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Narrow electromagnetic beam propagation in a graphene-like triangular metallic
photonic structure

Kang Wang∗

Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay, France

We study the propagation of narrow electromagnetic beams associated to different K-valleys,
from both the armchair and zigzag edges, in a graphene-like triangular metallic photonic structure.
Due to the metallic nature of the structure, the propagation of an electromagnetic wave, with
wave vector close to the quasi-triangular iso-frequency contours of the Dirac cones resulting from
the band trigonal warping, can be considered as being based on series of bonding or anti-bonding
states, formed by the local resonance modes in the unit cells. The transmission of a narrow incident
beam depends on the local structure configurations in the beam impact zone, that determine the
distribution of the excited local resonance modes as well as the coupling between the latter and
the incident field, thus the beam propagation in different directions. This investigation allows us
to understand the interaction between an incident field and the resonance states associated to the
Dirac cones at elementary structure scales reaching the size of these states. It can find application
in valley photonics for transport tuning and optimization.

I. INTRODUCTION

Graphene-like photonic structures are widely studied
both for their fundamental interest and application po-
tential. Indeed, these structures reproduce the electronic
bands in atomic structures by creating Dirac cones in
their frequency bands [1]. An electromagnetic (EM)
emission can be coupled to such structures and the re-
sulting spectrum modifications provide information on
the dispersion properties of the Dirac cones as well as
on the coupling with the incident field. Being geomet-
rically and materially tunable, such photonic structures
enable investigations of the physical properties inaccessi-
ble in atomic structures, by allowing structure configura-
tions and modulations unrealizable in the latter. Many
fundamental phenomena specific to the Dirac cones, in-
cluding conical diffraction, gap soliton, pseudo-diffusive
transmission, quantum Hall-like effect, zero refractive in-
dex and valley-polarized beam propagation [1–5], have
been investigated. Potential applications, such as valley
photonics exploring optically the valley degree of freedom
to control and manipulate the light beam propagation,
analogous to valleytronics [6], have recently been pro-
posed for information processing [7]. Indeed, it is shown
that, by lifting the inversion symmetry in the structures,
it is possible to achieve photonic topological insulators
for large-scale photonic integrations [8], and independent
control of valley-dependent transportation [9].
Dirac cones can emerge in various dielectric [1–4, 10]

and metallic [11–13] photonic structures. In the former,
the band formation can be described by a nearly-free-
photon approximation [14], while, in the latter, the low-
frequency EM bands are formed by cavity-like local reso-
nance modes confined inside the structure tiles delimited
by metallic elements [12, 13, 15]. Such resonance modes
follow a honeycomb distribution in a triangular metallic
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structure, that is equivalent to a honeycomb atomic one.

It is a known fact that, due to the local 3-fold symme-
try in a honeycomb structure, the Dirac cones undergo
trigonal warping for frequencies departing from the Dirac
level [16], that lifts the degeneracy between two inequiv-
alent cones. The group velocity distribution becomes
increasingly anisotropic. When the iso-frequency con-
tours of the Dirac cones become nearly triangular, the
wave propagation will follow the Γ-K directions that are
perpendicular to the iso-frequency contours, and a beam
propagating in such a structure undergoes splitting and
self-collimation associated to different K valleys [5]. This
provides an alternative way for wave propagation con-
trol and beam manipulation. Studies on K-valley depen-
dent EM beam propagation, associated to the lower Dirac
cones in dielectric photonic structures [5, 17] and to the
upper cones in analogous situations of electron beams in
atomic graphens [18, 20], are both carried out. Beam
splitting and self-collimation are obtained for the zigzag
and armchair incidences.

Due to the huge value of the dielectric function of the
metallic elements, metallic photonic structures need only
a few number of periods to achieve band gaps [21], allow-
ing smaller sample sizes in practice. And, more particu-
larly, in a metallic structure, the eigenmodes of the low
frequency crystal wave function can be constructed by
the combination of the local resonance modes mentioned
above in a tight binding (TB) model [12, 13, 15]. An EM
wave propagating in a metallic structure will then fol-
low the structural tile distribution, through the coupling
between the local resonance modes. We have shown pre-
viously that an EM beam propagation associated to trig-
onally warped Dirac cones in a graphene-like triangular
metallic photonic structure display drastically different
behaviors as compared to the dielectric and other anal-
ogous systems, due to the EM wave function symmetry
along the Γ-K lines and the metallic nature of the struc-
ture. Namely, at the armchair edge, the incident beam
associated to the lower Dirac cone is collimated to one
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central beam, and that associated to the upper cone is
split to two beams with a 2π/3 angle. The other expected
beams are all strongly inhibited [19].
In this work we report a study of the transmission of

narrow incident beams, of widths of the crystal period
scales, from both the armchair and zigzag edges in a
triangular metallic photonic structure, associated to the
trigonally warped Dirac cones. We discuss the EM fre-
quency band structure close to the quasi-triangular iso-
frequency contours of a Dirac cones, and show that the
beam transmission depends on the position and orienta-
tion of unit cells along the propagation directions in the
beam impact zone, that will determine the characteris-
tics of the excited local resonance modes and the coupling
between the latter and the incident field, thus the beam
propagation in different directions.

II. BAND STRUCTURE CLOSE TO
QUASI-TRIANGULAR ISO-FREQUENCY

CONTOURS OF A DIRAC CONE

A triangular lattice [Fig. 1(a)] belongs to the sym-
metry group D6h and contains two families of triangular
tiles A and B, pointing respectively up- and downward
in the figure. The metallic structure is constructed by
infinite cylinders, with radius r = 0.25a (a being the
lattice constant) and dielectric constant set to negative
infinity, placed at the lattice nodes in an air background.
The EM frequency band diagram for TM polarization
(the electric field parallel to z axis), obtained by solv-
ing Maxwell’s equations using the Finite-difference time-
domain (FDTD) method, is reproduced in Fig. 1(b).
Dirac cones are formed by the first two bands [12, 19].
The lower and upper Dirac cones at K point, depicted by
iso-frequency contours, are reproduced in the same fig-
ure [(c) and (d)]. As a matter of fact, departing from the
Dirac frequency ωD ≈ 0.917 (ωa/2πc), the iso-frequency
lines undergo trigonal distortion and approach quasi-
triangular forms at ω1 ≈ 0.863 and ω2 ≈ 0.978 (ωa/2πc)
for respectively the lower and the upper cones.
The formation of the first two bands can be described

by a TB model [12] [solid lines in Fig. 1(b)]. Recalling
that, in a such model, the crystal wave function is ex-
pressed as the sum of local wave functions, |ϕA⟩ and |ϕB⟩,
corresponding to the electric field distributions of the s-
like resonance modes formed inside A and B tiles delim-
ited by three metallic cylinders at the vertices. Along Γ-
K direction, the modes |ϕA⟩ and |ϕB⟩ contribute equally,
in absolute value, to the crystal wave function:

|Ψk(r)⟩ =
∑
m

eikRm

√
2N

(|ϕA(r−Rm − dA)⟩

± |ϕB(r−Rm − dB)⟩)
(1)

with
∑
m

summing over the unit cells. The wave function is

characterized by a mirror or a mirror inversion symmetry
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FIG. 1. The triangular lattice and its rhombic unit cell (thick
dashed lines) [(a)] of the metallic photonic structure and the
corresponding EM frequency band diagram [(b)], where a
Dirac point at K (4π/3a, 0) is obtained for ωD ≈ 0.917. Iso-
frequency contours of the lower and upper cone at the same K
point, with contour interval ∆ω = 0.015, are depicted in (c)
and (d). Quasi-triangular forms are obtained at frequency
levels ω1 ≈ 0.863 and ω2 ≈ 0.978, indicated by the dashed
lines in (b) (All the values are normalized to ωa/2πc). The
upper and lower insets in (c) and (d) depict the expected beam
propagation directions (thin arrows) for respectively the arm-
chair and zigzag edge incidence (thick arrows). The incidence
edges investigated in the present work are depicted by the
dash-dotted lines in (a).

with respect to the plane defined by the Γ-K line and the
z axis.

Defining the usual parameters, α, γ and β, that de-
scribe, respectively, the overlap and the energy transfer
between first neighbor tiles and the mode energy level
shift from that in an individual tile [22], the crystal fre-
quency ωk is the root of the characteristic equation [12]

det

[
ω2
0 − β − ω2

k −ξ[γ − α(ω2
0 − ω2

k)]
−ξ∗[γ − α(ω2

0 − ω2
k)] ω2

0 − β − ω2
k

]
= 0

(2)
with ω0 the eigenfrequency of the s-like resonance modes
in an individual triangular tile, and, considering the x
axis that is one of the Γ-K lines for simplicity,

ξ = 1 + 2cos(kxa/2) (3)

The roots are simply

ωk
2 = ω0

2 − β ∓ |ξ|γ
1∓ |ξ|α

(4)
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The value of ω0 can be obtained by solving Maxwell’s
equation using the FDTD method on an individual tri-
angular tile.
Always along the x axis, as can be seen in Fig. 1(c)

and (d), the left edges of the quasi-triangular contours are
close to the wave vector k = (π/a, 0). Indeed, one can
check that the vector magnitude differences between the
former and the latter are less than 1%. Therefore, wave
vectors close to the edges of quasi-triangular contours
are close to k = (π/a, 0) as well. For such wave vectors,
cos(kxa/2) tends to zero, and Eq. (4) can be rewritten
as

ωk
2 ≈ Ω0

2 − ∓2cos(kxa/2)γ

1∓ α
(5)

with

Ω2 = ω0
2 − β ∓ γ

1∓ α
(6)

(∓ corresponding to the upper and lower Dirac cone, re-
spectively.)
The above relation between the wave vectors can also

be checked by considering the corresponding frequency
levels. Indeed, the values of Ω are exactly the crys-
tal frequency levels at k = (π/a, 0), where ξ is unity
[Eqs. (3), (4) and (6)]. We get from the FDTD solutions
ω(π/a,0)1

= Ω1 ≈ 0.8626 and ω(π/a,0)2
= Ω2 ≈ 0.9792

(ωa/2πc). These values are close to the frequency levels
of the quasi-triangular contours ω1 and ω2 given above.
As a matter of fact, the Ω2 expression in Eq. (6)

corresponds to the energy levels of two coupled modes
|ϕA⟩ and |ϕB⟩ in a unit cell, of which the long diago-
nal is perpendicular to the x axis, with ∓ correspond-
ing respectively to the anti-bonding and bonding states.
The band structure along a Γ-K direction close to the
quasi-triangular contours, associated to the lower or up-
per parts of the Dirac cones, can then be viewed as arising
from series of |ϕA⟩-|ϕB⟩ bonding or anti-bonding states
on one dimensional chains, with the band frequency de-
rived from the Ω values adjusted by a supplementary
term, that takes the simple form in Eq. (5) along the x
axis.
Along the Γ-K direction, the D6h symmetry is lowered

to that of a subgroup C2v [23]. The |ϕA⟩-|ϕB⟩ bonding
and anti-bonding states, as well as the crystal wave func-
tion, can be described by the A1 and B1 representations
of C2V , characterized by respectively a mirror and a mir-
ror inversion symmetry with respect to the Γ-K-z plane.
An EM beam propagating along the Γ-K direction and
associated to the lower Dirac cone is described by the
A1 representation, while a such beam associated to the
upper cone by B1 [19]. They will be referred to as A1

and B1 beams hereinafter.
In the present triangular structure, a |ϕA⟩-|ϕB⟩ band-

ing or anti-bonding state can only be formed in a rhombic
unit cell, since the coupling takes place through the open-
ing at the common edge between A and B tiles [see Fig.
1(a)]. An A1 or B1 beam will then propagate based on

these |ϕA⟩-|ϕB⟩ states formed in the unit cells along the
Γ-K direction. Both of these beams will be characterized
by a minimum width that is the height of the unit cell
along its long diagonal.

In a metallic structure, where the coupling is of short
range, as described by the TB model, the coupling
strength between an incident beam and the first reso-
nance modes excited in the structure is decisive for the
transmission, since the magnitudes of these resonance
modes determine those of the following along the propa-
gation direction, thus the beam transmission. Moreover,
for an EM beam with wave vector close to the quasi-
triangular iso-frequency contours of the Dirac cones, the
above discussion suggests the importance for the inci-
dent beam to excite |ϕA⟩-|ϕB⟩ bonding or anti-bonding
states, in the first rhombic unit cells, at the sample edges
for an optimum transmission. It is therefore interesting
to investigate the EM beam propagation for different lo-
cal incident conditions at the sample edges. This can be
achieved by use of narrow incident beams, of widths of
the structure period scales, that will allow to selectively
interact with specific local structure configurations, to
probe the coupling between the incident field and the
local resonance modes associated to the Dirac cones at
elementary structure scales.

III. NARROW ELECTROMAGNETIC BEAM
PROPAGATION

A. Armchair edge

There are three expected propagation directions for
the transmitted beams from the armchair edge, a central
beam in the same direction as the incident beam, and two
side beams at ±π/3 angles relative to the central one [see
Fig. 1(a), (c) and (d)]. The propagation directions are
perpendicular to three families of rhombic unit cells, that
allow the formation of coupled |ϕA⟩-|ϕB⟩ pairs mentioned
in Sec. II.

The incident beam can only impinge on entire unit cells
that are parallel to the edge, rather than on that at ±π/3
angles. At local scale, there are two tile patterns at this
edge, an A-B and a B-A tile pair. Here we consider two
sample configurations, both 16x16 periods in size, char-
acterized by an aspect ratio

√
3 ensuring the same path

lengths for the central and side beams. They offer two
armchair edges shifted by a half period in the x direction,
bringing forth respectively an A-B and a B-A tile pair at
the edge center [see Fig. 1(a)]. These two cases will be
referred to as AB and BA cases hereinafter.

We consider an incident beam of width of the lattice
period along y axis,

√
3a, that covers the height of a unit

cell along its long diagonal direction. The beam is TM
polarized and emitted by a line source of length

√
3a,

placed close to the sample left edge center. For these two
cases, the incident beam impinges respectively on an A-B
and a B-A tile pair. The transmissions are considered in
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FIG. 2. Transmission spectra for the armchair incidence for
the AB [(a)] and BA [(b)] cases in the center (solid lines) and
side beam (dash-dotted lines) directions in the vicinity of the
Dirac frequency.

two out-going regions. One, with the same width
√
3a

as the incident beam, is placed at the opposite side of
the sample in front of the incident beam for the central
beam direction; the other, with width 2a, at the sample
upper side (a zigzag edge), at π/3 angle relative to the
incident direction, for one of the side beams. Here we
choose 2a for the side beam direction, since both bonding
and anti-bonding states in a unit cell span two periods
at the zigzag edge. Using an incident Gaussian beam
centered at ωD, the transmission spectra, obtained using
the FDTD method and normalized to the incident flux,
are displayed in Fig. 2. One can see that maximum
transmission peaks are obtained at frequency levels close
to ω1 and ω2, corresponding respectively to the A1 and
B1 beams associated to the lower and upper part of the
Dirac cones, along the central and the side directions.
Their counterparts, i.e., the transmission peaks for the
same beams but along the side and central directions,
are much weaker. This is comparable to the results of
the previous work [19].

Moreover, for the AB case, the central A1 beam dis-
plays a much stronger transmission peak than the side B1

beam, in spite of the non-negligible transmission for the
A1 beam in the side beam directions. Indeed, the side B1

beam transmission peak is only about one third of that of
the central A1 beam. The situation is drastically differ-
ent for the BA case, where the central A1 beam displays
a much weaker transmission peak that is only about half
that of the central A1 beam in the AB case, while the
transmission peak of the side B1 beam, with a difference
of only about 20%, is close to its counterpart in the AB
case.

The A1 and B1 beam propagations at their respec-
tive transmission peak frequencies are obtained using the
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FIG. 3. Electric field distributions of the A1 [(a)] and B1

[(b)] beams corresponding to the two maximum transmission
peaks in Fig. 2(a) for the AB case, with the thick dashed
line at the sample left side indicating the line source position.
The upper part insets show a magnified region in the vicinity
of the impact zone, with the thick and thin arrows indicating
the incident beam axes and edges, and the ± signs the field
polarities. The unit cells in the central [(a)] and side beam
[(b)] directions are delimited by solid lines, and that related
to the B1 beam along the incident beam edge in the central
direction by dashed lines [(b)]. The lower part inset in (a)
shows the electric field magnitude along the long diagonal of
the unit cell, passing by the A and B tiles, in the upper inset.

FDTD method, and images of the electric field distribu-
tions are displayed in Figs. 3 and 4. These two figures
show that, except in the vicinity of the impact zones for
the B1 beams (this point will be discussed in the fol-
lowing), the electric fields of the A1 and B1 beams are
formed by resonance modes in the unit cells along their
propagation directions, with polarities characterized, re-
spectively, by a mirror and a mirror inversion symme-
try with respect to the plane formed by their respective
propagation axis and the y axis, in agreement with the
discussion in Sec. II that the beam propagation can be
considered as being based on series of bonding or anti-
bonding states formed in the unit cells.

Moreover, Figs. 3 and 4 illustrate the relationship be-
tween the incident beam and the mode excitation in the
two samples. For the AB case, as shown in Fig.3(a), the
incident beam can excite an A1 beam of minimum width,
that corresponds to the unit cell hight as mentioned in
Sec. II, immediately from the impact zone. Indeed, the
incident beam impinges on a unit cell formed by an A-B
tile pair, and a bonding state is formed in the impacted
unit cell through the coupling between the |ϕA⟩ and |ϕB⟩
modes in the two tiles, as shown in the upper inset of Fig.
3(a). The A1 beam can be considered as being directly
coupled to the incident field.

In the BA case, on the contrary, the incident beam can
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FIG. 4. Same disposition as in Fig.3, but for the BA case
and corresponding to the two maximum transmission peaks
in Fig. 2(b).

not excite directly the same A1 beam, like in the AB case,
in the immediate impact zone. In fact, here the beam
impinges on a B-A tile pair, in which a bonding state
between |ϕB⟩ and |ϕA⟩ modes can not be formed due to
the lack of coupling, as discussed in Sec. II. Indeed,
as shown in the upper inset of Fig. 4(a), a such state
is formed further inside the sample, in the rhombic unit
cell situated behind the B-A pair. The coupling between
the incident beam and the A1 beam can be considered as
being indirect by comparison with the AB case.
In order to further probe the coupling effect between

the incident field and the resonance modes, let us con-
sider the electric field distribution of the |ϕA⟩-|ϕB⟩ bond-
ing state in the first unit cell in front of the incident beam,
at the beginning of the transmitted A1 beam of respec-
tively the two cases. The field distributions along the
long diagonal of the unit cells are displayed in the lower
insets of Figs. 3(a) and 4(a). These figures show that, for
the same incident beam, the field magnitude in the first
unit cell in the AB case is almost twice that in the BA
one, confirming that the coupling between the incident
field and the A1 beam is more efficient in the AB case.
Moreover, these figures confirm that the field distribu-
tions in these two cases display a mirror symmetry with
respect to the xz plane, and can indeed be considered as
bonding states formed by a pair of |ϕA⟩ and |ϕB⟩ modes.
Concerning the side B1 beams in both cases, their weak

transmissions can be be related to the local field distribu-
tions created by the incident beams. Indeed, due to the
B1 beam propagation directions at ±π/3 angles, the first
unit cells at the beginning of the paths are not totally ex-
posed to the incident beam, and that anti-bonding states
can not be directly excited by the incident fields in these
unit cells. In fact, as shown in Figs. 3(b) and 4(b),
the resonances modes are irregularly distributed in the

vicinity of the impact zones, with some of them extend-
ing outside the tiles. The local fields in the first unit
cells can not be considered as anti-bonding states be-
tween |ϕA⟩ and |ϕB⟩ pairs, and they lack clearly the mir-
ror inversion symmetry with respect to the plane defined
by the beam axis and the z axis (we will show below
that this can also be seen in terms of the electric field
magnitudes in the unit cells). However, thanks to their
polarity distributions, with opposite electric field polar-
ities in the two tiles of the unit cells, these modes can
be constructively coupled to the anti-bonding states on
the propagation paths. Besides, as we can see in Figs. 2,
3(b) and 4(b), although the B1 beams is inhibited along
the central axis of the incident beams, due to the incom-
patibility between the mirror symmetry of the latter and
the mirror inversion symmetry of the former [19], there
is weak transmission in the central direction along the
incident beam edges. This can be attributed to mode
excitations at the edges of the incident beams [see the
insets in Figs. 3(b) and 4(b)], where the latter do not
have mirror symmetry. The local fields formed at the
sample edges, where the latter intercept the beam edges,
display opposite polarities along y axis, due to the ir-
regularly extended spatial distribution of certain modes,
and lead to B1 beams propagating in the central direc-
tion (see the unit cells delimited by dashed lines in the
above figures). These points will be further discussed in
the following.

B. Zigzag edge

There two expected propagation directions for the
transmitted beams from the zigzag edge, at respectively
±π/6 angles relative to the incident direction and per-
pendicular to two families of rhombic unit cells [see Fig.
1(a), (c) and (d)]. All the transmitted beams in the two
directions, associated to either the upper or the lower
Dirac cones, are symmetrically compatible with an inci-
dent beam, since two transmitted beams together, either
two A1 or two B1 ones, are described by a mirror sym-
metry with respect to the yz plane. For this orientation,
an incident beam can only impinge on the A tiles, rather
than on a whole unit cell. It can excite directly neither
bonding nor anti-bonding |ϕA⟩-|ϕB⟩ states.

We consider two sample configurations, both 32x8 pe-
riods in size, offering two zigzag edges shifted by a half
period in the y direction, bringing forth respectively an
A tile and an A-A tile pair at the low edge center [see
Fig. 1(a)]. These two cases will be referred to as 1A and
2A cases hereinafter.

An incident beam with width a, covering one period
along x axis, is considered. The beam is TM polarized
and emitted by a line source of length a, placed close to
the sample lower edge center, and impinging respectively
on an A tile and two half A tiles. The transmission is
considered in an out-going region with width 2a (as men-
tioned above, both bonding and anti-bonding states in a
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FIG. 5. Transmission spectra for the zigzag incidence for
the 1A [(a)] and 2A [(b)] cases in the vicinity of the Dirac
frequency.

unit cell span two periods at the zigzag edge) at π/6 an-
gle at the sample upper side. For both cases, an incident
Gaussian beam centered at ωD is used. The transmis-
sion spectra are obtained using the FDTD method and
normalized to the incident flux, and displayed in Fig. 5.

Figure 5 shows that, like in the cases of the armchair
edges, maximum transmission peaks are obtained at fre-
quency levels close to ω1 and ω2, corresponding respec-
tively to the A1 and B1 beams associated to the lower and
upper part of the Dirac cones. The beam propagation in
these samples, for monochromatic waves at the trans-
missions peak frequencies, is obtained using the FDTD
method, and images of the electric field distributions are
displayed in Figs. 6 and 7. Like for the armchair inci-
dence, these two figures are in agreement with the dis-
cussion in Sec. II, except in the vicinity of the impact
zones, that the beam propagation can be considered as
being based on series of bonding or anti-bonding states
in the unit cells.

Concerning the magnitudes of the beam transmission,
Fig. 5 shows that, contrary to the armchair cases, here
the B1 beam transmission peaks display stronger magni-
tudes than that of the A1 beams for both the two cases.
Indeed, for the 1A case, the maximum transmission peak
of the B1 beam is about 70% higher than that of the A1

beam, while, for the 2A case, the maximum transmission
peak of the B1 beam is almost twice that of the A1 one.
Moreover, in the latter case, the transmission peaks of
both A1 and B1 beams are much lower as compared to
that in the 1A case, corresponding respectively to about
45% and 55% that of their counterparts.

As pointed out above, neither bonding nor anti-
bonding pair states can be excited directly at the zigzag
edge, the beam transmissions can be investigated in
terms of the coupling effect, that can be probed through
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FIG. 6. Electric field distributions of the A1 [(a)] and B1

[(b)] beams corresponding to the two maximum transmission
peaks in Fig. 5(a) for the 1A case, with the thick dashed line
at the sample lower side indicating the line source position.
The left part insets show a magnified region in the vicinity
of the impact zone, with the thick and thin arrows indicating
the incident beam axes and edges, and the ± signs the field
polarities. The right part inset in (b) shows the electric field
magnitudes along the long diagonal, passing by the A and B
tiles, of the first and the second unit cells outlined by solid
lines in the left insets in respectively (a) (solid and dotted
lines) and (b) (dashed and dash-dotted lines).

both the spatial and magnitude distributions of the ex-
cited local fields.

Indeed, for both the A1 and B1 beams, the local fields
in the unit cells at the beginning of the propagation paths
(left insets in Figs. 6 and 7) can not be considered as
bonding or anti-banding states between |ϕB⟩-|ϕA⟩ pairs,
though they can be constructively coupled to such states.
Moreover, for both beams in the 1A case, the local fields
are confined in a hexagon formed by six tiles in the vicin-
ity of the impact zone; while, in the 2A case, the fields
are more irregularly distributed, with certain modes ex-
tending far out of the tiles.

As far as the field magnitude distributions are con-
cerned, the B1 beams involve stronger fields than the A1

beams in both cases. This can be seen on the field mag-
nitude distribution along the long diagonal of the unit
cells in the right insets of Figs. 6(b) and 7(b). In the
1A case, the field magnitudes in the B and A tiles of the
second unit cell are about 10% and 27% larger for the
B1 beam than for the A1 one. While, in the 2A case,
the magnitudes are about 10% and 32% larger in the A
and B tiles of the first unit cell for the B1 beam than for
the A1 one. This is in agreement with stronger B1 beam
transmission in both two cases.

It is interesting to further compare the coupling be-
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FIG. 7. Same disposition as in Fig.6, except that it concerns
the 2A case, with the beams corresponding to the two maxi-
mum transmission peaks in Fig. 5(b), and that the right part
inset in (b) displays the electric field magnitudes along the
long diagonal of the first unit cell outlined by solid lines in
the left insets in respectively (a) (dotted line) and (b) (dash-
dotted line), together with that in the first unit cell of the 1A
case in Fig. 6(a) (solid line) and (b) (dashed line).

tween the incident fields and the local modes in the first
unit cells, for respectively the A1 and B1 beams, between
the 1A and 2A cases. In fact, as shown in the right inset
of Fig. 7(b), for the A1 beams, the field magnitudes along
the cell long diagonal in the left and right tiles are about
13% and 35% stronger in the 1A case as compared to the
2A one; while, for the B1 beams, the field magnitudes
are almost the same in the left tiles for the two cases,
and that in the right tile in the 1A case is about 29%
stronger than that in the 2A case. This shows clearly a
stronger coupling for both A1 and B1 beams in the 1A
case, leading to stronger transmissions.

The right inset of Fig. 7(b) shows also that, for
both cases, the excited modes in the first unit cells have
stronger magnitude in the central tiles of the incident
edges (the left tile of the unit cell), and it is basically in
these tiles that the stronger coupling with the incident
field is manifested for the two beams of the 1A case.

This can be related to the nature of the excited local
fields. As a matter of fact, in the 1A case, the field dis-
tributions in the hexagon for the A1 and B1 beams can
be considered as corresponding respectively to a bonding
and an anti-bonding state on the hexagonal ring, similar
to that of the π molecular orbitals of Benzene. A descrip-
tion of this classic case can be found in Ref. [24], where
the two states are labeled as ϕ2,real and ϕ4,real. Indeed,
these field distributions have a mirror symmetry with re-
spect the th yz plane, and, as shown in the right inset
in Fig. 6(b), for each beam, the modes in the two tiles

on the incident beam axis have almost the same magni-
tudes, that are roughly twice stronger than that in the
other four tiles (with a factor of about 1.9 and 1.7 for
the A1 and B1 beams). The formation of these states is
not surprising since their frequency levels, resulting from
the coupling between neighbor modes on the hexagonal
ring, correspond respectively to that of the bonding and
anti-bonding states between a neighbor pair. They can
thus be excited by incident fields with frequency levels
close to ω1 and ω2. The incident beam impinges on one
of the tiles (the A tile) supporting a mode of large magni-
tude, developing thus a strong coupling with these states.
While, for the two beams in the 2A case, such states can
not be excited since the incident beam axis passes be-
tween two A tiles. Besides, the incident beams impinge
on two half A tiles, the coupling is thus weaker for each
mode in an A tile. Moreover, the modes in the central
B tile are only indirectly coupled to the incident fields,
through the coupling with the two adjacent A tiles, hence
their weaker magnitudes as compared to that in the 1A
case.

IV. DISCUSSION

The above results underline the importance of the cou-
pling between the incident field and the resonance modes
at local scales in the beam transmission, associated to
the Dirac cones following different K-valleys. Indeed,
due to the metallic nature of the structure, as well as
the frequency band structure in the vicinity of the quasi-
triangular Dirac cone contours, a good transmission ne-
cessitates, for an incident field, strong coupling with the
local resonance modes, as well as the excitation of res-
onance mode distributions corresponding to bonding or
anti-bonding states in the first unit cells. These aspects
are determined by the unit cell exposition and orienta-
tion with respect to the incident beam. This point can
further be probed by local structure modification that
alters the coupling with the incident beam.

Let us consider the AB case, where the side B1 beam
transmission is much weaker than that of the central A1

beam. As mentioned in Sec IIIA, anti-bonding states can
not be directly excited by the incident beam in the unit
cells at the beginning of the B1 beam paths. The res-
onance modes are irregularly distributed in the vicinity
of the impact zone. And, moreover, the mode excitation
at the beam edges lead to transmission in the central
direction. However, by creating a structure vacancy by
removing the cylinder at the armchair edge center, i.e.,
on the incident beam axis, we get the transmission spec-
tra in Fig. 8(a) for the same incidence. The transmission
peaks for the A1 and B1 beams now have similar magni-
tudes. Indeed, comparing to the original AB case, the A1

beam transmission peak is decreased by about one third,
while the B1 beam transmission peak increased by about
80%.

This can be related to the change in the coupling con-
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ditions at the incident edge. As a matter of fact, the
decrease of the A1 beam transmission can straightfor-
wardly be attributed to the fact that the incident beam
can no more be directly coupled to a bonding state, since
it now impinges on a B-A tile pair, like in the BA case.
The transmission is stronger (by about 25%) compared
to the A1 beam in the latter case, because the incident
beam has a lager aperture, the two cylinders at the ex-
tremity of the line source being at a/2 away.

Let us focus on the B1 beam transmission. The electric
field of the beam propagation is displayed in Fig. 8(b).
As a matter of fact, the B1 beam transmission peak in-
crease can be attributed to the improved coupling con-
dition for the incident beam, leading to field distribution
close to anti-bonding states in the vicinity of the impact
zone. Indeed, the removal of the central cylinder leaves
exposed locally two portions of armchair edges at ±π/3
angles, allowing a better exposition of the first unit cells,
at the beginning of the beam propagation paths, to the
incident beam, without the latter being scattered by the
central cylinder, ensuring thus a better coupling between
the incident field and the resonance modes in these unit
cells. This can be seen in the upper inset of Fig. 8(b),
that shows that the resonance modes in the vicinity of the
impact zone display more regular spatial distributions as
compared to the original AB case, and, moreover, they
are now all confined inside the triangular tiles of the unit
cells along the propagation path. As far as the field mag-
nitudes are concerned, the magnitude distribution [lower
inset of Fig. 8(b)] along the long diagonal of the first
unit cell at the beginning of the beam path shows that,
as compared to the original AB case, where the mode
magnitudes display strong difference, with that in the B
tile about 21% weaker than that in the A tile, the mode
in the B tile in the modified case has its magnitude in-
creased, along with the confinement of its spatial distri-
bution. The two modes in the first unit cell have now
closer magnitudes, with that in the B tile only about
7% weaker than that in the A tile (the latter remains
almost the same as its counterpart in the original AB
case), approaching the field distribution of a |ϕB⟩-|ϕA⟩
anti-bonding state.

One the other hand, the field distributions at the sam-
ple edge, where the latter intercepts the incident beam
edges, have no more opposite polarities along y axis. In-
deed, in the original AB case, as shown in the upper inset
of Fig. 3(b), the bipolar field distribution at the sample
edge is formed due to the irregular spatial distribution of
the mode in the B tile in the first unit cell at the begin-
ning of the beam path, that extends to the zone above
the beam edge axis (the thin arrow) at the sample edge.
In the modified case, on the contrary, all the modes are
well confined inside the triangular tiles, and, as shown in
the upper inset of Fig. 8(b), the field is vanishingly weak
in the same zone. This disfavors the mode excitations at
the incident beam edges that lead to beam propagation
in the central direction mentioned in Sec. III A. Indeed,
as shown by the transmission and the field distribution in
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FIG. 8. Transmission spectra for the modified AB case in
the center (solid lines) and side beam (dash-dotted lines) di-
rections in the vicinity of the Dirac frequency [(a)]. And the
electric field distribution of the B1 beam corresponding to the
maximum transmission peak in the side beam direction [(b)],
with the thick dashed line at the sample left side indicating
the line source position. The upper part inset in (b) shows a
magnified region in the vicinity of the impact zone, with the
thick and thin arrows indicating the incident beam axis and
edge, and the ± signs the field polarities. The unit cells in
the side beam direction are delimited by solid lines, and that
related to the B1 beam along the incident beam edge in the
central direction by dashed lines . The lower part inset shows
the electric field magnitude along the long diagonal, passing
by the A and B tiles, of the first (dashed line) and second
(dash-dotted line) unit cells along the propagation direction
outlined in the upper inset, together with that in the first
(solid line) and second (dotted line) unit cells of the original
AB case in Fig. 3(b).

Fig. 8, the B1 beam transmission in the central direction
is almost absent. This can further be confirmed by the
field magnitude distributions [lower inset in Fig. 8(b)]
in the second unit cell from the beginning of the path
[upper insets in Figs. 3(b) and 8(b)]. The field magni-
tudes are stronger for both modes in the B and A tiles in
the modified case, with respectively an increase of about
42% and 14% as compared to the original case. This can
be attributed to the quasi-absence of the transmission in
the central direction. Moreover, with a magnitude dif-
ference of only about 0.3% between the modes in the B
and A tiles, the field in this unit cell is almost that of
a pure |ϕB⟩-|ϕA⟩ anti-bonding state. This example con-
firms that the transmission of a narrow incident beam is
favored by the excitation of resonance modes the closest
to bonding or anti-bonding states in the first unit cells,
as well as a strong coupling with these modes.

It is worth pointing out that the results concerning the
armchair edge in the present investigation are compara-
ble to that in the previous work [19]. The quantitative
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differences in the transmission values can be attributed
to two factors. On one hand, the previous work involves
a much larger incident beam width, and the transmission
should thus be considered as resulting from a hybrid of
the AB and BA cases of the present work. On the other
hand, the metallic waveguide used in the previous work
prevents the incident beam spreading and thus reinforces
its transmission in the sample.

The present investigation allows us to understand the
interaction between an incident EM beam and the res-
onance states, associated to both the lower and upper
parts of the Dirac cones for different valleys, at ele-
mentary structure scales reaching the size of these reso-
nance states. It provides information on the relationship
between the structure configurations and the transmis-
sion of an incident EM beam, with wave vector close to
the quasi-triangular iso-frequency contours of the Dirac
cones, at both the armchair and zigzag edges, and may
find application in valley photonics for tuning and op-
timizing the beam transmission in the design of various
beam collimation and splitting devices to coney informa-
tion and address different valleys. Moreover, since this
investigation deals with EM beam width at its minimum
limit for a metallic structure, its results can be of specific
interest to miniaturized low-power photonic systems.

V. CONCLUSION

This investigation highlights the importance of the
coupling effect between an incident EM beam, with wave
vector close to the quasi-triangular iso-frequency con-
tours of the Dirac cones, and the local resonance modes at
both the armchair and zigzag edges of the graphene-like
triangular metallic structure for the beam transmission.
Indeed, by probing the coupling effect at elementary
structure scales with narrow incident EM beams, it shows
strong excitation difference in the first unit cells, follow-
ing their positions and orientations with respect to the
incident fields. This in turn determines the beam trans-
mission associated to the upper and lowers parts of the
Dirac cones for different K-valleys. Large transmission
is obtained for incident conditions allowing strong cou-
pling between the incident fields and the resonance modes
in the first unit cells at the incident edges, and leading
to field distributions corresponding or close to bonding
or anti-bonding states for these modes. This work al-
lows understanding the particularity of the graphene-like
metallic photonic structure in its interaction with the EM
waves at scales down to the size of local resonance states.
It may find application in valley photonics in the designs
of beam collimation and splitting devices for informa-
tion processing, by providing information for tuning and
optimizing the beam transmission in various conditions,
and, in addition, be of specific interest to miniaturized
photonic systems.
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