of Fig. 7(b) shows also that, for both 1A
and 2A cases, the fields in the first unit cells have stronger
magnitudes in the right tiles that are just the first tiles on
the incident beam axes at the edge center (respectively, an A
and a B tile for the 1A and 2A cases), and it is basically in
these tiles that the stronger coupling with the incident fields is
manifested for the two beams of the 1A case.

This can be related to the nature of the local fields and their
coupling with the incident beams. As a matter of fact, in the
1A case, the field distributions in the hexagon for the A1 and
B1 beams can be considered as corresponding, respectively,
to a bonding and an antibonding state formed by the six
resonance modes on the hexagonal ring, similar to that of the
π molecular orbitals of benzene. A description of this classic
case can be found in Ref. [23], where the two states are labeled
as φ2,real and φ4,real. Indeed, these field distributions have a
mirror symmetry with respect to the yz plane, and, as shown in
the right inset in Fig. 6(b), for each beam, the modes in the two
tiles (an A and a B tile) on the incident beam axis have almost
the same magnitudes, that are roughly twice larger than that
in the other four tiles of the hexagon (with a factor of about
1.9 and 1.7 for the A1 and B1 beams). The formation of these
states is not surprising, since their frequency levels, resulting
from the coupling between neighbor modes on the hexagonal
ring, correspond, respectively, to that of the bonding and an-
tibonding states formed by a single pair of neighbor modes.
They can thus be excited by incident beams with frequencies
close to ω1 and ω2 impinging on the central A tile. While, in
the 2A case, the incident beams cannot be coupled to such
states, because the incident beam axis passes between two A
tiles rather than by an A tile center. As can be seen in the right
inset of Fig. 7(b), the magnitudes of the modes in the A tile
of the unit cell, for both A1 and B1 beams, correspond roughly
to half that in the central A tile for their counterparts in the
1A case, since here the incident beams impinge on two half
A tiles, the coupling is thus weaker for each of these modes.
The weaker magnitudes of the modes in the central B tile
for the two beams, compared to that in the central A tile in
the 1A case, can be attributed to the fact that the modes in
the B tile are only indirectly coupled to the incident beams,
through the coupling with the modes in the two adjacent A
tiles.

IV. DISCUSSION

The above results underline the importance of the coupling
condition for the incident field and the resonance modes at
local scales in the beam transmission, associated to the Dirac
cones for different K valleys. Indeed, due to the metallic
nature of the crystal, as well as the frequency band structure in
the vicinity of the quasitriangular Dirac cone contours, a good
transmission necessitates, for an incident field, strong cou-
pling with the local resonance modes, as well as the excitation
of resonance mode distributions corresponding to bonding or
antibonding states in the first unit cells. These aspects are
determined by the unit cell exposition and orientation with
respect to the incident beam. This point can further be probed
by local structure modification that alters the coupling with
the incident beam.

Let us consider the AB case, where the side B1 beam trans-
mission is much weaker than that of the central A1 beam. As
mentioned in Sec. III A, antibonding states can not be directly
excited by the incident beam in the unit cells at the beginning
of the B1 beam paths. The resonance modes are irregularly
distributed in the vicinity of the impact zone. Moreover, the
mode excitation at the beam edges leads to transmission in
the central direction. However, by creating a structure vacancy
by removing the cylinder at the armchair edge center, i.e.,
on the incident beam axis, we get the transmission spectra in
Fig. 8(a) for the same incidence. The transmission peaks for
the A1 and B1 beams now have similar magnitudes. Indeed,
comparing to the original AB case in Fig. 2(a), the A1 beam
transmission peak is decreased by about 30%, while the B1

beam transmission peak is increased by about 80%.
This can be related to the change in the coupling condition.

As a matter of fact, the decrease of the A1 beam transmission
can straightforwardly be attributed to the fact that the incident
beam, with frequency close to ω1, can no more be directly
coupled to a bonding state, since it now impinges on a B-A
tile pair, like in the BA case. The transmission is stronger (by
about 25%) compared to the A1 beam in the latter case, be-
cause the incident beam has a lager aperture, the two cylinders
at the extremity of the line source being at a/2 away.

Let us focus on the B1 beam transmission. The electric
field distribution corresponding to the B1 beam is displayed in
Fig. 8(b). As a matter of fact, the B1 beam transmission peak
increase can be attributed to the improved coupling condition
for the incident beam with frequency close to ω2 that leads
to field distribution close to antibonding states in the vicinity
of the impact zone. Indeed, the removal of the central cylin-
der leaves exposed locally two portions of armchair edges at
±π/3 angles, allowing a better exposition of the first unit
cells, at the beginning of the beam propagation paths, to the
incident beam, without the latter being scattered by the central
cylinder, ensuring thus a better coupling between the incident
field and the resonance modes in these unit cells. This can
be seen in the upper inset of Fig. 8(b) that shows that the
resonance modes in the vicinity of the impact zone display
more regular spatial distributions as compared to the original
AB case in Fig. 3(b), and, moreover, they are now all confined
inside the triangular tiles of the unit cells along the propaga-
tion path. As far as the field magnitudes are concerned, the
magnitude distribution [lower inset of Fig. 8(b)] along the
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FIG. 8. Transmission spectra for the modified AB case in the
center (solid lines) and side beam (dash-dotted lines) directions in
the vicinity of the Dirac frequency, with the maximum transmission
peaks at ω ≈ 0.859 and 0.980 (ωa/2πc) for, respectively, the A1

and B1 beams [(a)]. The electric field distribution of the B1 beam
corresponding to the maximum transmission peak in the side beam
direction [(b)], with the thick dashed line at the sample left side
symbolizing the line source and the thin dashed line at the upper side
the outgoing region for the side beam direction. The upper part inset
in (b) shows a magnified region in the vicinity of the impact zone,
with the thick and thin arrows indicating the incident beam axis and
edge, and the ± signs the field polarities. The unit cells in the side
beam direction are delimited by solid lines, and that related to the B1

beam along the incident beam edge in the central direction by dashed
lines. The lower part inset shows the electric field magnitude along
the long diagonal, passing by the A and B tiles, of the first (dashed
line) and second (dash-dotted line) unit cells along the propagation
direction outlined in the upper inset, together with that in the first
(solid line) and second (dotted line) unit cells of the original AB case
in Fig. 3(b).

long diagonal of the first unit cell at the beginning of the beam
path shows that, as compared to the original AB case, where
the mode magnitudes display strong difference, with that in
the B tile about 21% weaker than that in the A tile, the mode
in the B tile in the modified case has its magnitude increased,
along with the confinement of its spatial distribution. The two
modes in the first unit cell have now closer magnitudes, with
that in the B tile only about 7% weaker than that in the A
tile (the latter remains almost the same as its counterpart in
the original AB case), approaching the field distribution of a
|φB〉-|φA〉 antibonding state.

On the other hand, the field distributions at the sample
edge, where the latter intercepts the incident beam edges, have
no more opposite polarities along the y axis. Indeed, in the
original AB case, as shown in the upper inset of Fig. 3(b), the
local bipolarlike field distribution at the sample edge is formed
due to the irregular spatial distribution of the mode in the B
tile in the first unit cell at the beginning of the beam path that
extends to the zone on the sample edge above the beam edge
axis (the thin arrow). In the modified case, on the contrary, all

TABLE I. Coupling coefficient kc between the incident field and
the excited eigenstate (or close to eigenstate) in the first unit cell in
several cases, with mod. standing for modified and b. and a.b. for
bonding and antibonding.

Case AB BA AB (mod.)

State b. b. b. a.b.
kc 0.562 0.254 0.252 0.238

the modes are well confined inside the triangular tiles, and, as
shown in the upper inset of Fig. 8(b), the field is vanishingly
weak in the same zone. This disfavors the mode excitations at
the incident beam edges that lead to beam propagation in the
central direction mentioned in Sec. III A. Indeed, as shown
by the transmission and the field distribution in Fig. 8, the B1

beam transmission in the central direction is almost absent.
This can further be confirmed by the field magnitude distri-
butions [lower inset in Fig. 8(b)] in the second unit cell from
the beginning of the path [upper insets in Figs. 3(b) and 8(b)].
The field magnitudes are stronger for both modes in the B and
A tiles in the modified case, with, respectively, an increase of
about 42% and 14% as compared to the original case. This
can be attributed to the quasiabsence of the transmission in
the central direction. Moreover, with a magnitude difference
of only about 0.3% between the modes in the B and A tiles,
the field in this unit cell is almost that of a pure |φB〉-|φA〉 anti-
bonding state. This example confirms that the transmission of
a narrow incident beam is favored by incident configurations
allowing the excitation of resonance modes closest to bonding
or antibonding states in the first unit cells, as well as strong
coupling between the incident field and the excited modes.

In the case where a |φB〉-|φA〉 bonding or antibonding
eigenstate (or a state close to such states) is formed in the first
rhombic unit cell at the beginning of the beam propagation
path, it is possible to consider the coupling coefficient kc that
describes the percentage of the energy transferred from the in-
cident field to this state, in relation to the corresponding beam
transmission. This is the situation for the A1 beam in both AB
and BA cases, and for the A1 and B1 beams in the modified AB
case. kc can be numerically obtained by calculating the flux
flowing into the corresponding unit cell and normalizing it to
that of the incidence. The obtained kc values in the above cases
are listed in Table I. We note that, for the AB and BA cases,
the two kc values scale with the two A1 beam transmissions,
and that, for the modified AB case, the two kc values scale
with the transmissions of the A1 and B1 beams as well. The
transmissions of the two latter beams are both stronger than
that of the A1 beam in the BA case, for comparable kc values.
This can be attributed to the larger incidence aperture in the
modified AB case already mentioned above. The above results
allow us to illustrate the variation of the coupling between the
incident field and the resonance modes excited in the first unit
cell following different local structure configurations and to
better understand the relation between the coupling at local
scale and the corresponding beam transmission.

It is worth pointing out that the results concerning the
armchair edge in the present investigation are comparable to
that in the previous work [20]. The quantitative differences
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in the transmission values can be attributed to two factors.
On one hand, the previous work involves a much larger
incident beam width, and the transmission should be con-
sidered as resulting from a combination of the AB and BA
cases of the present work. On the other hand, the metallic
waveguide used in the previous work prevents the incident
beam spreading in the impact zone and thus reinforces the
transmission.

Metallic waveguides are not used in the present study since
they will induce significant transmission differences at this
scale, modifying the magnitude relations between the trans-
mission peaks. Consider the waveguides of the widths of the
crystal periods. In the configurations where the ends of the
metallic walls are placed near the sample edge between two
neighbor metallic cylinders, the waveguide will reduce, in the
AB case, the transmission of both A1 and B1 beams in the side
directions and reinforce artificially the A1 beam transmission
in the central direction, increasing the ratio between the trans-
mission of the A1 beam in the central direction and that of
the B1 beam in the side directions, while, in the 2A case, a
metallic waveguide will drastically reduce the transmissions
of both beams, due to the weak opening width remaining
between the central cylinder and the wall ends. In the BA
and 1A cases, on the contrary, the transmission of the A1 and
B1 beams will both be reinforced. Line sources of sizes of
the crystal periods allow us to avoid such problems. Indeed,
although their emitted wave fronts do not have flat forms,
placed close to the sample edges, such line sources enable
probing the coupling at local structure scales by selectively
exciting specific local eigenstates in the impact zones. Their
sizes allow us to accommodate the finite metallic cylinder
diameter. For smaller sized sources, the transmissions will
be sensitive to the cylinder reflection effect at the sample
edges. Consider, for instance, a point source. In the config-
urations where the source is placed in front of the central
cylinder, i.e., in the AB and 2A cases, both the A1 and B1

beams will have their transmission drastically reduced due to
the central cylinder reflection. Moreover, the ratio between
the transmission of the A1 beam in the central direction and
that of the B1 beam in the side directions will be reduced
in the AB case, due to the fact that the incident field will be
more strongly reflected by the same cylinder in the central
direction, while, in the BA and 1A cases, the transmission
of both A1 and B1 beams will be increased since the inci-
dent fields will have larger apertures. All this will prevent
the comparison of beam transmissions for different incident
conditions.

The present investigation allows us to understand the inter-
action between an incident EM beam and the resonance states,

associated to both the lower and upper parts of the Dirac cones
for different K valleys, at elementary structure scales reaching
the size of these resonance states. It provides information on
the relationship between the local structure configurations and
the transmission of an incident EM beam, with wave vector
close to the quasitriangular isofrequency contours of the Dirac
cones, at both the armchair and zigzag edges, and may find
application in valley photonics for tuning and optimizing the
beam transmission in the design of various beam collimation
and splitting devices to convey information and address dif-
ferent valleys. Moreover, since this investigation deals with
EM beam width at its minimum limit for a metallic photonic
crystal, its results can be of specific interest to miniaturized
low-power photonic systems.

V. CONCLUSION

This investigation demonstrates the key role of the cou-
pling between the local resonance modes, at both the armchair
and zigzag edges, and an incident EM beam, with wave vector
close to the quasitriangular isofrequency contours of the Dirac
cones, in the beam transmission in a graphenelike triangular
metallic photonic crystal. Indeed, by probing the coupling at
elementary structure scales with narrow incident EM beams,
it shows strong excitation difference in the first unit cells,
following their positions and orientations with respect to the
incident fields. This in turn determines the beam transmis-
sion associated to the upper and lowers parts of the Dirac
cones for different K valleys. Large transmission is obtained
for incident conditions allowing strong coupling between the
incident fields and the resonance modes in the first unit cells
at the incident edges and leading to field distributions corre-
sponding or close to bonding or antibonding states for these
modes. This work allows understanding of the particularity
of the graphenelike metallic photonic crystal in its interac-
tion with the EM waves at scales down to the size of local
resonance states. It may find application in valley photonics
in the designs of beam collimation and splitting devices for
information processing, by providing information for tuning
and optimizing the beam transmission in various conditions.
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