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Abstract: Underwater survey and inspection are tasks of paramount relevance for a variety of ap-
plications. They are usually performed through the employment of optical and acoustic sensors
installed aboard underwater vehicles, in order to capture details of the surrounding environment.
The informative properties of the data are systematically affected by a number of disturbing fac-
tors, such as the signal energy absorbed by the propagation medium or diverse noise categories
contaminating the resulting imagery. Restoring the signal properties in order to exploit the carried
information is typically a tough challenge. Visual saliency refers to the computational modeling of
the preliminary perceptual stages of human vision, where the presence of conspicuous targets within
a surveyed scene activates neurons of the visual cortex, specifically sensitive to meaningful visual
variations. In relatively recent years, visual saliency has been exploited in the field of automated un-
derwater exploration. This work provides a comprehensive overview of the computational methods
implemented and applied in underwater computer vision tasks, based on the extraction of visual
saliency-related features.

Keywords: visual saliency; underwater computer vision; underwater image understanding; multi-
sensor survey

1. Introduction

Saliency is a crucial concept in neuroscience. In particular, visual saliency refers to a
preattentive stage of human visual perception that enables an observer to gain awareness
about the different relevance of the regions appearing in an observed scenario. Associating
an interest score to each point in an observed scene provides the basis for higher-level
tasks of the vision system, such as object recognition and classification. Saliency has been
conceptually modeled by neuroscientists and employed by automation engineers in order
to endow a robotic platform with autonomous perceptual skills.

This type of modeling has been exploited to implement a visual attentive system
deployed onboard of robot vehicles. The proven capability to perform land surveys
through a computational attentive system also attracted the interest of maritime engineers,
motivated by the pursuit of automating the underwater mapping task and making it
more safe and efficient. So far, several attempts and models have been developed and
thoroughly described in the literature [1], but, as far as the underwater exploration domain
is concerned, only a few have been effectively addressed.

Established techniques for in-air object detection usually fail in the underwater sce-
nario. The complex environment makes the survey operations extremely hard to accom-
plish. The sun radiation only penetrates a few meters in the water medium. It under-
goes an attenuation process that reduces the radiation components in an irregular and
non-homogeneous way (see Figure 1) depending on the light wavelength (see, e.g., Ref-
erence [2]). This phenomenon results in a severe distortion of the spectral content of the
image. In addition, the optical image formation is affected by radial and tangential dis-
tortions due to the light propagation through the surrounding medium and the camera
lens. This further issue results in a distorted reproduction of the target geometry, which
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should be corrected by preliminary calibration of the optical system. Moreover, optical
images captured in the underwater environment are affected by visibility degradation
due to partial polarization and a hazing effect resulting from the light scattering inside
the water medium. Suitable filtering techniques may be applied to restore the actual color
properties of the recorded scene while, at the same time, obtaining a haze-based visual
depth estimation [3–6].

Figure 1. Light absorption in water.

On the other hand, acoustic sensing represents a powerful technique for underwater
observations. Compared to the electromagnetic radiation-based sensing, acoustic waves
propagate much deeper into the water medium, allowing the survey to cover large areas
within reasonable amounts of time. In this case, drawbacks are represented by the propa-
gation losses caused by multiple phenomena, such as energy absorption due to spherical
divergence or the geometrical distortions of the signal related to the peculiar transmission
and reception of the acoustic signal. As a consequence, preliminary processing is required
to restore the geometrical properties of the collected signal and to filter out multiplicative-
like disturbances, such as speckle noise (see Reference [7]), which are typical factors causing
a low signal to noise ratio in acoustic sensing.

In this framework, classical computer vision approaches are typically prone to false
alarms or missed detections. Saliency has become more and more popular in the under-
water observation field since it represents a reliable tool to identify meaningful spots in
the payload data stream. It can be exploited both as an immediate detector, as well as a
preliminary stage for signal enhancement purposes in a processing pipeline.

Saliency modeling shows a weak dependence on the physical peculiarities of the
transmission medium. In fact, no primary role is assigned to the physical medium within
the formal framework of the visual attention models considered in this work. Nonetheless,
saliency has proven interesting performances in several circumstances, involving the
exploration of diverse environmental scenarios by means of multiple sensing modalities.
Primary image analysis based on visual saliency, such as image segmentation or foreground
detection, demonstrated that the extraction of informative content without any a priori
knowledge of the surveyed scenario is a viable task.
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To consistently cover the literature domain related to the main topic of the review,
a dedicated search has been performed, through the engine ISI Web Of Science (www.
webofknowledge.com), by exploiting the keywords “underwater” and “saliency”. Search
criteria neglected any constraint on scientific literature rankings, such as thresholds on
impact factor or the like. In order to ensure a fitting set of papers, the output returned by
the engine search has been filtered through a preliminary reading of the papers’ summary
sections (abstract and conclusions). This selection allowed to shortlist a reference bibliog-
raphy of 49 papers, representing the starting set for the review. Later, the references pool
has been extended to include all those articles that were believed to be meaningful for the
review purpose, enlarging the set to more than 60 papers. This has been finally extended
to 100 papers, in order to include references that were needed to ensure self-consistency.

The paper is arranged as follows: Next, Section 2 concerns an outline of the most
relevant saliency models oriented to the underwater exploration; Sections 3–5 concern a
detailed survey of saliency-based methods, respectively, dedicated to object detection and
segmentation (Section 3), navigation and mapping (Section 4), and image enhancement
and restoration (Section 5); Section 6 reports about the currently existing databases that can
be exploited as benchmarks for testing saliency-based implementations. Section 7 develops
a discussion about the reviewed methods concluding the paper.

2. Saliency Models

Saliency is a general concept which is ubiquitous in computer vision and image analy-
sis, and that has found application in several domains. As previously stated, the concept
was born in the neuroscience and has grown in biological vision and bio-inspired methods
to artificial vision. Indeed, in primates, intermediate and higher visual processes appear to
select a subset of the available sensory information before further processing, presumably
to lower the burden of image understanding. This sort of selection is implemented in the
form of a spatially circumscribed region of the visual field, the so-called focus of attention [8],
that appears to be saliency-driven. However, during the years, the concept has moved in new
and different directions, not necessarily linked with biological vision. In the literature, there
are now main general (i.e., not application- nor domain-specific) approaches to saliency
estimation. A brief, non-exhaustive description of the leading models is reported here
below. For a deeper treatment of the topic of saliency, we refer the reader to the general
surveys in Reference [1,9] and to the technical introduction in Reference [10].

2.1. Feature-Based Saliency

The first attempt to develop a biologically-inspired model of human attention can
be found in Reference [8]. Here, the authors, exploiting the Feature Integration Theory
developed in Reference [11], model saliency by means of a conspicuity map obtained
through the combination of a few visual features, derived from the image intensity, color,
and orientation. In detail (also see Figure 2), feature maps are obtained by first computing
a Gaussian pyramid for each of the mentioned image property, then performing the
difference between layers in the pyramid, corresponding to representations of the same
map at different scales. Biologically speaking, this mimics the center-surround operation
carried out by the visual receptive fields.

In the original model, a Gaussian pyramid with 9 scales σ = {0, . . . , 8} is built and dif-
ferences are computed between the scales k and k + δ for k = 2, 3, 4 and δ = 3, 4. When con-
sidering the intensity map, this thus yields 6 features per pixel. For color, the opponent
double system is adopted, considering the red/green and green/red double opponency
map and the blue/yellow and yellow/blue double opponency map, yielding a total of
2× 6 = 12 features related to color. Four orientation maps at angles 0, π/4, π/2, 3/4π are
finally considered, yielding 4× 6 = 24 orientation features. Therefore, the total number
of features considered in the original model is 42. Notice that variations in the number of
features are feasible and that the model can be adapted to other kinds of images, such as
monochrome images and acoustic maps.

www.webofknowledge.com
www.webofknowledge.com
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Figure 2. Itti, Koch, and Niebur Architecture.

For each image property, the resulting features are properly summed in the so-called
conspicuity maps, and the three resulting maps are eventually integrated into a final
saliency map (see Figure 3 for an example). Large values of the saliency map correspond to
interesting points in terms of visual perception.

Figure 3. Example of application of Itti’s model: (a) original image, (b) color conspicuity maps,
(c) intensity conspicuity maps, (d) orientations conspicuity maps, (e) saliency map. All units are
arbitrary units.
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Based on the generated map, the attentional process is performed through the proper
identification within the saliency map of the most conspicuous regions. This is modeled
by means of a 2D winner-take-all neural network, with a number of nodes equaling the
number of saliency map pixels. Indeed, each node is fed by a single pixel; hence, pixels with
the largest saliency values activate the corresponding neuronal response and accordingly
steer the focus of attention orientation. At the same time, the whole network is reset, and a
transient inhibition is activated in the saliency map region corresponding to the current
focus of attention, in such a way that the attentional model is prevented from selecting
again the already identified spots. See Figure 4 for an example of attended locations.

(a) (b) (c) (d)
Figure 4. Example of attended locations computed from the original image depicted in Figure 3: (a) attended location
deriving from center-surround operations on intensity between scales σ = 3, 6 and (b) corresponding attended mask;
(c) attended location deriving from center-surround operations on intensity between scales σ = 4, 7 and (d) corresponding
attended mask.

Since it does not require top-down guidance, the Itti and Koch method allows for a
massively parallel and fast selection of interesting locations in an image to be used for
different purposes.

More recently, a novel and advanced method inspired by biological vision in aquatic
mammals has been proposed in Reference [12] for color images. The authors start their
investigation observing that most of the saliency-based methods that achieve good results
in-air suffer from poor performance in underwater scenarios. In contrast, specific features
of underwater color images have not been fully explored yet. Indeed, besides color and
intensity, underwater images present an additional feature, i.e., the already mentioned haze
effect that can be used to estimate an unscaled visual depth (see Reference [3–5] and the
more recent work of Reference [6] which provides superior results underwater). This piece
of 3D information appears to be used by marine animals [13]. Their biological vision
system has a significant depth sensitivity which makes the short-range objects visually
more salient than the distant ones. Furthermore, the short-range underwater objects are
exponentially enhanced in visual saliency, resulting in a nonlinear depth sensitivity. Based
on this analysis, they propose the following formulation for the comprehensive saliency S:

S = (Dcolor + Dintensity + Ddepth) exp(r), (1)

where exp(r) is the depth adjustment factor, and the terms Dj for j ∈ {color, intensity, depth}
are point-to-point visual contrast measures computed on color, intensity, and depth maps.
This new biologically-inspired method, tested on a rather small dataset made of 200 images
from 50 underwater scenes gathered from YouTube videos, has outperformed existing
methods. Nevertheless, also considering its recent publication, it has not been yet consid-
ered in larger studies or complex applications, nor has it been validated on reference public
benchmark.

2.2. Spectral Residual-Based Saliency

Spectral residual-based saliency has been proposed in Reference [14] as an efficient
and computationally simple model from an operational point of view. In this paper, it is
first remembered that natural images share common similarities for what concerns their
spectral properties. In particular, it is observed that the power spectrum of any natural
image follows a 1/ f trend, where f represents spatial frequency. Hence, if plotted in
log-log axes, the spectrum behaves linearly (see figure 5). The authors state that the natural
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image information results from the combination of a common spectral component, coin-
ciding with the average linear behavior of the log-log power spectrum, plus a specifically
individual component. According to this approach, saliency is related to this latter com-
ponent, which is then naturally defined as related to the deviation of the spectrum from
the average linearity. Saliency map is thus obtained by (i) computing the image power
spectrum, (ii) subtracting the linear component, obtained by averaging a large amount of
natural images spectra, and, finally, (iii) applying inverse Fourier transform to obtain the
conspicuity map in the spatial domain.

While the approach is effective on natural images taken in the atmosphere, however,
it has been observed by Reference [15] that the spectral characteristics of underwater images
are different and the general log-log-spectrum has a strong initial decrease and a heavier
tail. For this reason, Feng et al. have proposed some corrections to the original method,
splitting the spectrum into sectors and applying different heuristic weights to each sector.
The obtained results are superior with respect to the Itti and Koch method when used
for proto-object detection in an image (validation on a set of 120 images, acquired in real
scenarios and selected from YouTube videos).

Among the methods that address saliency as a frequency domain problem, it is
worthwhile to mention the approach followed in Reference [16] which proposes a different
bottom-up paradigm for detecting visual saliency, characterized by a scale-space analysis
of the amplitude spectrum of natural images. Here, the saliency map is obtained by
reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered
at a scale selected by minimizing saliency map entropy. With respect to the spectral residual
approach which uses only a feature map (namely the intensity map), the authors suggest
the use of the Hypercomplex Fourier Transform (HFT) [17] in order to include more features
and obtain better performance. Different features can be taken into account, for example,
regarding color and motion information. Indeed, the HFT is based on quaternions and, as
such, up to 4 real features can be included at once:

f (x, y) = w1 f1 + w2 f2i + w3 f3 j + w4 f4k, (2)

where w1, . . . , w4 are weights, f1, . . . , f4 are feature maps, and i, j, k are the fundamental
quaternion units. The original paper of Reference [16] uses the following features for
RGB images:

f2 = (R + G + B)/3, (3)

f3 = R−G, (4)

f4 = B − Y , (5)

where R, G, B are the red, green, blue channels, and R = R− (G + B)/2, G = G− (R +
B)/2, B = B− (R + G)/2, Y = (R + G)/2− R−G/2− B. Thus, the features are based on
the opponent color space representation of the input image. The features f1 can be used to
effectively integrate a motion featureM in case of video analysis (see, e.g., Reference [18]).
On the basis of such hypercomplex representation of multiple feature maps, several spectra
are computed using the HFT, and a saliency map is built in a way similar to the spectral
residual approach, selecting the proper scales automatically for detecting salient areas.
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Figure 5. Average power spectrum trend in natural images (taken from Reference [14]).

2.3. Information Content-Based Saliency

Another popular means to extract salient pixels in images is based on information
theory concepts, such as the information entropy of a signal. To the purpose of identifying
interesting spots, it has been observed that visual features extracted from the neighborhood
of salient spots, e.g., intensity histogram, exhibit flatter distribution with respect to the
distribution of features extracted from non-informative or cluttered scenarios. According
to this observation, it is natural to consider the entropy of an image patch as a quanti-
tative measurement of its information content, in this case corresponding to its saliency.
This approach has been largely developed in the computer vision domain, as discussed in
Reference [19]. Given a point x and a scale s, the Shannon entropy is defined through the
probability of having a given value for feature d, in which possible values pertain to a set
D. Namely:

HD(s, x) = − ∑
d∈D

p(ds, x) log p(ds, x), (6)

where p(ds, x) is the probability density function for feature d conditioned on s and x.
Salient points are detected by finding the scale value for which a maximum entropy value
is observed. On the other hand, it is true that entropy peaks can be observed at different
scales; hence, the most relevant one must be selected correctly. This is obtained by taking
into account the statistics of neighboring pixels, in which properties vary as a function of
scale, as well. Thus, the entropy expression is modified introducing a weight that accounts
for the variation in the magnitude value of p, as a function of scale only in the nearby of
the considered peak.

WD(s, x) ∝ ∑
d∈D

∣∣p(dsp, x)− p(dsp − 1, x)
∣∣. (7)

The saliency map is finally defined as:

YD(s, x) = HD(sp, x)×WD(sp, x). (8)

As a conclusion to Section 2, notice that the described models are the most primar-
ily employed for saliency estimation oriented to underwater exploration and analysis.
A focused search performed on dedicated scientific web platforms returns a plethora of
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works that can be roughly categorized based on the task to be performed. The spectrum
of applications of visual saliency concepts to underwater environment exploration is al-
most entirely covered by Object Detection and Segmentation, Navigation and Mapping,
and Image Enhancement and Restoration. A survey concerning these usages is reported,
respectively, in Sections 3–5.

3. Object Detection and Segmentation

Object detection is probably the primary application for which saliency estimation
is conceived. The main goal is to automatically discriminate between background and
foreground regions, hence identifying the portion of the image that potentially represents
a target of interest for the survey purposes. This section presents a synthesis of the
most relevant methods available in the literature, starting with early works concerning
foreground detection and identification of proto-objects and subsequent developments
(Section 3.1) and going through methods incorporating or taking advantage of frame
differencing for video analysis (Section 3.2). Section 3.3 is dedicated to advanced and
refined active contours formulations which make a pivotal use of saliency, while the
somewhat higher level vision tasks connected to recognition, classification, and analysis
are discussed in Section 3.4.

3.1. Foreground Detection and Proto-Objects

Foreground detection refers to the identification of the area in an image occupied by
the objects of interest that stand out on the background. Therefore, its determination is
deeply linked with the attentional process. The resulting foreground area can be sometimes
arranged and grouped to form simplified models of the object to be detected (proto-objects).
The seminal saliency concepts described by Itti, Koch, and Niebur in Reference [8] found
a first interesting application to the underwater context in the paper by Reference [20],
where the authors propose a method to annotate automatically video frames. The goal is
to rough cut-out the (typically extensive) video stream sections that capture non-relevant
scenarios (mainly empty scenes or non-interesting objects, such as marine debris) and
to identify the segments where relevant objects are observed (e.g., animals or interesting
artefacts). The proposed method, based on the computation of a saliency map through the
classical approach [8], is exploited to identify meaningful locations in the image and to
extract distinctive features, i.e., geometrical and morphological properties of the detected
objects, that may be employed for subsequent classification purposes. Compared to human
annotation performances, the discriminating power of the presented method turns out to
be effective (see Receiver Operating Characteristics curves presented in Reference [20]).

A similar approach is adopted in Reference [21], where the authors propose a sea
creatures classification method based on the processing of optical data captured during
Autonomous Underwater Vehicle (AUV) missions. After preliminary processing for signal
enhancement purposes, the saliency map of the surveyed scene is computed in order to
assess the presence of meaningful objects. Then, the candidate targets are further processed
and assigned with a classification label returned by a Convolutional Neural Network
(CNN), in which architecture is based on AlexNet [22]. Therefore, in this paper, a saliency-
based approach is used as a robust method for the proposal of candidate regions to be
further processed by specifically trained models. It can be observed that the performance
of saliency in proposing candidate regions is general and does not depend on the specific
recognition task, while the performance of the subsequent steps achieving classification
is task-specific and depends on the actual training of the CNN. The approach has been
validated using 37, 394 candidate area images, extracted from 3866 seafloor images captured
by an AUV.

Atallah et al. developed one of the first works exploiting saliency related concepts
for object detection in the underwater domain [23]. In their approach, given a point in the
image, saliency is defined as a function of a feature descriptor (for example, the entropy
value computed within the neighborhood of the point) and of the corresponding scale
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value, i.e., the size of the pixel neighborhood employed for the descriptor computation.
Accordingly, saliency can be defined as the maximum entropy value at a given point and
at a given scale value (see Equations (6)–(8)). This modeling accounts for the fact that an
image region can be interpreted as salient or not depending on the scale value at which its
descriptive features are computed. This means that, at a given spatial point, saliency varies
with scale, so the maximization must also be performed considering this further variability.
Besides, entropy can exhibit more than one peak at different scales. The maximum is
selected by observing the variability of the detected peaks in their neighborhood and
selecting the one that stands out most against the neighboring values. The method is suited
for the processing of ultrasound data acquired by side scan sonars. Validation has been
performed in 10 m of water in a sheltered cove with a uniform, fine-grained planer sand
substrate on which a test site of material types was set out.

Wang et al. [24] address the issue of simultaneous object detection and segmentation in
underwater optical images. They propose to compute the saliency map of a corresponding
underwater image starting from the approach outlined by Itti et al. [8]. This entails the
computation of 3 feature maps which highlight the information carried by the starting
map in terms of color, intensity, and orientation, as explained in Section 2.1 and depicted
in Figure 2. Adopting the original Itti approach would result in a saliency map given by
the summation S = Icolor + Iintensity + Iorientation. Wang et al. observe that, as a matter of
fact, the objects’ saliency may result from a non-homogeneous combination of the three
mentioned factors. Hence, the authors propose a modified definition of saliency, through a
weighted combination:

S = ∑
j

αj Ij, where ∑
j

αj = 1, (9)

where j ∈ {color, intensity, orientation} represents each of the three considered image
features. The coefficient αj takes into account the difference between the foreground and
the background areas, for each feature typology. Each αj is quantitatively estimated com-
paring, by means of the Bhattacharyya distance [25], the corresponding feature histograms
obtained from the foreground and background areas. In particular, the Bhattacharyya
distance evaluation returns a scalar value which statistically represents the difference
between the foreground and background distributions of each feature, hence describing
the discriminating power of that feature. Then, the computed value is exploited to define
the combination coefficients in Equation (9) and, accordingly, the final saliency map.

In Reference [26], Huo et al. propose a system to perform object detection and 3D
reconstruction of targets observed in optical videos. They employ saliency first to identify
the salient regions in the image, and to exploit the result to perform foreground object
segmentation later. This approach allows us to reduce the usually large computational
cost of a segmentation procedure and to enhance the robustness of the following 3D
reconstruction process. To this aim, brightness and texture features are computed. Then,
pixels are clustered in super-pixels adopting a similarity criterion based on the computed
features. Later, the obtained super-pixels undergo a further clustering process to return the
final segmentation output.

3.2. Temporal Information and Object Tracking

Temporal information can be used or even incorporated in saliency computation
for detecting changing and, thus, potentially relevant objects. Vice versa, high-salient
spots can be used to detect and track objects in video streams. Chen et al. [27] adopted a
saliency-based approach to perform underwater object detection through optical image
processing in videos. They propose to estimate the saliency map related to an image
through the spectral residual computation method (see Section 2.2). The proposed method
is substantially inspired by Reference [14], apart for what concerns a pre-processing stage,
which has been included in the pipeline. In particular, the authors suggest applying a first
frame-difference algorithm in order to enhance the discrimination power of the following
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foreground detector. A similar approach is presented in the already mentioned paper of
Reference [15]: there, after computing saliency, object detection is achieved by a standard
fuzzy c-means clustering [28], which produces proto-object instances in which precision,
however, might be insufficient for applications demanding refined object contours.

In Reference [29], Kumar et al. propose a method to perform event detection in optical
video streams captured in the underwater environment. The proposed method exploits
saliency concepts starting from the classical model [8]. In particular, the saliency map is
computed, and then a thresholding operation is locally performed in order to obtain Local
Patch Saliency (LPS) regions. These disjoint regions cover the entire image domain and
individually represent local conspicuity maps. Then, the authors apply the morphological
closing operation (see, e.g., Reference [30]) to restore the compactness property of patterns
in which spatial domain extends over multiple patches. This operation is applied to indi-
vidual frames. To recognize an event that occurs throughout a sequence of consecutive
frames, a process to model the background of the scene, called Adaptive Saliency Subtraction,
is applied. Following this approach, the background model is identified with the non-
salient regions, but it is periodically updated to take into account the varying environment.
In Reference [31], the same research group proposes an underwater moving object detection
technique by visual saliency estimation based on multiple frames difference. The basic
idea is to use temporal information to generate the motion saliency map in order to detect
moving objects while suppressing the noise present in the background. More in detail,
a continuous symmetric difference of adjacent frames is computed and used to generate
full resolution saliency map of the current frame to highlight moving objects with higher
saliency values. Range filters are used to get edges of an object, while morphological oper-
ators are used to suppress the noise present in the foreground. The proposed algorithm
is tested for performance evaluation by performing various experiments under different
conditions on videos acquired by Central Scientific Instruments Organization (CSIO) in
Chandigarh, an India-based national laboratory dedicated to research, design, and de-
velopment of scientific and industrial instruments. Video frames have 704× 480 pixels
and generally contain about 104 frames. The method does not require user interaction.
Nevertheless, some basic parameters (e.g., the size of the used morphological operators)
are hard-coded and seem to work in general scenarios, as demonstrated by visual and
statistical parameters evaluated by simulation of different videos.

Recently, representation learning has been used for saliency modeling and estimation
in the context of object detection and tracking. In Reference [32], the authors propose
novel solutions to issues arising in the framework of deep-sea event detection, tracking,
and data summarization, implementing a saliency-based system for object detection pur-
poses. The saliency descriptor is provided as the output of a CNN, returning the probability
for every pixel of being salient or not. The model is based on a variation of the Holistically-
Nested Edge Detector (HED) proposed in Reference [33], where several short connections
to the skip-layer structures are introduced. Namely, a top-down view with 5 convolutional
layers is built, with each layer having a short connection to the saliency map in output.
In this way, the network captures rich multi-scale feature maps at each layer, which are
suitably integrated into the global saliency map thanks to the short connections. The meth-
ods are tested on original videos collected by the Chinese sea exploration vehicle Jiaolong,
during several real tests at sea, where each test consists of more than ten hours, including
diving, sailing, and floating. The saliency detector is used as a tracker to follow objects of
interest in the video stream, providing quite effective results. Unfortunately, comparison is
only presented with respect to other two, non-underwater specific, trackers.

3.3. Saliency in Active Contour Segmentation

Active contours, snakes, and level sets are known as powerful methods to obtain
accurate object segmentation, which turns out useful whenever fine object recognition
or shape analysis must be performed. In this context, saliency often plays an ancillary
role, as in Reference [34], where the authors propose an object detection method based on
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the analysis of a set of sequential images captured by underwater cameras. In this paper,
rough object detection is first performed by looking for the most conspicuous points in a
co-saliency map, an extended version of the saliency map taking into account a whole set
of M images. The pixels are first clustered through a K-means algorithm on a single-image
level, and, later, the pixels in the remaining part of the image dataset are labeled based on
the computed cluster centers. The saliency map estimation starts from the extraction of
three primary features, computed taking into account the entire set of images, for each of
the K identified clusters: (i) the contrast feature of k-th cluster (k = 1 : K), which represents
the mean deviation of cluster center µk from the rest of the cluster centers, (ii) the spatial
deviation feature, a scalar value indicating the average distance from the image center,
of pixels belonging to cluster k, and (iii) the correspondence feature, which describes the
clusters distribution over the images sequence; in this latter case, an M-bin histogram
is computed, with each entry relating to the number of pixels associated to cluster k in
image j, and the correspondence feature is defined as proportional to the inverse value of the
histogram variance. Then, the computed features are used to define a prior probability of
the k-th cluster occurrence in the image dataset: p(Ck) ∼ ∏i wi(k), where wi(k) represents
the i-th feature descriptor computed for the k-th cluster. Assuming that the pixel saliency
p(x), with x conditioned to be part of cluster k, follows a Gaussian distribution p(xCk),
the pixel saliency is derived as follows:

p(x) =
K

∑
k=1

p(x, Ck) =
K

∑
k=1

p(xCk)p(Ck). (10)

After this quite elaborate pre-processing stage centered on the identification of salient
areas, a refined segmentation technique based on active contours is applied to eventually
segment the object.

A similar role of saliency within active contours approaches is presented in Refer-
ence [35], where the goal is the segmentation of human-made artefacts, especially for
archaeological surveys. In this case, saliency—computed thanks to the Itti’s model—is
used to create a rough object segmentation to initialize the active contours.

In Reference [36], a more in-depth use of saliency is made as a step towards automatic
shape extraction and segmentation of objects in an effort to automatize the analysis of
underwater footage produced by AUVs. Mainly, the saliency map is used to produce
an edge indicator function to be employed as the data-driven term in a geodesic active
contour model [37]. Indeed, traditional active contour models exploit the gradient of the
image in the stopping criterion for extracting the shape of the objects. However, it turns
out that, in the unconstrained underwater environment, gradient information is destroyed
due to the frequent temporal and spatial changes, becoming unusable. Based on this
consideration, the image gradient alone cannot be used as a stopping condition in these
scenarios. Saliency, in the Itti and Koch model [8], is instead a characteristic which has nice
invariance properties with respect to the surrounding environment; therefore, it can be used
to discriminate both objects and locations in a scene that stand aside the other locations in
the background. In the traditional active contour formulation, the edge indicator function
in term of the gradient of the original image I is defined as:

g(I) =
1√

1 + α∇Gσ ∗ I
, (11)

where Gσ is a Gaussian kernel with standard deviation σ, and α is a positive parameter.
Notice that, in smooth areas of the image I, we have g(I) ≈ 1, while g(I) assumes values
close to zero in the presence of image discontinuities. The definition of edge indicator in
terms of saliency is similar:

Sg(I) =
1√

1 + α∇Gσ ∗ Smap(I)
, (12)
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where Smap(I) denotes the saliency map computed by Reference [8] (also see Section 2.1).
Notice that Sg(I) ≈ 1 where saliency is constant, while Sg(I) assumes values close to
zero when saliency has strong variations. The proposed method is tested on RGB images,
performing an extensive quantitative and qualitative analysis with respect to several image
segmentation metrics on a dataset of videos obtained from Ocean Networks Canada
(ONC) [38,39]. Initialization seeds for the active contours are obtained using the method
reported in Reference [29], which is also discussed in Section 3.2 of the present paper.

Another approach to object segmentation based on active contours is presented in
Reference [40], where saliency is used as a data-driven term to favor convergence of
the contours to the boundaries of the desired object of interest. The authors employ a
formulation of active contours, based on the so-called level-set approach, in which the
contours to be sought are represented as the zero set of a real function φ having the image as
its domain. Instead of deforming the contour, in the level set approach, the entire function
φ is modified, usually minimizing a criterion expressed in an energy form:

E(φ) = Ereg(φ) + Eext(φ),

where Ereg(φ) is a regularization term favoring smoothness and avoiding pathologies in the
function φ, while Eext(φ) is a data-driven term. In the proposed paper, Eext(φ) takes into
account two features of underwater images, i.e., transmission and saliency. The first is based
on the haze effect, that, while degrading the information of underwater images and making
it challenging to distinguish object boundaries, provides, as already mentioned, an unscaled
sight distance as a byproduct. Being a sort of depth information, the transmission feature
might be used to distinguish the foreground from the background and, in the present
paper, its computation is based on the so-called dark channel prior and its variations for
underwater imaging (see, e.g., Reference [41,42]). Saliency is instead computed using the
HFT (see Section 2.2). Such a pair of features is then inserted into a modification of the Chan-
Vese model [43] for level sets, which favors segmentation into regions homogeneous with
respect to saliency and transmission. The approach is tested on real underwater images,
available on YouTube (www.youtube.com), that were collected to establish a benchmark
for experimental evaluations. About 200 images and 50 scenes are included, which were
manually labeled by 10 volunteers. The authors compare the object identification obtained
by level set segmentation with general methods based on saliency, such as Reference [8,16,
44–46]. The quantitative performance of the object detection is evaluated with respect to six
criteria, namely Precision (Pr), Similarity (Sim), True Positive Rate (TPR), F-score (FS), False
Positive Rate (FPR), and Percentage of Wrong Classifications (PWC). On the benchmark
dataset, the level set approach outperforms all the other cited approaches. This makes the
approach the best studied and documented among those related to object detection and
segmentation. Besides, the dataset, featuring good variability concerning context and the
ambient light, is of interest since, in principle, it can ensure a comprehensive evaluation of
the methods. Unfortunately, it seems to be not freely available.

3.4. Object Recognition, Classification, and Analysis

Finally, in this last section, works centered on object detection but going further to
object recognition and analysis are reported. In Reference [47], the authors present an archi-
tecture, based on saliency, which can be exploited to implement a classification algorithm.
In this framework, the authors adopt a saliency definition relating to information theory,
i.e., based on the entropy of the underlying probability distribution of pixel intensities
(or derived quantities, such as texture). High entropy values are correlated to more unpre-
dictable values, hence more salient pixels. Entropy is used here to compute the gain in
information associated with the intensity value of every pixel, as well as a global measure
to describe the information content of the entire image. The latter operation allows us
to perform the comparison with the rest of the images in the considered dataset and to
describe the relative unpredictability of the considered image. The saliency map is used
to identify interesting regions in underwater optical videos. While traditional methods

www.youtube.com
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(e.g., based on Support Vector Machines) outperform the saliency-based method on data
exhibiting similarities with that exploited for the training task, the opposite is true when
the saliency-based classifier applies to entirely different data (for example, from different
surveyed sites).

Chuang et al. [48] propose a system aimed at fish recognition purposes. It is actually
based on a non-rigid part model which learns fish properties within an unsupervised
learning framework. Here, saliency is exploited as a tool to perform a smart initialization of
the learning algorithm, in order to prevent the minimization algorithm from getting stuck
in local optima during the learning task. Saliency usage is motivated by the observation
that parts perceived as conspicuous by the human eye mostly coincide with the actually
salient ones. In this work, saliency is defined through the Phase Fourier Transform of the
image, as described in Section 2.2. The main reason for this choice lies in the need to have
a fast and straightforward computational tool, in order to enable the processing of large
amounts of data. The proposed method is tested with respect to the object recognition task
on the Fish4Knowledge dataset [49].

Template matching for object detection and recognition using saliency is presented in
Reference [50]. In their work, the authors propose a methodology based on transformable
template matching for sonar data. As in other cases, it is first found and discussed that
usual schemes for template matching fail in the underwater scenarios due to the specific
aspects of sonar data. For instance, cross-correlation approaches give poor results since
the scattering of objects depends on incidence angles. In the authors’ approach, first,
an object is reconstructed from sonar video sequences based on the analysis of acoustic
shadows. Then, at processing time, the target regions, i.e., where to look for the objects, are
identified by employing the fast saliency detection techniques based on spectral residual
(see Section 2.2), significantly improving efficiency by avoiding an exhaustive global search.
After detection, the salient region is expanded to reach the same size as the template.
The method has been evaluated on a real dataset acquired by a dual-frequency side scan
sonar. The dataset is available upon request.

A somewhat different line of research concerning saliency for object detection and anal-
ysis is proposed by Kin-Man Lam et al. in [51]. Considering the quaternionic representation
of three-channel color images given by:

q = Ri + Gj + Bk, (13)

where R, G, B are the red, green, and blue channel, and they used a combination of quater-
nionic metrics [52], taking into account chrominance and intensity changes, to construct
differential features that reflect directional information in an image. The normalized
directional features are then fused to form an integrated directional map referred to as
Quaternionic Distance Based Weber Descriptor (QDWB). In Reference [53], QDWB is also
combined with other features, such as Pattern Distinctness (PD) [54] and Local Contrast
(LC) [55], which makes it possible to perform a more robust estimation of saliency. Tests are
conducted on a small dataset of RGB images which has been made publicly available (also
see Section 6), providing a set of validated image descriptors for object detection purposes.

Saliency has also found a role in texture detection and classification. For instance,
in Reference [56], the authors propose a framework for an ensemble of probabilistic distance
measures based on the analysis of saliency which has good discriminative capabilities
in detecting the seabed type and identifying the presence of Sabellaria colonies, mussels,
rocks and sand. The approach is tested on a limited set of synthetic acoustic maps generated
from a small set of real images.

4. Navigation and Mapping

Visual saliency in the navigation and mapping framework is employed as a bottom-up
attention model enabling the identification of trajectories that ensure the largest possible
information gain. This turns out to be of paramount relevance in localization and mapping
tasks, for example, aiming at the estimation of the vehicle’s pose based on a set of pairwise
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camera shots. Authors adopting this approach refer qualitatively to saliency as the ability
of two images to be registered. For example, this ability depends on the amount of texture
richness observed and measured within an image, as well as on the rarity of the observed
patterns, considering their occurrence throughout the entire set of collected images.

A somewhat inverse approach takes into account the problem of detecting salient
points by performing a prediction based on the statistical behavior of a large pool of
human subjects. For example, the participants are asked to freely interact with a virtual
reconstruction of a given environment and their actions are recorded. Then, the goal is to
estimate the underlying probabilistic relationships between the measured users’ actions
and the environment conspicuity features, encoded in the corresponding saliency map.
Examples of this manifold attitudes towards underwater navigation and mapping are
discussed in the following.

4.1. Entropy-Based Visual Attention for Localization & Mapping

In the underwater domain, localization, mapping and navigation represent topics of
paramount relevance, playing a pivotal role in the planning and fulfilment of a robotic
survey mission. Unlike the in-air counterpart, underwater Simultaneous Localization And
Mapping (SLAM, see Reference [57]) cannot rely on effective localization tools, such as
the Global Positioning System. The usual approach to determine the vehicle position is
to collect and properly process measurements of motion-related quantities. This can be
fulfilled through dedicated sensors that continuously provide navigation data, such as
Inertial Measurement Unit or Doppler Velocity Log. The captured data is processed through
data fusion algorithms to return estimates of the vehicle position eventually. Such a dead
reckoning approach is prone to severe uncertainties and usually affected by relevant drifts
in the trajectory estimation. A limitation of the error drift is possible by forcing the vehicle’s
trajectory to intersect specific points, called loop closure points, in which informative
properties are rich enough that they are identified as crucial key points in the trajectory
planning. By forcing the vehicle trajectory to cross these points repeatedly, it is possible to
bind the position estimation error. Thus, the positioning system accuracy largely depends
on the robustness of the criterion adopted to select loop closure spots. To these purposes,
saliency is a widely exploited concept. It is usually employed as a tool to identify relevant
key points for vehicles’ trajectories, as well as a method to identify potential candidates for
object detection.

Concerning underwater vehicle navigation based on SLAM, Kim et al. propose,
in Reference [58,59], to include a saliency estimation stage to identify frames, in an optical
video stream, that may be employed as loop closure candidates. To this purpose, saliency
is introduced with a twofold definition, a local one which describes the richness in terms
of texture content of a given frame, and a global one which describes the conspicuity of a
frame compared to the entire captured set. The second definition supports and completes
the first in the sense that texture-rich frames can be negligible in case they exhibit attributes
that frequently appear throughout the entire video stream. The authors borrow saliency
conceptual definitions from the framework of automatic document analysis. Visual features
(SIFT [60], SURF [61]) are extracted from the input image and associated to words. Hence, an
image, analogous to a document, can be described in terms of the set of words (bag-of-words),
i.e., the related complex of descriptive visual features, occurring in it. Local saliency, i.e.,
saliency map computed for an individual frame, is accordingly defined as the entropy of
the histogram of words extracted from that image. On the other hand, the saliency map for
a given frame compared to the entire set of frames contained in the video stream is assessed
through an informative descriptor, called the Term Frequency—Inverse Document Frequency,
also borrowed from the document analysis research field. In this case, saliency denotes
the rarity of the considered frame compared to the rest of the video. The corresponding
quantitative descriptor is computed by taking a census of the occurrence of the words.
Adopting this approach, frames exhibiting rare features, e.g., highly rich in terms of texture
content, are ranked with high scores.
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The same authors propose, in Reference [62] and later extended in Reference [63],
a method to implement exploration and survey of an underwater scene. Saliency is again
exploited to identify candidate points that can be efficiently employed for loop closure
revisiting purposes. The navigation instructions involve the alternation of revisiting
and exploration actions, performing one or the other according to the balance between
uncertainty in the vehicle’s pose and the ratio between the surveyed area and the full area
to be covered.

The concepts introduced by Kim et al. have been further exploited by the research
community. For example, in Reference [64], the authors propose a system dedicated to
navigation purposes based on Reference [59]. The main novelty concerns the construction
of the vocabulary. In Reference [59], every candidate word, actually identified by a vector
of features extracted from the image, is quantitatively compared with the already existing
ones by means of an Euclidean inner product such that, in case the vectors diverge suf-
ficiently (e.g., when the cosine of the angle between the compared vectors is larger than
a given threshold), the candidate word is included in the vocabulary. This is, therefore,
progressively populated, in contrast to the approach employed in Reference [64], where the
vocabulary is built in a unique offline operation, adopting the method of Density-Based
Spatial Clustering of Applications with Noise (DBSCAN, [65]).

In Reference [66], Li et al. propose a system to perform underwater SLAM by exploit-
ing a forward-looking sonar as the only perceptual device. The acquired set of sonar frames
undergoes a preliminary selection based on saliency content, in order to identify those
frames that include a large amount of information and discard meaningless frames which
would only result in increased computational burden. In this work, saliency is defined as a
global image feature, which can be learned through a CNN. The CNN is trained to provide
a feature extractor that is robust for sonar-based localization. In this case, a value in the
saliency map corresponds to the image texture diversity. It is, hence, exploited to capture
the local variation of the extracted image features and to identify candidate frames for loop
closure proposals.

In Reference [67], Kaeli proposes a system to perform anomaly detection in underwater
sonar imagery by adopting a saliency-based estimation criterion. The image is processed
by means of a variety of operators. First, a Laplacian of Gaussian is applied to identify
stable image features, such as corners. Then, the image is fed to a filter bank in order
to associate every pixel with a histogram of features. Every filtering action is repeatedly
performed varying the image scale. Once each pixel has an associated multi-scale histogram,
this is compared with the surroundings’ histogram through an absolute norm difference.
The maximum difference value, by definition resulting from a multi-scale maximization
process, determines the saliency value of the related pixel. Regions that appear locally
heterogeneous will return low saliency values, while the opposite will occur in case of
spots that exhibit outstanding details.

4.2. Bottom-Up Visual Attention in Underwater Mapping

As previously mentioned, it is possible to qualitatively state that a given spatial region
is salient in case an imagery signal captured within that spatial domain exhibits some pecu-
liar anomalies that enable an observer to perceive that spot as interesting with respect to the
surroundings. This naive definition has the nice quality of being independent of the nature
of the employed sensor technology. This implies that saliency can be considered as a pow-
erful descriptor for a large variety of sensing approaches and technologies. In particular,
underwater exploration often entails the exploitation of acoustic imaging which is typically
a favorite choice, compared to optical sensing, given the potentially large exploration range
and a lower energy release in the water medium, compared on equal values of range from
a source. On the other hand, it is suitable to point out that saliency is sometimes employed
as a tool to address the perception of relevant spots in the data also in case of low signal
to noise ratio or poor visibility conditions, which represent typical circumstances in the
underwater scenario. In this unfavorable framework, saliency is exploited to focus on the
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most relevant spots, in which perception is hindered by environmental factors, but still
carries sufficiently valuable information to be exploited for automated exploration. In this
regard saliency has also been used to achieve a more robust and automatic registration
of underwater data, especially in the case of acoustic images, so as to obtain large-scale
seafloor reconstruction and mosaicing.

For instance, in Reference [68], the author addresses the problem of underwater image
registration using an approach based on landmarks matching. It is argued that classical
detectors, such as the Harris corner detector [69], can be used to identify a number of
feature points to be used as a set of landmarks for assessing the displacement vector field
between a pair of images. Nevertheless, being based on curvature analysis, Harris detector
and similar ones produce a number of points which might be insufficient in some regions
of the image. For this reason, the author proposes to integrate curvature-based feature
points with feature points extracted as the maximum of the saliency map. In particular,
he employs a variation of Itti’s model, described in Reference [70], suitably adjusted to be
used on one-channel acoustic images. It is found that the saliency map is a complementary
way to fill the displacement vector field, firstly only determined by curvature-based points,
yielding a more precise and dense estimation and, in turn, superior quality of image
registration. Extending and refining this work, Chailloux et al. present, in Reference [71],
a method to perform image registration and mosaicing for side-scan sonar underwater
imagery. In particular, they propose to identify corresponding pixels between two images
by introducing a novel similarity measure based on the fusion between two information
descriptors, Correlation Ratio and Mutual Information [72]. In this framework, saliency is
employed to detect key points in the image that can be used to estimate the geometrical
transformation mapping one reference image onto a test image. Thus, saliency, actually
computed adopting the Itti’s model [8], is exploited as an initialization tool, enabling focus
on the spots in the image that contain the largest amount of information. Similar approaches
are described in Reference [73], where a saliency map is extracted by processing acoustic
images after shadow removal and used to identify feature points based on SURF [61], and,
in Reference [74], where the HFT (Section 2.2) is applied to compute the saliency map of
RGB images after haze removal via the dark channel prior [41].

4.3. Visual Saliency through Data-Mining

The collection and analysis of large amounts of information related to a given scenario
can shed some light on its saliency properties. In this regard, an interesting assumption is
that human visual saliency can be modeled by proxy, observing the exploratory behavior
of a conspicuous number of human subjects. A quantitative measurement of this behavior
is feasible using eye tracking systems or, in case a computing machine is employed to
interface between the human subject and the observed scene, by recording the input
exploration commands given by the monitored subjects. Based on the assumption that,
unless differently instructed, humans focus their attention at what they find interesting,
this approach allows to infer the hidden relationship between the unintentional behavior
of the users and the conspicuity of the tested environment.

An interesting approach to estimate the visual saliency of a tri-dimensional scenario
is proposed by Johnson-Roberson et al. In Reference [75,76]. Here, the authors discuss a
data-driven method to saliency detection and estimation in underwater optical imagery.
In particular, the authors conceived a crowd-sourcing experiment based on the involvement
of a large set of participants, recruited through the internet and supplied with a mobile
application platform. Through this mobile software, every participant is provided with a
3D reconstructed model of a certain underwater scene. The users are then asked to freely
interact with the model, and their virtual exploration actions are recorded. Later, the cam-
era motion parameters (pan, tilt, zoom), stored during the explorations, are processed to
perform statistical analysis (e.g., histograms of the exploration actions). This allows direct
monitoring of the users’ focus of attention. Intuitively, the most frequently observed loca-
tions and zoom actions refer to potentially interesting spots that, hence, may be labeled as
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salient ones. The authors propose a method based on Hidden Markov Models (HMMs) [77]
to label the collected information as salient or non-salient. Through this approach, two
time-series are modeled, the Observable States O, relating to the measured exploratory
parameters, and the Hidden States Y, corresponding to the non observable variables, in this
case associated to the saliency features of the observed scene. By measuring the O states,
the HMM framework allows us to estimate the probability of a salient state occurrence
given that particular observation:

P(Y|O) ∼ P(O|Y) · P(Y). (14)

The classification of the observed state in salient or non-salient is performed by
maximizing the Equation (14) with respect to Y. The value for which P(Y|O) is maximum
determines the corresponding value in the saliency map.

The proposed method represents an interesting approach which paves the way for
further exploitation of crowd-sourcing in visual attention issues. Indeed, ground-truth
saliency is usually a hard reference to have available. Its generation as the output of a
statistical-based process provides an interesting solution, which is worth being further ex-
plored.

5. Image Enhancement and Restoration

In the underwater domain, visual perception is hindered by hostile environmental
circumstances. As mentioned previously, the electromagnetic wave intensity drops down
after a few meters due to absorption effects, and the radiation captured by the camera
is attenuated, in terms of its frequency content, as a consequence of the path covered
throughout the water medium. This results in hazy, low-contrast, and color-distorted
images, which can hardly be exploited for image analysis purposes. The following section
reports about methods based on the use of saliency concepts for signal enhancement
purposes.

Achanta et al. [78] propose a method to restore color and contrast image properties
through the exploitation of a saliency-based technique. In particular, they start by proving
that the most popular saliency estimation methods do not fully exploit the entire frequency
content of an input image. Indeed, they observe that almost every state-of-the-art method
includes, at some point of the proposed processing pipeline, a downsampling module
which necessarily implies a loss of information. This loss affects the details and resolution
properties of the output result. Hence, the authors propose a novel method based on the
preliminary band-pass filtering of the image through a Difference of Gaussians (DoG) [30]
operator, with properly chosen parameters, such that the image spectral content is largely
preserved. The saliency map is defined as the absolute difference between the image mean
value Iµ and a blurred version of the image, obtained by applying the DoG filter:

S(x, y) = Iµ − Iwhc(x, y), (15)

where whc represents the high-frequency cutoff value of the blurring filter. The resulting
saliency map may be later employed for specific purposes, such as segmentation and
detection of the foreground area.

The described method has often been adopted by researchers interested in the restora-
tion of underwater images. Restoration of a single input image usually starts from the
definition of a second layer of input images, derived from the original one through specific
filtering operations. White balance, noise reduction, or contrast stretching are typically
employed in this stage, which represents a preliminary attempt to restore or partially
enhance the information content of the image. The following stage concerns the processing
of the derived input images to obtain the so-called weight maps. These are the output result
of specific filters applied to the input images in order to highlight meaningful features in
which observation is considered as an inherent evidence of the image quality. Weight maps
may represent local or global contrast, exposure, and also the pixel saliency, where the latter
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is often computed through the Achanta’s approach. In particular, this stage usually consists
in the blending of the derived input images by means of the computed weight maps,
eventually returning the restored image. For example, in Reference [79,80], the authors
propose two different methods to enhance the visibility of underwater images, both based
on the Achanta’s approach. In these papers, the saliency map is exploited, together with
luminance and chromatic maps, as a weight map, and it is employed in the processing
pipeline to highlight salient regions and make them more prominent in the final output.

Likewise, in Reference [81], the authors propose a method to compute the amount
of backscattering light that reaches the observing sensor in order to later perform image
restoration. In particular, they claim to have developed a novel method based on the local
estimation of the backscattering component as opposed to the typical approach found in the
corresponding literature, where backscattered light is usually estimated as a global value,
assumed to be uniform over the entire image. In this framework, saliency is employed in the
final multi-scale fusion procedure, which returns the actual output. Three input maps are
fed into this blending stage: two represent estimates of the backscattering light performed
at two different scales, while the third one is obtained by applying a Laplacian operator,
in order to incorporate fine-detail information in the resulting image. The restored image
eventually results from the blending of the three estimated inputs. In this case, the weight
maps exploited for the fusion process are represented by a saliency map (computed in
the Achanta’s way), a saturation map and a contrast map. Similarly, in Reference [82],
the authors propose a method to perform underwater image restoration through multi-
scale multiple images fusion. As in the previous cases, the original image is first processed
to correct color and to enhance the contrast properties. This leads to multiple input images
that are eventually blended through local and global contrast maps, and a saliency map,
computed through the Achanta’s model. The main difference, with respect to the previously
described methods, lies in the implementation of the final blending stage, which is based on
a lp-norm decomposition instead of a more classical multi-scale pyramid decomposition.

The presence of caustics represents another possible artefact that affects the quality of
underwater images. In shallow water, the light rays refracted by the water surface may
concentrate in different areas casting a characteristic time-varying texture on underwater
objects and seabed, which are known as caustics. Suppression or reduction of caustics
is seen as a method for image restoration for recovering the actual appearance of objects
of interest. Saliency has a role also in this context. Indeed, in Reference [83], saliency is
used as a mean to remove caustics from underwater images, thus enhancing their quality.
With respect to other papers cited in this section, an ad hoc method to highlight regions with
caustics is proposed based on the use of a small and easy trainable CNN, named SalienceNet.
The network is trained, with an input consisting of synthetic images (produced using Maya
software [84]) containing caustics and the corresponding masks as ground-truth, to produce
saliency maps of the likelihood of caustics occurring at each pixel. A second CNN, taking
in input the original image and the saliency map, is introduced to achieve photorealistic
removal of caustics. To prove the results of their work, the authors have processed several
real-world underwater videos, where, lacking a proper ground-truth, the efficiency of the
SalienceNet has been evaluated a posteriori in terms of reconstruction error after caustics
removal.

Finally, saliency can also be exploited as a tool to provide a quantitative descriptor of
the quality of an image. In Reference [85], the authors explore different metrics to assess
the quality of sonar images captured in the underwater environment. They introduce,
in the processing pipeline, a saliency estimation module, computed according to several
models available in the literature, which enables to increase the performance of the metrics
exploited for image quality evaluation.

6. Resources and Benchmarking

As it might be apparent from the sections above, very often, evaluation and compar-
ison of saliency detection methods for the underwater scenarios has been conducted on
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small datasets, collected ad hoc by the authors of the specific studies. In order to cope with
this issue, a relevant platform, dedicated to the validation of a segmentation algorithm
based on general saliency extraction, has been proposed by Achanta et al. [78]. The au-
thors start from a previous database proposed in Reference [86], containing more than
20,000 records, where objects’ locations in the images are coarsely identified by means of
bounding boxes. Then, they select a subset of 1000 images and generated ground-truth
binary images where foreground and background are finely segmented, i.e., identifying
the objects’ accurate contour and area. Together with the new database, they also provide
a suite of popular algorithms for object segmentation that can be exploited to compare
the performances of a proposed algorithm with a representative sample of the available
state-of-the-art methods.

More recently, in Reference [87] and in its extension in Reference [88], a database
specifically designed for the benchmarking of saliency estimation methods for underwa-
ter object detection is proposed. The database, named Marine Underwater Environment
Database (MUED), is collected in an artificial pool mimicking the variabilities in illumina-
tion, background, and pose that are normally encountered in the real environment. Besides,
water turbidity is artificially changed by adding soil and milk to water. A total of 8600
underwater images (resolution 648× 486) of 430 distinct objects is contained in the database.
Reference [88] presents also a baseline evaluation with a wide range of known general
methods, including Graph Regularization [55], Patch-Distinctness [54], Dense and Sparse
Reconstruction [89], Nonlinearity covariance [46], Multiscale Super-Pixel [90], Cellular
Automata [91], QDWB [51], and PD and LC [53] (the last methods being proposed by the
same team who published the database). Methods are compared with respect to the task
of object detection computing the precision, recall, and F-score of detected salient object
rectangle with respect to the ground-truth rectangle. Similarly, mean absolute error, over-
lapping ratio, and area under ROC curve (AUC) are computed. Most of the methods seem
to have good results in specific scenarios, while PD has stable and good performance in all
the contexts. The dataset is freely available in Zenodo, split into two parts (see Reference
[92,93]), and contains the ground-truth as a text file with the left, top, right, and bottom
coordinates of each rectangle. An additional freely available resource is the Underwater
Image Enhancement Benchmark (UIEB) dataset [94]. The dataset, initially conceived for
benchmarking image enhancement approaches, is used in Reference [95] for evaluating a
mild variation of the general saliency detection method based on PD [54]. UIEB contains
950 real-world underwater images, 890 of which have the corresponding reference images.
The remaining 60 underwater images are to be considered as challenging data for image
enhancement and restoration. Although it is a structured dataset, notice, however, that no
ground-truth is provided regarding saliency estimation and object detection. A good refer-
ence dataset for large-scale comparison is represented by the Fish4Knowledge dataset [96],
a huge collection of underwater videos from multiple cameras, used, for instance, in Refer-
ence [48]. Although the dataset was not conceived bearing saliency estimation in mind,
it provides about 200 TB of videos from 3 sites, from a total number of 9 cameras. The video
footage spans over 3 years and permits evaluation of algorithms in disparate sea conditions.
Ground-truth is provided for different vision tasks and, especially, for target detection
against complex underwater background. Finally, it is appropriate to admit that resources
to perform benchmarking on sonar data processing are currently limited. To the best of our
knowledge, significant datasets are unavailable, thus implying tough issues in the pursuit
of fair methods comparison.

7. Discussion and Conclusions

Essentially, saliency is a filter that enables an observer to identify meaningful spots
in the scene. Emerging as a biological model of preattentive vision, it naturally fits in the
object detection task, which is typically a main goal in every computer vision application
of saliency. One of the appealing attributes of saliency is that of being an unsupervised
technique, hence enabling to extract informative content from a completely unknown
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context. This makes saliency an adaptive cross-cutting feature and an attractive tool for
diverse research branches. Moreover, the conceptual structure of saliency modeling is
weakly affected by different application scenarios, such as its implementation within
underwater or in-air survey tasks. At most, the modeling may require small amendments
on specific reference parameters, such as the tuning of the curve describing the average
power spectrum trend for natural underwater images (see Section 2.2). Necessary changes
made, the main model core remains intact, proving to be a tool that keeps being usable,
regardless of the experimental circumstance.

As shown in this paper, the concept of saliency has found relevant and disparate
applications for dealing with underwater vision, a domain in which usual tasks become
more challenging and demanding of specific algorithms and approaches. A summary of
the methods that were surveyed in this paper is presented in Table 1, by identifying their
primary purpose, the approach used, or proposed for saliency computation and the type of
data and validation reported by their authors.

Object detection is one of the predominant applications. The main reason is that
saliency can cope with unstructured and unpredictable scenarios in order to detect interest-
ing areas of the image in which relevant (but possibly unknown) objects are to be detected.
Further, saliency formulations have the flexibility to cope with underwater peculiarities
(e.g., limited light penetration, low contrast, scattering, and spectral distortion) and to
adapt to different modalities (e.g., acoustic imaging). Saliency has also fitted into several
segmentation schemes, including refined schemes based on advanced level set formula-
tions. It can act as a quick way to have robust initialization of active contours, as well
as a theoretical measure to steer data-driven contour evolution. Recent approaches have
shown the emergence of 3D features of the underwater images into the visual task. Indeed,
one of the artefacts of underwater images, namely the haze effect, can be turned into
usable information by deriving a sort of unscaled depth map. RGB images can therefore be
turned into RGB-D maps. From the introduction of this estimated channel, several new
applications of saliency have spurred, since depth is a clue to distinguish foreground from
background, also under the principles of vision for mammal underwater creatures.

Saliency acquired consolidated relevance also in the underwater computer vision do-
main, which differs with respect to the analogous on the in-air circumstances for amplified
challenges and difficulties. Underwater navigation took considerable advantage of saliency
estimation, primarily because of the capability to identify the most conspicuous spots in
a surveyed area, therefore allowing an appropriate selection of loop closure points and
eventually make environmental mapping more robust. Understanding an underwater
scenario is challenging because of the previously mentioned issues related to severe signal
distortions and degradation. Often, the saliency models typically adopted for vehicle
maneuvering or adaptive path planning do not rely on straight deterministic features, as
opposed to the quantities typically employed in the terrestrial framework (color, intensity).
Indeed, for navigation purposes, it is quite a consolidated approach to adopt entropy-based
models that allow us to pick up the degree of complexity and unpredictability of the
signal. Nevertheless, Itti’s model is usually employed in the navigation field to focus on
outstanding spots in which appearance keeps being quite constant throughout the data
collection campaign, such as key spots in side-scan sonar swaths that may be used for map
stitching and mosaicing.

Concerning image restoration, saliency is usually employed as a weight map that
allows highlighting of relevant spots in the represented scene and eventually emphasizing
the amount of information carried by the image.

Despite the number of papers and the growing interest in saliency witnessed by the
very recent scientific production, there is still a lack of public resources for benchmarking
and comparison that can be considered a de facto standard for algorithm evaluation.
As described, most of the papers use their own datasets, often gathered from publicly
available videos, but in which actual content is not explicated in a way sufficient for
reconstructing them. As surveyed, some more general datasets are appearing, though not
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specific for saliency evaluation but as general-purpose ones, and it might be desirable that
they acquire the role of reference benchmarks in the near future.

Original saliency modeling [8] results from the combination of several feature maps,
which are appropriately chosen and precisely defined. The re-emergence of automatic
learning in computer vision through deep neural network architectures indicates novel
opportunities. Indeed, most of the classical methods adopted local and global contrast
as a mean to derive saliency maps, where the definition of contrast is based on various
types of handcrafted image features (e.g., color, intensity and histogram) at the pixel or
superpixel level. In the underwater scenario, different ad hoc handcrafted features were
envisaged, also for coping with different sensing modalities, such as acoustic imaging.
The advances in deep learning are today favoring a shift from handcrafted features to
computed features discovered through the so-called representation learning. During this
survey, some attempts based on this paradigm shift have been already included, namely
approaches based on CNNs to detect salient areas in acoustic data [66] and remove caustics
from optical images [83]. However, it appears that the full potential that can be obtained by
deep learning has not yet been uncovered. For instance, works for in-air images, such as
Reference [97,98], have not yet a counterpart or specific application in the underwater field.
In these last approaches, multi-level and multi-scale deep features can be extracted from the
images, thanks to CNNs, and used either as deep contrast features or directly as a saliency
map. Notice that, in these approaches, the original seminal ideas contained in Itti’s model
are retained if we allow standard features to be substituted by deep features and linear
combination by fusion strategies based on more complex networks, such as fully-connected
layers. On the one hand, this means that massive deep feature application to classical
underwater vision problems that were tackled by saliency should be investigated. On the
other hand, it suggests that saliency, although being a somewhat subjective notion, is a
powerful concept that has still much to say in underwater vision.
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Table 1. Summary of surveyed methods.

Paper Year Purpose Saliency Model Data Evaluation

RGB Images Video Acoustic Data Real Synthetic

Object Detection and Segmentation

Edgington et al. [20] 2003 Object detection Itti X X
Ahn et al. [21] 2018 Object detection and CNN-based classification Itti X X

Atallah et al. [23] 2005 Object detection Entropy-based X X
Wang et al. [24] 2013 Detection & Segmentation Itti X X
Chen et al. [27] 2014 Object detection Spectral residual X X

Chuang et al. [48] 2016 Initialization of object recognition Phase Fourier Transform X X
Zhu et al. [34] 2017 Detection & Segmentation Saliency map based on contrast, position, and correspondence X X

Sanchrez-Torres et al. [99] 2018 Segmentation Ad hoc based on morphological operators X X
Huo et al. [26] 2018 Detection & 3D Reconstruction Aggregation of salient superpixels X X

Kumar et al. [36] 2019 Shape reconstruction using edge-based active contours Itti X X X
Chen et al. [40] 2019 Segmentation using region-based active contours HFT X X
Barat et al. [35] 2010 Segmentation using active contours featuring saliency in initialization Itti X X
Kumar et al. [31] 2019 Moving object detection Multiple frames difference X X
Zhu et al. [50] 2019 Template Matching Spectral residual X X
Jian et al. [51] 2018 Object detection QDWB X X
Jian et al. [53] 2018 Object detection QDWB + PD + LC X X

Johnson-Roberson et al. [47] 2010 Classification Entropy-based X X
Cong et al. [32] 2019 Saliency-based Object Detection Saliency map obtained by Deep Convolutional Neural Network X X X

Harrison et al. [56] 2011 Texture segmentation Co-occurence matrices and ensemble of distance X X

Navigation and Mapping

Kim et al. [58] 2011 Navigation & Mapping through Local/Global Saliency estimation Entropy-based X X X
Kim et al. [59] 2013 Navigation & Mapping through Local/Global Saliency estimation Entropy-based X X X
Kim et al. [62] 2015 Navigation & Mapping through Local/Global Saliency estimation Entropy-based X X X
Ozog et al. [63] 2015 Navigation & Mapping through Local/Global Saliency estimation Entropy-based X X X
Geng et al. [64] 2016 Navigation & Mapping Entropy-based X X

Li et al. [66] 2018 Simultaneous Localization and Mapping Entropy-based X X
Johnson-Roberson et al. [75] 2014 Saliency Estimation through Crowdsourcing Gaze-tracking & Hidden Markov Model estimation X X
Johnson-Roberson et al. [76] 2015 Saliency Estimation through Crowdsourcing Gaze-tracking & Hidden Markov Model estimation X X

Kaeli et al. [67] 2016 Anomaly detection Entropy-based X X
Kumar et al. [29] 2019 Saliency estimation for object detection Itti X X

Chailloux [68] 2005 Image registration based on landmarks Ittis’ model variation X X
Chailloux et al. [71] 2011 Saliency estimation for large scale mapping Itti X X

Fu et al. [73] 2015 Saliency estimation for feature point detection Local contrast X X
Zhang et al. [74] 2016 Feature point detection and matching HFT X X

Image Enhancement and Restoration

Achanta et al. [78] 2009 Salient region detection Difference of Gaussian-based band pass filtering X X
Fang et al. [79] 2013 Underwater Image restoration Difference of Gaussian-based band pass filtering X X
Singh et al. [80] 2016 Underwater Image restoration Difference of Gaussian-based band pass filtering X X
Ancuti et al. [81] 2016 Underwater Image restoration Salient region detection X X
Jianhua et al. [82] 2019 Underwater Image restoration Salient region detection X X
Forbes et al. [83] 2019 Image restoration Convolutional neural network-based saliency estimation X X X
Zhang et al. [85] 2019 Image Quality Evaluation Several models are employed X X
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