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We introduce a new paradigm for solving regularized variational problems. These are typically formulated to address ill-posed inverse problems encountered in signal and image processing. The objective function is traditionally defined by adding a regularization function to a data fit term, which is subsequently minimized by using iterative optimization algorithms. Recently, several works have proposed to replace the operator related to the regularization by a more sophisticated denoiser. These approaches, known as plug-and-play (PnP) methods, have shown excellent performance. Although it has been noticed that, under some Lipschitz properties on the denoisers, the convergence of the resulting algorithm is guaranteed, little is known about characterizing the asymptotically delivered solution. In the current article, we propose to address this limitation. More specifically, instead of employing a functional regularization, we perform an operator regularization, where a maximally monotone operator (MMO) is learned in a supervised manner. This formulation is flexible as it allows the solution to be characterized through a broad range of variational inequalities, and it includes convex regularizations as special cases. From an algorithmic standpoint, the proposed approach consists in replacing the resolvent of the MMO by a neural network (NN). We present a universal approximation theorem proving that nonexpansive NNs are suitable models for the resolvent of a wide class of MMOs. The proposed approach thus provides a sound theoretical framework for analyzing the asymptotic behavior of first-order PnP algorithms. In addition, we propose a numerical strategy to train NNs corresponding to resolvents of MMOs. We apply our approach to image restoration problems and demonstrate its validity in terms of both convergence and quality.

1. Introduction. In many problems in data science, in particular when dealing with inverse problems, a variational approach is adopted which amounts to (1.1) minimize

x∈H f (x) + g(x)
where H is the underlying data space, here assumed to be a real Hilbert space, f : H → ]-∞, +∞] is a data fit (or data fidelity) term related to some available data z (observations), and g : H → ]-∞, +∞] is some regularization function. The data fit term is often derived from statistical considerations on the observation model through the maximum likelihood principle. For many standard noise distributions, the negative log-likelihood corresponds to a smooth function (e.g. Gaussian, Poisson-Gauss, or logistic distributions). The regularization term is often necessary to avoid overfitting or to overcome ill-posedness problems. A vast literature has been developed on the choice of this term. It often tends to promote the smoothness of the solution or to enforce its sparsity by adopting a functional analysis viewpoint. Good examples of such regularization functions are the total variation semi-norm [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] and its various extensions [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Condat | Semi-local total variation for regularization of inverse problems[END_REF], and penalizations based on wavelet (or "x-let") frame representations [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]. Alternatively, a Bayesian approach can be followed where this regularization is viewed as the negative-log of some prior distribution, in which case the minimizer of the objective function in (1.1) can be understood as a Maximum A Posteriori (MAP) estimator. In any case, the choice of this regularization introduces two main roadblocks. First, the function g has to be chosen so that the minimization problem in (1.1) be tractable, which limits its choice to relatively simple forms. Secondly, the definition of this function involves some parameters which need to be set. The simplest case consists of a single scaling parameter usually called the regularization factor, the choice of which is often very sensitive on the quality of the results. Note that, in some works, this regularization function is the indicator function of some set encoding some smoothness or sparsity constraint. For example, it can model an upper bound on some functional of the discrete gradient of the sought signal, this bound playing then a role equivalent to a regularization parameter [START_REF] Combettes | Image restoration subject to a total variation constraint[END_REF]. Using an indicator function can also model standard constraints in some image restoration problems, where the image values are bounded [START_REF] Abdulaziz | Wideband super-resolution imaging in radio interferometry via low rankness and joint average sparsity models (hypersara)[END_REF][START_REF] Birdi | Sparse interferometric stokes imaging under the polarization constraint (polarized sara)[END_REF]. In order to solve such problems, a wide range of proximal splitting algorithms have been developed in the past decades [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. By denoting by Γ 0 (H) the class of lower-semicontinuous convex functions from H to ]-∞, +∞] with a nonempty domain, let us now assume that both f and g belong to Γ 0 (H). The Moreau subdifferentials of these functions will be denoted by ∂f and ∂g, respectively. Under these convexity assumptions, if (1.2) 0 ∈ ∂f (x) + ∂g(x), then x is a solution to the minimization problem (1.1). Actually, under mild qualification conditions the sets of solutions to (1.1) and (1.2) coincide [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. By reformulating the original optimization problem under the latter form, we have moved to the field of variational inequalities. Interestingly, it is a well-established fact that the subdifferential of a function in Γ 0 (H) is a maximally monotone operator (MMO), which means that (1.2) is a special case of the following monotone inclusion problem:

(1.3) Find x ∈ H such that 0 ∈ ∂f (x) + A(x),
where A is an MMO. We recall that a multivalued operator A defined on H is maximally monotone if and only if, for every (x 1 , u 1 ) ∈ H 2 , (1.4)

u 1 ∈ Ax 1 ⇔ (∀x 2 ∈ H)(∀u 2 ∈ Ax 2 ) x 1 -x 2 | u 1 -u 2 0,
see e.g. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF][START_REF] Combettes | Fixed point strategies in data science[END_REF] for a background on monotone operator theory. Actually the class of monotone inclusion problems is much wider than the class of convex optimization problems and, in particular, includes saddle point problems and game theory equilibria [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF]. It is also worth noticing that many existing algorithms for solving convex optimization problems are particular cases of algorithms designed for solving monotone inclusion problems. The latter often leverage the resolvent operator of A in (1.3), which reduces to a proximal operator when A = ∂g as in (1.2) [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. This suggests that it is more flexible, and probably more efficient, to substitute (1.3) for (1.1) in problems encountered in data science. In other words, instead of performing a functional regularization, we can introduce an operator regularization through the maximally monotone mapping A. Although this extension of (1.1) may appear both natural and elegant, it induces a high degree of freedom in the choice of the regularization strategy. However, if we except the standard case when A = ∂g, it is hard to have a good intuition about how to make a relevant choice for A. To circumvent this difficulty, our proposed approach will consist in learning A in a supervised manner by using some available dataset in the targeted application. Since a MMO is fully characterized by its resolvent, we propose in this paper to learn the resolvent of A. We show that this can be formulated as learning a denoiser with an appropriate 1-Lipschitz condition. Thus, our approach enters into the family of so-called plug-and-play (PnP) methods, where one replaces the proximity operator in an optimization algorithm with a denoiser, e.g. a denoising neural network (NN) [START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF]. It is worth mentioning that by doing so, any algorithm whose proof is based on MMO theory, e.g., Forward-Backward (FB), Douglas-Rachford, Peaceman-Rachford, primal-dual approaches, and more [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF][START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] can be turned into a PnP algorithm. To ensure the convergence of such PnP algorithms, according to fixed point theory (under mild conditions) it is sufficient for the denoiser to be firmly nonexpansive [START_REF] Combettes | Fixed point strategies in data science[END_REF]. In this context, (1.3) offers an elegant characterization of the solution.

Unfortunately, most pre-defined denoisers do not satisfy this assumption, and learning a firmly nonexpansive denoiser remains challenging [START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Terris | Building firmly nonexpansive convolutional neural networks[END_REF]. The main bottleneck is the ability to tightly constrain the Lipschitz constant of a NN. During the last years, several works proposed to control the Lipschitz constant (see e.g. [START_REF] Anil | Sorting out lipschitz function approximation[END_REF][START_REF] Bibi | Deep layers as stochastic solvers[END_REF][START_REF] Cisse | Parseval networks: Improving robustness to adversarial examples[END_REF][START_REF] Hertrich | Convolutional proximal neural networksand plugand-play algorithms[END_REF][START_REF] Miyato | Spectral normalization for generative adversarial networks[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Sedghi | The singular values of convolutional layers[END_REF][START_REF] Terris | Building firmly nonexpansive convolutional neural networks[END_REF][START_REF] Yoshida | Spectral norm regularization for improving the generalizability of deep learning[END_REF]). Nevertheless, only few of them are accurate enough to ensure the convergence of the associated PnP algorithm and often come at the price of strong computational and architectural restrictions (e.g., absence of residual skip connections) [START_REF] Bibi | Deep layers as stochastic solvers[END_REF][START_REF] Hertrich | Convolutional proximal neural networksand plugand-play algorithms[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Terris | Building firmly nonexpansive convolutional neural networks[END_REF]. The method proposed in [START_REF] Bibi | Deep layers as stochastic solvers[END_REF] allows a tight control of convolutional layers, but in order to ensure the nonexpansiveness of the resulting architecture, one cannot use residual skip connections, despite their wide use in NNs for denoising applications. In [START_REF] Hertrich | Convolutional proximal neural networksand plugand-play algorithms[END_REF], the authors propose to train an averaged NN by projecting the full convolutional layers on the Stiefel manifold and showcase the usage of their network in a PnP algorithm. Yet, the architecture proposed by the authors remains constrained by proximal calculus rules. In our previous work [START_REF] Terris | Building firmly nonexpansive convolutional neural networks[END_REF], we proposed a method to build firmly nonexpansive convolutional NNs; to the best of our knowledge, this was the first method ensuring the firm nonexpansiveness of a denoising NN. However, the resulting architecture was strongly constrained and did not improve over the state-of-the-art. Since building firmly nonexpansive denoisers is difficult, many works on PnP methods leverage ADMM algorithm which may appear easier to handle in practice [START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF]. However, the convergence of ADMM requires restrictive conditions on the involved linear operators [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF].

Alternative approaches have been proposed in the literature to circumvent these difficulties. Ryu et al. [START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF] proposed the first convergent NN-based PnP algorithm in a more general framework, namely RealSN. Nevertheless, in this work, the authors rely on [54, Assumption A], which may potentially lead to expansive networks (see [START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF]Lemma 9 & 10]), and unstable PnP algorithms. The regularization by denoising (RED) approach [START_REF] Ahmad | Plug-and-play methods for magnetic resonance imaging: Using denoisers for image recovery[END_REF][START_REF] Cohen | Regularization by denoising via fixed-point projection (RED-PRO)[END_REF] investigates situations when the PnP algorithm converges to a solution to a minimization problem. In particular, the minimum mean square error (MMSE) denoiser can be employed [START_REF] Ahmad | Plug-and-play methods for magnetic resonance imaging: Using denoisers for image recovery[END_REF][START_REF] Xu | Provable convergence of plug-andplay priors with MMSE denoisers[END_REF]. However, as underlined by the authors, the denoising NN is only an approximation to the MMSE regressor. The authors of [START_REF] Cohen | Regularization by denoising via fixed-point projection (RED-PRO)[END_REF] proposed RED-PRO, an extension of RED within the framework of fixed point theory. Under a demi-contractivity assumption, the authors show that the PnP algorithm converges to a solution to a constrained minimization problem.

The contribution of this paper is twofold. We first provide a universal approximation theorem for a wide class of monotone operators. In particular, we show that one can approximate the resolvent of a stationary MMO as closely as desired with a firmly nonexpansive NN. We then propose a practical framework to impose the firm nonexpansiveness of our NN. To do so, we regularize the training loss of the NN with the spectral norm of the Jacobian of a suitable nonlinear mapping. Although the resulting NN could be plugged into a variety of iterative algorithms, our work is focused on the standard FB algorithm. We illustrate the convergence of the corresponding PnP scheme in an image restoration problem. We show that our method compares positively in terms of quality to both state-of-the-art PnP methods and regularized optimization approaches.

This article is organized as follows. In section 2, we recall how MMOs can be mathematically characterized and explain how their resolvent can be modeled by an averaged residual neural network. We also establish that NNs are generic models for a wide class of MMOs. In section 3, we show the usefulness of learning MMOs in the context of plug-and-play (PnP) first-order algorithms employed for solving inverse problems. We also describe the training approach which has been adopted. In section 4, we provide illustrative results for the restoration of monochromatic and color images. Finally, some concluding remarks are made in section 5. Notation: Throughout the article, we will denote by • the norm endowing any real Hilbert space H. The same notation (being clear from the context) will be used to denote the norm of a bounded linear operator L from H to some real Hilbert space G, that is L = sup x∈H\{0} Lx / x . The inner product of H associated to • will be denoted by • | • , here again without making explicit the associated space. Let D be a subset of H and T : D → H. The operator T is µ-Lipschitzian for µ > 0 if, for every (x, y) ∈ D 2 , T x -T y µ xy . If T is 1-Lipschitzian, its is said to be nonexpansive. The operator T is firmly nonexpansive if, for every (x, y) ∈ D 2 , T x -T y 2

xy | T x -T y . We denote by 2 H be the power set of H, that is the set of all subsets of H. Let A : H → 2 H be a multivariate operator, i.e., for every x ∈ H, A(x) is a subset of H. The graph of A is defined as gra

A = {(x, u) ∈ H 2 | u ∈ Ax}. The operator A : H → 2 H is monotone if, for every (x, u) ∈ gra A and (y, v) ∈ gra A, x -y | u -v
0, and maximally-monotone if (1.4) holds, for every (x 1 , u 1 ) ∈ H 2 . The resolvent of A is J A = (Id +A) -1 , where the inverse is here defined in the sense of the inversion of the graph of the operator. For further details on monotone operator theory, we refer the reader to [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF][START_REF] Combettes | Fixed point strategies in data science[END_REF].

2. Neural network models for maximally monotone operators.

2.1. A property of maximally monotone operators. We first introduce a main property that will link explicitly MMOs to nonexpansive operators, noticing that any multivalued operator on H is fully characterized by its resolvent. 

J A : H → H : x → x + Q(x) 2 , (2.1) that is (2.2) A = 2(Id +Q) -1 -Id .
Proof. This result is a direct consequence of Minty's theorem and the fact that any firmly nonexpansive operator can be expressed as the arithmetic mean of the identity operator and some nonexpansive operator Q (see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 23.8]). (2.2) is deduced by inverting (2.1).

The above result means that the class of MMOs can be derived from the class of nonexpansive mappings. The focus should therefore turn on how to model operators in the latter class with neural networks.

2.2. Nonexpansive neural networks. Our objective will next be to derive a parametric model for the nonexpansive operator Q in (2.1). Due to their oustanding approximation capabilities, neural networks appear as good choices for building such models. We will restrict our attention to feedforward NNs. Model 2.2. Let (H m ) 0 m M be real Hilbert spaces such that H 0 = H M = H. A feedforward NN having M layer and both input and ouput in H can be seen as a composition of operators:

(2.3) Q = T M • • • T 1 ,
where

(∀m ∈ {1, . . . , M }) T m : H m-1 → H m : x → R m (W m x + b m ). (2.4)
At each layer m ∈ {1, . . . , M }, R m : H m → H m is a nonlinear activation operator, W m : H m-1 → H m is a bounded linear operator corresponding to the weights of the network, and b m ∈ H m is a bias parameter vector.

In the remainder, we will use the following notation: Notation 2.3. Let V and V be nonempty subsets of some Euclidean space and let N F (V, V ) denote the class of nonexpansive feedforward NNs with inputs in V and outputs in V built from a given dictionary F of allowable activation operators. Also, we will make the following assumption: Assumption 2.4. The identity operator as well as the sorting operator performed on blocks of size 2 belong to dictionary F.

In other words, a network in N F (V, V ) can be linear, or it can be built by using maxpooling with blocksize 2 and any other kind of activation function, say some given function ρ : R → R, operating componentwise in some of its layers, provided that the resulting structure is 1-Lipschitzian.

The main difficulty is to design such a feedforward NN so that Q in (2.3) has a Lipschitz constant smaller or equal to 1. An extensive literature has been devoted to the estimation of Lipschitz constants of NNs [START_REF] Anil | Sorting out lipschitz function approximation[END_REF][START_REF] Scaman | Lipschitz regularity of deep neural networks: Analysis and efficient estimation[END_REF][START_REF] Szegedy | Intriguing properties of neural networks[END_REF], but the main goal was different from ours since these works were motivated by robustness issues in the presence of adversarial perturbations [START_REF] Fazlyab | Efficient and accurate estimation of Lipschitz constants for deep neural networks[END_REF][START_REF] Latorre | Lipschitz constant estimation of neural networks via sparse polynomial optimization[END_REF][START_REF] Neacsu | Accuracy-robustness trade-off for positively weighted neural networks[END_REF][START_REF] Szegedy | Intriguing properties of neural networks[END_REF].

In this work, we propose to enforce the nonexpansiveness of Q by adding a regularization during the training of the NN as explained in section 3. Other conditions ensuring the firm nonexpansiveness of Model 2.2 can be found in Appendix A.

Stationary maximally monotone operators.

The one-to-one correspondence between a MMO and a nonexpansive operator from Proposition 2.1 raises the following question: can one approximate the resolvent of a MMO as closely as desired by a firmly nonexpansive neural network structure? The remainder of this work aims to answer this question in the case of a subclass of MMOs, namely those which are stationary, as defined hereunder.

Definition 2.5. Let (H k ) 1 k K be real Hilbert spaces. An operator A defined on the product space space H = H 1 × • • • × H K will be said to be a stationary MMO if its resolvent J A is an operator from H to H such that, for every k ∈ {1, . . . , K}, there exists a bounded linear operator Π k : H → H k and a self-adjoint nonnegative operator

Ω k : H → H such that (2.5) ∀(x, y) ∈ H 2 Π k 2J A (x) -x -2J A (y) + y 2 x -y | Ω k (x -y) with K k=1 Π * k Π k = Id (2.6) K k=1 Ω k 1. (2.7)
Immediate consequences of this definition are given below. In particular, we will see that stationary MMOs define a subclass of the set of MMOs. 

Proposition 2.6. Let (H k ) 1 k K be real Hilbert spaces and let H = H 1 × • • • × H K . Let A : H → 2 H . (i) If A is
(2.8) (∀(p, q) ∈ H 2 )(∀p ∈ A(p))(∀q ∈ A(q)) Π k (p -q) | Π k (p -q ) 0,
then A is a stationary MMO.

Proof. (i): Let A be a stationary MMO defined on H. Summing over k in (2.5) yields, for every (x, y) ∈ H 2 , (2.9)

2J A (x) -x -2J A (y) + y | K k=1 Π * k Π k (2J A (x) -x -2J A (y) + y) x -y | K k=1 Ω k (x -y) .
It thus follows from (2.6), (2.7), and the nonnegativity of

(Ω k ) 1 k K that (2.10) 2J A (x) -x -2J A (y) + y 2 K k=1 Ω k x -y 2 x -y 2 .
This shows that 2J A -Id is a nonexpansive operator. Hence, based on Proposition A.1, A is an MMO.

(ii): Let k be an arbitrary integer in {1, . . . , K}. (2.8) can be reexpressed as

(2.11) (∀(p, q) ∈ H 2 )(∀p ∈ A(p))(∀q ∈ A(q)) Π * k Π k (p -q) | p -q + p -q Π * k Π k (p -q) | p -q .
In particular, this inequality holds if p ∈ J A (x) and q ∈ J A (y) where x and y are arbitrary elements of H. Then, by definition of J A , we have x-p ∈ A(p), y -q ∈ A(q), and (2.11) yields

(2.12) Π * k Π k (p -q) | x -y Π * k Π k (p -q) | p -q .
By summing over k and using (2.6), it follows that J A is firmly nonexpansive and it is thus single valued. (2.12) is then equivalent to

(2.13) Π k 2J A (x) -x -2J A (y) + y 2 x -y | Π * k Π k (x -y) .
This shows that Inequality (2.5) holds with

Ω k = Π * k Π k . Since (2.7) is then obviously satisfied, A is a stationary MMO.
In order to demonstrate the versatility of stationary MMOs, we feature a few examples of such operators. The validity of these examples is proved in Appendix B.

Example 2.7. For every k ∈ {1, . . . , K}, let B k be an MMO defined on a real Hilbert space H k and let B be the operator defined as

(2.14) (∀x = (x (k) ) 1 k K ∈ H = H 1 ו • •×H K ) B(x) = B 1 (x (1) )ו • •×B K (x (K) ).
Let U : H → H be a unitary linear operator. Then A = U * BU is a stationary MMO.

Example 2.8. For every k ∈ {1, . . . , K}, let ϕ k ∈ Γ 0 (R), and let the function g be defined as

(2.15) (∀x = (x (k) ) 1 k K ∈ R K ) g(x) = K k=1 ϕ k (x (k) ).
Let U ∈ R K×K be an orthogonal matrix. Then the subdifferential of g • U is a stationary MMO.

Example 2.9. Let (H k ) 1 k K be real Hilbert spaces and let B be a bounded linear operator from H = H 1 ו • •×H K to H such that one of the following conditions holds:

(i) B + B * is nonnegative (ii) B is skewed (iii) B is cocoercive. Let c ∈ H. Then the affine operator A : H → H : x → Bx + c is a stationary MMO. Example 2.10. Let (H k ) 1 k K be real Hilbert spaces, let H = H 1 ו • •×H K , and let A : H → 2 H be a stationary MMO. Then its inverse A -1 is a stationary MMO. Example 2.11. Let (H k ) 1 k K be real Hilbert spaces, let H = H 1 × • • • × H K , and let A : H → 2 H be a stationary MMO. Then, for every ρ ∈ R \ {0}, ρA(•/ρ) is a stationary MMO.
2.4. Universal approximation theorem. In this section we provide one of the main contributions of this article, consisting in a universal approximation theorem for stationary MMOs defined on H = R K . To this aim, we first need to introduce useful results, starting by recalling the definition of a lattice. Definition 2.12. A set L E of functions from a set E to R is said to be a lattice if, for every (h (1) , h (2) ) ∈ L 2 E , min{h (1) , h (2) } and max{h (1) , h (2) } belong to

L E . A sub-lattice of L E is a lattice included in L E .
This notion of lattice is essential in the variant of the Stone-Weierstrass theorem provided below. Proposition 2.13. [START_REF] Anil | Sorting out lipschitz function approximation[END_REF] Let (E, d) be a compact metric space with at least two distinct points. Let L E be a sub-lattice of Lip 1 (E, R), the class of 1-Lipschtzian (i.e. nonexpansive) functions from E to R. Assume that, for every (u, v) ∈ E 2 with u = v and, for every

(ζ, η) ∈ R 2 such that |ζ -η| d(u, v), there exists a function h ∈ L E such that h(u) = ζ and h(v) = η. Then L E is dense in Lip 1 (E, R) for the uniform norm.
This allows us to derive the following approximation result that will be instrumental to prove our main result.

Corollary 2.14. Let V be a subspace of R K and let h ∈ Lip 1 (V, R). Let E be a compact subset of V . Then, for every ε ∈ ]0, +∞[, there exists h ε ∈ N F (V, R), where F is any dictionary of activation function satisfying Assumption 2.4, such that

(2.16) (∀x ∈ E) |h(x) -h ε (x)| ε.
Proof. First note that N F (V, R) is a lattice. Indeed, if h (1) : V → R and h (2) : V → R are 1-Lipschitzian, then min{h (1) , h (2) } and max{h (1) , h (2) } are 1-Lipschitzian. In addition, if h (1) and h (2) are elements in N F (V, R), then by applying sorting operations on the two outputs of these two networks, min{h (1) , h (2) } and max{h (1) , h (2) } are generated. Each of these outputs can be further selected by applying weight matrices either equal to [1 0] or [0 1] as a last operation, so leading to a NN in N F (V, R).

Let E be a compact subset of V . Assume that E has at least two distinct points. Since N F (V, R) is a lattice, the set of restrictions to E of elements in

N F (V, R) is a sub-lattice L E of Lip 1 (E, R). In addition, let (u, v) ∈ E 2 with u = v and let (ζ, η) ∈ R 2 be such that |ζ -η| u -v . Set h : V → R : x → w (x -v) + η where w = (ζ -η)(u -v)/ u -v 2 . Since w = |ζ -η|/ u -v
1, h is a linear network in N F (V, R) and we have h(u) = ζ and h(v) = η. This shows that the restriction of h to E is an element of L E satisfying the assumptions of Proposition 2.13. It can thus be deduced from this proposition that (2.16) holds.

The inequality also trivially holds if E reduces to a single point x since it is always possible to find a linear network in N F (V, R) whose output equals h(x).

Remark 2.15. This result is valid whatever the norm used on V .

We are now able to state a universal approximation theorem for MMOs defined on H = R K (i.e., for every k ∈ {1, . . . , K}, H k = R in Definition 2.5).

Theorem 2. [START_REF] Cisse | Parseval networks: Improving robustness to adversarial examples[END_REF]. Let H = R K . Let A : H → 2 H be a stationary MMO. For every compact set S ⊂ H and every ∈ ]0, +∞[, there exists a NN Q ∈ N F (H, H), where F is any dictionary of activation function satisfying Assumption 2.4, such that A = 2(Id +Q -1 -Id satisfies the following properties.

(i) For every x ∈ S, J A (x) -J A (x) . (ii) Let x ∈ H and let y ∈ A(x) be such that x + y ∈ S. Then, there exists x ∈ H and y ∈ A (x ) such that xx and yy .

Proof. (i): If A : R K → 2 R K is a stationary MMO then it follows from Propositions 2.1 and 2.6(i) that there exists a nonexpansive operator Q : R K → R K such that J A = (Id +Q)/2. In addition, according to Definition 2.5, there exist vectors (p k ) 1 k K in R K such that, for every k ∈ {1, . . . , K},

(2.17) ∀(x, y) ∈ H 2 | p k | Q(x) -Q(y) | 2 x -y | Ω k (x -y)
where (2.18)

K k=1 p k p k = Id and (Ω k ) 1 k K are positive semidefinite matrices in R K×K satisfying (2.7). Set k ∈ {1, . . . , K} and define h k : x → p k | Q(x)
. Let V k be the nullspace of Ω k and let V ⊥ k be its orthogonal space. We distinguish the cases when

V ⊥ k = {0} and when V ⊥ k = {0}. Assume that V ⊥ k = {0}. It follows from (2.17) that, for every x ∈ V ⊥ k and (y, z) ∈ V 2 k , (2.19) h k (x + y) = h k (x + z) = h k (x)
where [START_REF] Combettes | Image restoration subject to a total variation constraint[END_REF]) and (2.21), we have

h k : V ⊥ k → R is such that (2.20) ∀(x, x ) ∈ (V ⊥ k ) 2 | h k (x) -h k (x )| x -x Ω k and (∀x ∈ R K ) x Ω k = x | Ω k x 1/2 . • Ω k defines a norm on V ⊥ k . Inequality (2.20) shows that h k is 1-Lipschitzian on V ⊥ k equipped with this norm. Let S be a compact subset of R K and let proj V ⊥ k be the orthogonal projection onto V ⊥ k . E k = proj V ⊥ k (S) is a compact set and, in view of Corollary 2.14, for every ∈ R, there exists h k, ∈ N F (V ⊥ k , R) such that (2.21) (∀x ∈ E k ) | h k (x) -h k, (x)| 2 √ K . Set now h k, = h k, • proj V ⊥ k . According to (2.
(∀x ∈ S) |h k (x) -h k, (x)| = |h k (proj V k (x) + proj V ⊥ k (x)) -h k, (proj V k (x) + proj V ⊥ k (x))| = | h k (proj V ⊥ k (x)) -h k, (proj V ⊥ k (x))| 2 √ K . (2.22)
In addition, by using the Lipschitz property of h k, with respect to norm

• Ω k , for every (x, x ) ∈ R K , h k, (x) -h k, (x ) 2 = h k, (proj V ⊥ k (x)) -h k, (proj V ⊥ k (x )) 2 proj V ⊥ k (x) -proj V ⊥ k (x ) 2 Ω k = proj V ⊥ k (x -x ) | Ω k proj V ⊥ k (x -x ) = Ω 1/2 k proj V ⊥ k (x -x ) | Ω 1/2 k proj V ⊥ k (x -x ) = x -x | Ω k (x -x ) . (2.23) If V ⊥ k = {0}
, then it follows from (2.17) that h k = 0. Therefore, (2.22) holds with h k, = 0, which belongs to N F (V ⊥ k , R) and obviously satisfies (2.23). Condition (2.18) means that (p k ) 1 k K is an orthornormal basis of R K in the standard Euclidean metric. This implies that

(2.24) (∀x ∈ R K ) Q(x) = K k=1 h k (x) p k . Set (2.25) (∀x ∈ R K ) Q (x) = K k=1 h k, (x) p k .
It follows from (2.23) and (2.7) that, for every (x,

x ) ∈ (R K ) 2 , Q (x) -Q (x ) 2 = K k=1 h k, (x) -h k, (x ) 2 K k=1 x -x | Ω k (x -x ) x -x 2 , (2.26) which shows that Q ∈ Lip 1 (R K , R K ). In addition since, for every x ∈ R K , (2.27) Q (x) = W [h 1, (x), . . . , h K, (x)]
with W = [p 1 , . . . , p K ] and, for every

k ∈ N, h k, ∈ N F (R K , R), Q belongs to N F (R K , R K ). Let A = 2(Id +Q -1 -Id.
We finally deduce from (2.22) that, for every x ∈ S,

J A (x) -J A (x) 2 = x + Q(x) 2 - x + Q (x) 2 2 = 1 4 K k=1 h k (x) -h k, (x) 2 2 . (2.28) (ii): Let (x, y) ∈ (R K ) 2 . We have (2.29) y ∈ A(x) ⇔ x = J A (x + y).
Assume that x + y ∈ S. It follows from (i) that there exists x ∈ R K such that x = J A (x + y) and xx . Let y = xx + y. We have x = J A (x + y ), that is y ∈ A (x ). In addition, yy = xx .

We will next show that Theorem 2.16 extends to a wider class of MMOs.

Corollary 2.17.

Let H = R K . Let (ω i ) 1 i I ∈]0, 1] I be such that I i=1 ω i = 1.
For every i ∈ {1, . . . , I}, let A i : H → 2 H be a stationary MMO. Then the same properties as in Theorem 2.16 hold if A : H → 2 H is the MMO with resolvent

J A = I i=1 ω i J Ai .
Proof. First note that J A : H → H is firmly nonexpansive [7, Proposition 4.6]), hence A is indeed an MMO. As a consequence of Theorem 2.16, for every compact set S ⊂ H and every ∈ ]0, +∞[, there exist NNs (Q i, )

1 i I in N F (H, H) such that (A i, ) 1 i I = 2(Id +Q i, -1 -Id 1 i I satisfy: (2.30) (∀i ∈ {1, . . . , Q})(∀x ∈ S) J Ai (x) -J Ai, (x) 
.

Let Q = I i=1 ω i Q i, . Then Q ∈ Lip 1 (R K , R K
) and, since it is built from a linear combination of the outputs of I NNs in N F (H, H) driven with the same input, it belongs to N F (H, H). In addition, A = 2(Id +Q -1 -Id is such that (2.31)

J A = 1 2 I i=1 ω i Q i, + Id = I i=1 ω i J Ai, ,
which allows us to deduce from (2.30) that

(2.32) (∀x ∈ S) J A (x) -J A (x) I i=1 ω i J Ai (x) -J Ai, (x) .
The rest of the proof follows the same line as for Theorem 2.16.

Remark 2.18. The above results are less accurate than standard universal approximations ones which, for example, guarantee an arbitrary close approximation to any continuous function with a network having only one hidden layer [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]. Indeed, the requirement that the resolvent of a MMO must be firmly nonexpansive induces some significant increase of the difficulty of the mathematical problem. Nonetheless, the firm nonexpansiveness will enable us to build convergent PnP algorithms described in the next sections.

3. Proposed algorithm.

3.1. Forward-backward algorithm. Let us now come back to problems of the form (1.3). Such monotone inclusion problems can be tackled by a number of algorithms [START_REF] Combettes | Monotone operator theory in convex optimization[END_REF][START_REF] Combettes | Fixed point strategies in data science[END_REF], which are all grounded on the use of the resolvent of A (or a scaled version of this operator). For simplicity, let us assume that f is a smooth function. In this case, a famous algorithm for solving (1.3) is the forward-backward (FB) algorithm [START_REF] Chen | Convergence rates in forward-backward splitting[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], which is expressed as

(3.1) (∀n ∈ N) x n+1 = J γA x n -γ∇f (x n )
where γ > 0. If a neural network J is used to approximate J γA , then a natural substitute for (3.1) is

(3.2) (∀n ∈ N) x n+1 = J x n -γ∇f (x n ) .
The following convergence result then straightforwardly follows from standard asymptotic properties of the FB algorithm [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF].

Proposition 3.1. Let µ ∈ ]0, +∞[ and let γ ∈]0, 2/µ[. Let f : H → R be a convex differentiable function with µ-Lipschitzian gradient. Let J be a neural network such that J is 1/2-averaged as in (2.1). Let A be the maximally monotone operator equal to ( J -1 -Id). Assume that the set S γ of zeros of ∇f + γ -1 A is nonempty. Then, the sequence (x n ) n∈N generated by iteration (3.2) converges (weakly) to x ∈ S γ , i.e., x satisfies

J x0 x1 Id -γ∇f J xN-1 xN Id -γ∇f
(3.3) 0 ∈ ∇f ( x) + γ -1 A( x).
Remark 3.2.

(i) For a given choice of A, the stepsize γ in the proposed PnP-FB does not only act on the convergence profile, but also on the set of solutions, as shown in 

(3.3). (ii) The technical assumption S γ = ∅ can be waived if ∇f + γ -1 A
Algorithm (3.
2) is common to other frameworks, such as regularization-bydenoising (RED) and unfolded networks. As underlined by the authors of [START_REF] Cohen | Regularization by denoising via fixed-point projection (RED-PRO)[END_REF], the RED-PRO algorithm [17, Algorithm 4.1] can be written as a PnP-FB algorithm of the same form as Algorithm (3.2), where J = (1α) Id +αQ, with α ∈]0, 1/2[ and Q being d-demicontractive for d ∈ [0, 1[. So, although [START_REF] Cohen | Regularization by denoising via fixed-point projection (RED-PRO)[END_REF]Algorithm 4.1] and Algorithm (3.2) have the same structure (considering α = 1/2 and that nonexpansiveness implies 0-demicontractive), they also exhibit several differences. First, in [START_REF] Cohen | Regularization by denoising via fixed-point projection (RED-PRO)[END_REF] the authors train Q as a denoiser, while we train J. In practice, our approach is closer to classical PnP algorithms where a proximity operator is replaced by a denoiser (and not a relaxed version of the denoiser). Second, the characterization of the limit point differs since, in [START_REF] Cohen | Regularization by denoising via fixed-point projection (RED-PRO)[END_REF]Theorems 4.3 & 4.4], it is shown that RED-PRO converges to a minimizer of f , where the solution is a fixed point of J.

If a finite number N of iterations of Algorithm (3.2) are performed, unfolding the FB algorithm results in the NN architecture given in Figure 1. If γ < 2/µ, the gradient operator (Id -γ∇f ) is a γµ/2-averaged operator. It can thus be interpreted as an activation operator [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF]. This activation operator is however non standard both because of its form and its dependence on the observed data z. A special case arises when f corresponds to a least squares data fit term, i.e., (3.4)

(∀x ∈ H) f (x) = 1 2 Hx -z 2 ,
where z belongs to some real Hilbert space G and H is a bounded operator from H to G modelling some underlying linear observation process (e.g. a degradation operator in image recovery). Then, ∇f : x → H * (Hxz) where H * denotes the adjoint of H and µ = H 2 . Hence, Id -γ∇f is an affine operator involving a selfadjoint weight operator Id -γH * H and a bias γH * z. The unfolded network has thus a structure similar to a residual network where groups of layers are identically repeated and the bias introduced in the gradient operator depends on z. A parallel could also be drawn with a recurrent neural network driven with a stationary input, which would here correspond to z. It is worth pointing out that, under the assumptions of Proposition 3.1, the unfolded network in Figure 1 is robust to adversarial input perturbations, since it is globally nonexpansive. Note finally that, in the case when f is given by (3.4), allowing the parameter γ and the operator J to be dependent on n ∈ {1, . . . , N } in Figure 1 would yield an extension of ISTA-net [START_REF] Zhang | ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[END_REF]. However, as shown in [START_REF] Chen | Theoretical linear convergence of unfolded ista and its practical weights and thresholds[END_REF], convergence of such a scheme requires specific assumptions on the target signal model. Other works have also proposed NN architectures inspired from primal dual algorithms [START_REF] Adler | Learned primal-dual reconstruction[END_REF][START_REF] Banert | Data-driven nonsmooth optimization[END_REF][START_REF] Jiu | A deep primal-dual proximal network for image restoration[END_REF].

Training.

A standard way of training a NN operating on H = R K for PnP algorithms is to train a denoiser for data corrupted with Gaussian noise [START_REF] Zhang | Learning a single convolutional super-resolution network for multiple degradations[END_REF]. Let x = (x ) 1 L be training set of L images of H and let (3.5) (∀ ∈ {1, . . . , L}) y = x + σ w be a noisy observation of x , where σ ∈ ]0, +∞[ and (w ) 1 L are assumed to be realizations of standard normal i.i.d. random variables. In practice, either σ ≡ σ > 0 is chosen to be constant during training [START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF], or σ is chosen to be a realization of a random variable with uniform distribution in [0, σ], for σ ∈ ]0, +∞[ [START_REF] Zhang | Deep plug-and-play super-resolution for arbitrary blur kernels[END_REF].

The NN J described in the previous section will be optimally chosen within a family { J θ | θ ∈ R P } of NNs. For example, the parameter vector θ will account for the convolutional kernels and biases of a given network architecture. An optimal value θ of the parameter vector is thus a solution to the following problem:

(3.6) minimize θ L =1 J θ (y ) -x 2 s.t. Q θ = 2 J θ -Id is nonexpansive.
(The squared 2 norm in (3.6) can be replaced by another cost function, e.g., an 1 norm [START_REF] Zhang | Plug-and-play image restoration with deep denoiser prior[END_REF].) The main difficulty with respect to a standard training procedure is the nonexpansiveness constraint stemming from Proposition 2.1 which is crucial to ensure the convergence of the overall PnP algorithm. In this context, the tight sufficient conditions described in Proposition A.1 for building the associated nonexpansive operator Q θ are however difficult to enforce. For example, the maximum value of the left-hand side in inequality (A.1) is NP-hard to compute [START_REF] Virmaux | Lipschitz regularity of deep neural networks: analysis and efficient estimation[END_REF] and estimating an accurate estimate of the Lipschitz constant of a NN requires some additional assumptions [START_REF] Neacsu | Accuracy-robustness trade-off for positively weighted neural networks[END_REF] or some techniques which do not scale well to high-dimensional data [START_REF] Fazlyab | Efficient and accurate estimation of Lipschitz constants for deep neural networks[END_REF]. In turn, by assuming that, for every θ ∈ R P Q θ is differentiable, we leverage on the fact that Q θ is nonexpansive if and only if its Jacobian ∇ ∇ ∇Q θ satisfies

(3.7) (∀x ∈ H) ∇ ∇ ∇Q θ (x) 1.
In practice, one cannot enforce the constraint in (3.7) for all x ∈ H. We therefore propose to impose this constraint on every segment [x , J θ (y )] with ∈ {1, . . . , L}, or more precisely at points

(3.8) x = x + (1 -) J θ (y ),
where is a realization of a random variable with uniform distribution on [0,1]. To cope with the resulting constraints, instead of using projection techniques which might be slow [START_REF] Terris | Building firmly nonexpansive convolutional neural networks[END_REF] and raise convergence issues when embedded in existing training algorithms [START_REF] Alacaoglu | Convergence of adaptive algorithms for weakly convex constrained optimization[END_REF], we propose to employ an exterior penalty approach. The final optimization problem thus reads

(3.9) minimize θ L =1 Φ (θ),
where, for every ∈ {1, . . . , L}, Remark 3.3. Hereabove, we have made the assumptions that the network is differentiable. Automatic differentiation tools however are applicable to networks which contain nonsmooth linearities such as ReLU (see [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF] for a theoretical justification for this fact).

(3.10) Φ (θ) = J θ (y ) -x 2 + λ max ∇ ∇ ∇Q θ ( x ) 2 , 1 -ε , λ ∈ ]0,
To solve (3.9) numerically, we resort to the Adam optimizer [START_REF] Zhang | Deep plug-and-play super-resolution for arbitrary blur kernels[END_REF] as described in Algorithm 3.1. This algorithm uses a fixed number of iterations N ∈ N * and relies on approximations to the gradient of Φ computed on randomly sampled batches of size D, selected from the training set of images (x ) 1 L . More precisely, at each iteration t ∈ {1, . . . , N }, we build the approximated gradient 1 D D d=1 g d (see lines 3-9), followed by an Adam update (line 10) consisting in a gradient step on θ d with adaptive moment [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. Then the approximated gradient is computed as follows. For every d ∈ {1, . . . , D}, we select randomly an image from the training set (line 4), we draw at random a realization of a normal i.i.d. noise that we use to build a noisy observation y d (line 5-6). We then build x d as in (3.8) (lines 5-7) and compute the gradient g d of the loss Φ d w.r.t. to the parameter vector at its current estimate θ n (line 8). Note that any other gradient-based algorithm, such as SGD or RMSprop [START_REF] Mukkamala | Variants of rmsprop and adagrad with logarithmic regret bounds[END_REF] could be used to solve (3.9).

In order to compute the spectral norm ∇ ∇ ∇Q θ (x) for a given image x ∈ H, we use the power iterative method (see details in Appendix C).

Remark 3.4. (i) Other works in the GAN literature have investigated similar regularizations [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF][START_REF] Petzka | On the regularization of wasserstein gans[END_REF][START_REF] Wei | Improving the improved training of wasserstein gans: A consistency term and its dual effect[END_REF] to constrain the gradient norm of the discriminator (recall that, the disciminator being a function with values in R, its gradient is well defined). In our work, we aim at constraining the Lipschitz constant of Q : R N → R N , the gradient of which is not defined (only its Jacobian is), hence the need of a more involved method for computing the spectral norm. (ii) A related approach was presented in [START_REF] Hoffman | Robust learning with jacobian regularization[END_REF], where the loss is regularized with the Froebenius norm of the Jacobian. The latter is not enough to ensure convergence of the PnP method (3.2) which requires to constrain the spectral norm • of the Jacobian. Select randomly ∈ {1, . . . , L};

5:

Draw at random w d ∼ N (0, 1) and d ∼ U([0, 1]);

6:

y d = x + σw d ;
7:

x d = d x + (1 -d ) J θn (y d );
8:

g d = ∇ θ Φ d (θ n ); 9:
end for 10:

θ n+1 = Adam( 1 D D d=1 g d , θ n ); 11: end for 12: return J θ N (iii)
The power iterative method has been used in previous works [START_REF] Miyato | Spectral normalization for generative adversarial networks[END_REF][START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF][START_REF] Yoshida | Spectral norm regularization for improving the generalizability of deep learning[END_REF]. In particular, RealSN [START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF] relies on a power iteration to compute the Lipschitz constant of each convolutional layer. In our case, we compute the spectral norm of the Jacobian for the full network Q.

4. Simulations and results.

Experimental setting.

Inverse Problem. We focus on inverse deblurring imaging problems, where the objective is to find an estimate x ∈ R K of an original unknown image x ∈ R K , from degraded measurements z ∈ R K given by (4.1)

z = Hx + e,
where H : R K → R K is a blur operator and e ∈ R K is a realization of an additive white Gaussian random noise with zero-mean and standard deviation ν ∈ ]0, +∞[. In this context, a standard choice for the data-fidelity term is given by (3.4). In our simulations, H models a blurring operator implemented as a circular convolution with impulse response h. We will consider different kernels h taken from [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] and [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF], see Figure 2 for an illustration. The considered kernels are normalized such that the Lipschitz constant µ of the gradient of f is equal to 1. Datasets. Our training dataset consists of 50000 test images from the ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] that we randomly split in 98% for training and 2% for validation. In the case of grayscale images, we investigate the behavior of our method either on the full BSD68 dataset [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] or on a subset of 10 images, which we refer to as the BSD10 set. For color images, we consider both the BSD500 test set [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF] and the Flickr30 test set [START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF]. 1 Eventually, when some fine-tuning is required, we employ the Set12 and Set18 datasets [START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF] for grayscale and color images, respectively.

Network architecture and pretraining. In existing PnP algorithms involving NNs (see e.g. [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF][START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[END_REF][START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF][START_REF] Zhang | Deep plug-and-play super-resolution for arbitrary blur kernels[END_REF]), the NN architecture J often relies on residual skip connections. This is equivalent, in (2.3), to set Q = Id + T M . . . T 1 where, for every m ∈ {1, . . . , M }, T m is standard neural network layer (affine operator followed by activation operator). More specifically, the architecture we consider for J is such where, in our case, we have max 1 L x = 1. The SSIM is given by

(4.3) SSIM(x, x) = (2µ x µ x + ϑ 1 )(2σ xx + ϑ 2 ) (µ 2 x + µ 2 x + ϑ 1 )(σ 2 x + σ 2 x + ϑ 2 )
, where (µ x , σ x ) and (µ x , σ x ) are the mean and the variance of x and x respectively, σ xx is the cross-covariance between x and x, and (ϑ 1 , ϑ 2 ) = (10 -4 , 9 × 10 -4 ).

4.2. Choice of the parameters. In this section, we study the influence of the parameters3 (λ, σ, γ) on the results of the PnP-FB algorithm (3.2) applied to the NN in Figure 3. We recall that λ is the parameter acting on the Jacobian regularization, σ is the noise level for which the denoiser is trained, and γ is the stepsize in the PnP-FB algorithm (3.2).

Simulation settings. We consider problem (4.1) with H associated with the kernels shown in Figure 2(a)-(h), and ν = 0.01. In this section, we consider the grayscale images from the BSD68 dataset.

To investigate the convergence behavior of the PnP-FB algorithm, we consider the quantity defined at iteration n ∈ N \ {0} as (4.4)

c n = x n -x n-1 / x 0 ,
where (x n ) n∈N is the sequence generated by the PnP-FB algorithm (3.2). Note that the quantity (c n ) n∈N is known to be monotonically decreasing if the network J is firmly nonexpansive [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF].

Influence of the Jacobian penalization. We study the influence of λ on the convergence behavior of the PnP-FB algorithm (3.2). In particular we consider λ ∈ {5 × 10 -7 , 10 -6 , 2×10 -6 , 5×10 -6 , 10 -5 , 2×10 -5 , 4×10 -5 , 1.6×10 -4 , 3.2×10 -4 , 6.4×10 -4 }.

After pretraining, we train our DnCNN by considering the loss given in (3.10), in which we set ε = 5 × 10 -2 and σ = 0.01. The batches are built as in the pretraining setting. The network is trained for 100 epochs and the learning rate is divided by 10 at epoch 80. The training is performed with Algorithm 3.1 where D = 100 and N = 4.9 × 10 4 . For Adam's parameters, we set the learning rate to 10 -4 and the remaining parameters to the default values provided in [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF].

To verify that our training loss enables the firm nonexpansiveness of our NN J, we evaluate the norm of the Jacobian ∇ ∇ ∇Q(y ) on a set of noisy images (y ) [START_REF] Abdulaziz | Wideband super-resolution imaging in radio interferometry via low rankness and joint average sparsity models (hypersara)[END_REF] 68 , obtained from the BSD68 test set considering the denoising problem (3.5). The maximum of these values is given in Table 1 for the different considered values of λ. We observe that the norm of the Jacobian decreases as λ increases and is smaller than 1 for λ 10 -5 .

We now investigate the convergence behavior of the PnP-FB algorithm, depending on λ, considering BSD10 (a subset of BSD68). In our simulations, we set γ = 1/µ = 1. In Figure 4 we show the values (c n ) 1 n 1000 for 1000 iterations, considering kernel (a) from Figure 2 for the different values of λ. The case λ = 0 corresponds to training a DnCNN without the Jacobian regularization. We observe that the stability of the PnP-FB algorithm greatly improves as λ increases: for λ 10 -5 , all curves are monotonically decreasing. These observations are in line with the metrics from Table 1 showing that ∇ ∇ ∇Q(y ) 1 for λ 10 -5 . The case when ∇ ∇ ∇Q is slightly larger than 1 is of interest. In particular, when λ = 5 × 10 -6 , ∇ ∇ ∇Q 2 ≈ 1.03 (see Table 1) one observes that most curves from Figure 4 (e) are monotonically decreasing, but some are not. When λ = 10 -6 , ∇ ∇ ∇Q 2 ≈ 1.35 (see Table 1), none of the curves from Figure 4 (c) are monotonically decreasing, but we observed convergence in some case for a larger number of iterations.

These results confirm that by choosing an appropriate value of λ, one can ensure Q to be 1-Lipschitz, i.e. J to be firmly nonexpansive, and consequently we secure the convergence of the PnP-FB algorithm (3.2). It also confirms that ∇ ∇ ∇Q 1 is a sufficient condition to ensure convergence. Finally, we also emphasize that the average PSNR values obtained with the PnP-FB algorithm, for the different considered λ, has a bell shape with maximum obtained when λ = 10 -5 . Influence of the stepsize and training noise level. Second, we investigate the influence (σ, γ) on the reconstruction quality of the images restored with the PnP-FB algorithm. Indeed, according to Proposition 3.1, the value of γ acts on the solution, and hence potentially on the reconstruction quality. We train the NN J given in Figure 3 for σ ∈ {0.005, 0.006, 0.007, 0.008, 0.009, 0.01}. As per the procedure followed in the study of the parameter λ, after pretraining, we train J by considering the loss given in (3.10), in which we set ε = 5 × 10 -2 and λ = 10 -5 . The batches are built as in the pretraining setting. The network is trained for 100 epochs and the learning rate is divided by 10 at epoch 80. The training is performed with Algorithm 3.1 where D = 100 and N = 4.9 × 10 4 . For Adam's parameters, we set the learning rate to 10 -4 and the remaining parameters to the default values provided in [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. We subsequently plug the trained DnCNN J in the PnP-FB algorithm (3.2), considering different values for γ ∈]0, 2[. In these simulations, we focus on the case when the blur kernel in Problem (4.1) corresponds to the one shown in Figure 2(a). γ, with scaling coefficient closely driven by the value ν eff . The best strategy relies on choosing γ the largest as possible, and deduce the value of σ as σ = γν eff . In other words, our results suggest that the optimal values for both the stepsize and training noise level can be determined as functions of parameters of the data fidelity term f , namely the Lipschitz constant µ of its gradient and the norm of the blurring kernel h, with γ = 1.99/µ and σ = 4ν h /µ. 
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Comparison with other PnP methods.

In this section we investigate the behavior of the PnP-FB algorithm (3.2) with J corresponding either to the proposed DnCNN provided in Figure 3, or to other denoisers. In this section, we aim to solve problem (4.1), considering either grayscale or color images.

Grayscale images. We consider the deblurring problem (4.1) with H associated with the kernels from Figure 2(a)-(h), ν = 0.01, evaluated the BSD10 test set.

We choose the parameters of our method to be the ones leading to the best PSNR values in Figure 5, i.e. σ = 0.009 and γ = 1.99 corresponding to σ/γν eff = 1 for the kernel (a) of Figure 2, and we set λ = 10 -5 .

We compare our method with other PnP-FB algorithms, where the denoiser corresponds either to RealSN [START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF], BM3D [START_REF] Mäkinen | Collaborative filtering of correlated noise: Exact transform-domain variance for improved shrinkage and patch matching[END_REF], DnCNN [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[END_REF], or standard proximity operators [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]. In our simulations, we consider the proximal operators of the two following functions: (i) the 1 -norm composed with a sparsifying operator consisting in the concatenation of the first eight Daubechies (db) wavelet bases [START_REF] Carrillo | Sparsity averaging for compressive imaging[END_REF][START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF], and (ii) the total variation (TV) norm [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. In both cases, the regularization parameters are fine-tuned on the Set12 dataset [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[END_REF] to maximize the reconstruction quality. Note that the training process for RealSN has been adapted for the problem of interest. We first check the convergence of the PnP-FB algorithm considering the abovementioned different denoisers. We study the quantity (c n ) n∈N defined in (4.4), considering the inverse problem (4.1) with kernel in Figure 2(a). Figure 7 shows the c n values with respect to the iterations n ∈ {1, . . . , 1000} of the PnP-FB algorithm for various denoisers J: BM3D (Figure 7(a)), RealSN (Figure 7(b)), and the proposed firmly nonexpansive DnCNN (Figure 7(c)). On the one hand, as expected, PnP-FB with our network, which has been trained to be firmly nonexpansive, shows a convergent behavior with monotonic decrease of c n . On the other hand, we notice that the PnP-FB algorithm with BM3D or RealSN does not converge since (c n ) n∈N does not tend to zero, which confirms that neither BM3D nor RealSN are firmly nonexpansive. Note that, in the case of RealSN [START_REF] Ryu | Plug-and-play methods provably converge with properly trained denoisers[END_REF], nonexpansive-based constraints are also imposed on the network. Nevertheless, in practice these constraints are more restrictive than our approach (see Remark 3.4(iii)), and less accurate (see [54, Assumption A]).

In Table 2 we provide a quantitative analysis of the restoration quality obtained on the BSD10 dataset with the different denoisers. Although DnCNN and BM3D do not benefit from any convergence guarantees, we report the SNR values obtained after 1000 iterations. For all the eight considered kernels, the best PSNR values are delivered by the proposed firmly nonexpansive DnCNN. A possible explanation for the improved performance of our method compared to DnCNN, BM3D and RealSN is the stability of our PnP algorithm induced by the firm nonexpansiveness of our denoiser J.

In Figure 8 we show visual results and associated PSNR and SSIM values obtained with the different methods on the deblurring problem (4.1) with kernel from Figure 2(a). We notice that despite good PSNR and SSIM values, the proximal methods yield reconstructions with strong visual artifacts (wavelet artifacts in Figure 8(c) and cartoon effects in Figure 8(d)). PnP-FB with BM3D provides a smoother image with more appealing visual results, yet some grid-like artifacts appear in some places (see e.g. red boxed zoom in Figure 8(e)). RealSN introduces ripple and dotted artifacts, while DnCNN introduces geometrical artifacts, neither of those corresponding to features in the target image. For this image, we can observe that our method provides better visual results as well as higher PSNR and SSIM values than other methods.

The results presented in this section show that the introduction of the Jacobian regularizer in the training loss (3.10) not only allows to build convergent PnP-FB methods, but also improves the reconstruction quality over both FB algorithms involving standard proximity operators, and existing PnP-FB approaches.

Color images. We now apply our strategy to a color image deblurring problem of the form (4.1), where the noise level and blurring operator are chosen to reproduce the experimental settings of [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF], focusing on the four following experiments: First, the Motion A (M. A) setup with blur kernel (h) from Figure 2 and ν = 0.01; second, the Motion B (M. B) setup with blur kernel (c) from Figure 2 and ν = 0.01; third, the Gaussian A (G. A) setup with kernel (i) from Figure 2 and ν = 0.008; finally, the Square (S.) setup with kernel (j) from Figure 2 ν = 0.01. The experiments in this section are run on the Flickr30 dataset and on the test set from BSD5004 . We compare our method on these problems with the variational method VAR from [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF], and three PnP algorithms, namely PDHG [START_REF] Meinhardt | Learning proximal operators: Using denoising networks for regularizing inverse imaging problems[END_REF], and the PnP-FB algorithm combined with the BM3D or DnCNN denoisers. It is worth mentioning that, among the above mentioned methods, only the proposed approach and VAR have convergence guaranties. The results for PDHG and VAR are borrowed from [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF].

For the proposed method, we choose γ = 1.99 in the PnP-FB algorithm (3.2), and we keep the same DnCNN architecture for J given in Figure 3, only changing Visual comparisons are provided in Figure 10 for the different approaches. These results show that our method also yields better visual results. The reconstructed images contain finer details and do not show the oversmoothed appearance of PnP-FB with DnCNN or slightly blurred aspect of PnP-FB with BM3D. Note that, in particular, thanks to its convergence, the proposed method shows a homogeneous performance over all images, unlike PnP-FB with DnCNN that may show some divergence effects (see the boat picture for Motion A, row (f)). One can observe that the improvement obtained with our approach are more noticeable on settings M. A and M. B than on G. A and S.

Conclusion.

In this paper, we investigated the interplay between PnP algorithms and monotone operator theory, in order to propose a sound mathematical framework yielding both convergence guarantees and a good reconstruction quality in the context of computational imaging.

First, we established a universal approximation theorem for a wide range of MMOs, in particular the new class of stationary MMOs we have introduced. This theorem constitutes the theoretical backbone of our work by proving that the resolvents of these MMOs can be approximated by building nonexpansive NNs. Leveraging this result, we proposed to learn MMOs in a supervised manner for PnP algorithms. A main advantage of this approach is that it allows us to characterize their limit as a solution to a variational inclusion problem.

Second, we proposed a novel training loss to learn the resolvent of an MMO for high dimensional data, by imposing mild conditions on the underlying NN architecture. This loss uses information of the Jacobian of the NN, and can be optimized efficiently using existing training strategies. Finally, we demonstrated that the resulting PnP algorithms grounded on the FB scheme have good convergence properties when trained by leveraging the proposed Jacobian regularization. We showcased our method on an image deblurring problem and showed that the proposed PnP-FB algorithm outperforms both standard variational methods and state-of-the-art PnP algorithms. Interestingly, our results suggest that the optimal values for both the stepsize and training noise level can be determined automatically as functions of parameters of the data fidelity term, namely the Lipschitz constant µ of its gradient and the norm of the blurring kernel.

Note that the ability of approximating resolvents as we did is directly applicable to a much wider class of iterative algorithms than the forward-backward splitting [START_REF] Combettes | Fixed point strategies in data science[END_REF]. In addition, we could consider a wider scope of applications than the restoration problems addressed in this work, such as image super-resolution or reconstruction, and future works also include the investigation of automatic methods for choosing λ.

Because of the separable form of B, D k r ∈ B k (D k U p) and D k s ∈ B k (D k U q). It then follows from (B.5) and the monotonicity of B k that (B.6) Π k (pq) | Π k (pq ) 0.

By invoking Proposition 2.6(ii), we conclude that A is a stationary MMO.

Proof of Example 2.8. This corresponds to the special case of Example 2.7 when, for every k ∈ {1, . . . , K}, H k = R (see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Theorem 16.47,Corollary 22.23]).

Proof of Example 2.9. If B+B * is nonnegative, B, hence A, are maximally monotone and J A = J B (•c) is firmly nonexpansive. As a consequence, the reflected resolvent of B, given by Q = 2(Id +B) -1 -Id, is nonexpansive. For every k ∈ {1, . . . , K}, let D k be the decimation operator defined in (B.1) and let

Π k = D k (B.7) Ω k = Q * D * k D k Q (B.8)
Π k satisfies (2.6) and, since (B.9)

K k=1 Ω k = Q * Q = Q 2 1,
(2.7) is also satisfied. In addition, for every (x, y) ∈ H 2 and, for every k ∈ {1, . . . , K}, we have Proof of Example 2.10. The resolvent of A -1 is given by J A -1 = Id -J A . In addition, since A is stationary, there exist bounded linear operators (Π k ) 1 k K and self-adjoint operators (Ω k ) 1 k K satisfying (2.5)-(2.7). For every k ∈ {1, . . . , K}, we have then, for every (x, y) ∈ H 2 , Π k 2J A -1 (x)x -2J A -1 (y) + y 2 = Π k 2J A (y)y -2J A (x) + x 2 Appendix C. Power iterative method. The power iterative algorithm allows the spectral norm of a matrix B to be computed efficiently [START_REF] Golub | Matrix computations[END_REF]. In our case, we apply this algorithm with B = ∇ ∇ ∇Q(x) at some point x. Notice that we do not need to compute or store the full Jacobian: in practice, at each iteration of this algorithm, we just need to apply ∇ ∇ ∇Q(x) to some vector and apply ∇ ∇ ∇Q(x) to another vector. These products can be computed by automatic differentiation. Due to memory limitations, all our experiments are performed with 5 iterations of the power method. We nevertheless observe in practice that this is sufficient to ensure convergence of the PnP-FB algorithm.
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 1 Fig. 1: Unfolded FB algorithm over N iterations.
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 44 Fig. 4: Influence of λ ∈ {0, 5 × -7 , 10 -6 , 2 × 10 -6 , 5 × 10 -6 , 10 -5 , 4 × 10 -5 , 1.6 × 10 -4 } on the stability of the PnP-FB algorithm for the deblurring problem with kernel in Figure 2(a). (a)-(h): On each graph, evolution of the quantity cn defined in (4.4) for each image of the BSD10 test set, for a value of λ, along the iterations of the PnP-FB algorithm (3.2).
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 5 Fig. 5: of γ ∈]0, 1.99] and σ ∈ [0.005, 0.01] on the reconstruction quality for the deblurring problem with kernel from Figure 2(a) on the BSD10 test set. For this experiment ν eff = 0.0045. Left: average PSNR, right: average SSIM.
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 6 Fig. 6: Reconstructions of an image from the BSD10 test set obtained with the PnP-FB algorithm (3.2) for the deblurring problem with kernel from Figure 2(a) for which ν eff = 0.0045. Top row: results for γ ∈ [1, 1.99] in algorithm (3.2) and σ/ν eff = 2 (i.e. σ = 0.009). Bottom row: results for σ/ν eff ∈ [1.3, 2.2] during training in (3.10) and γ = 1 in algorithm (3.2).
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 7 Fig. 7: Convergence profile of the PnP-FB algorithm (3.2) for different denoisers plugged in as J, namely BM3D (a), RealSN (b) and the proposed firmly nonexpansive DnCNN (c). Results are shown for the deblurring problem (4.1) with kernel from Figure 2(a). Each graph shows the evolution of cn defined in (4.4) for each image of the BSD10 test set.

  other considered PnP methods.

Π

  k 2J A (x)x -2J A (y) + y 2 = Π k 2J B (xc)x + c -2J B (yc) + yc 2 = xy | Ω k (xy) , (B.10)which shows that A is a stationary MMO. Note finally that, if B is skewed or cocoercive linear operator, then B + B * is nonnegative.

y 2 y

 2 x | Ω k (yx) . (B.11) Proof of Example 2.11. B = ρA(•/ρ) is maximally monotone and its resolvent reads J B = ρJ A (•/ρ) [7, Corollary 23.26]. Using the same notation as previously, for every k ∈ {1, . . . , K} and for every (x, y) ∈ H 2 , Π k 2J B (x)x -2J B (y) + y 2 = ρ 2 Π k 2J A x | Ω k (yx) . (B.[START_REF] Bredies | Total generalized variation[END_REF] 

  +∞[ is a penalization parameter, and ε ∈]0, 1[ is a parameter allowing us to control the constraints. Standard results concerning penalization methods [42, Section 13.1], guarantee that, if θ

λ is a solution to (3.9) for λ ∈ ]0, +∞[, then (∀ ∈ {1, . . . , L}) lim λ→+∞ ∇ ∇ ∇Q θ λ (x ) 2 1ε. Then, since ε > 0, there exists λ ∈ ]0, +∞[ such that, for every λ ∈ [λ, +∞[ and every ∈ {1, . . . , L}, ∇ ∇ ∇Q θ λ (x )

1.

Table 1 :

 1 Numerical evaluation of the firm nonexpansiveness J on a denoising problem on the BSD68 test set for different values of λ.

	.36 1.65	1.349	1.156	1.028	0.9799 0.9449	0.9440	0.9401

Table 2 :

 2 Ψ † • 1 29.44 29.20 29.31 28.87 30.90 30.81 29.40 29.06 prox µ TV • TV 29.70 29.35 29.43 29.15 30.67 30.62 29.61 29.23Average PSNR values obtained by different denoisers plugged in the PnP-FB algorithm (3.2), to solve the deblurring problem (4.1) with kernels of Figure 2(a)-(h) considering the BSD10 test set. The last row provides the average SSIM values for the observed blurred image y in each experimental setting. Each algorithm is stopped after a fixed number of iterations equal to 1000. The best PSNR values are indicated in bold.

	denoiser	(a)	(b)	(c)	kernel (see Figure 2) (d) (e)	(f)	(g)	(h)	convergence
	Observation	23.36 22.93 23.43 19.49 23.84 19.85 20.75 20.67	
	RealSN [54]	26.24 26.25 26.34 25.89 25.08 25.84 24.81 23.92	
	prox µ 1 DnCNN [68]	29.82 29.24 29.26 28.88 30.84 30.95 29.54 29.17	
	BM3D [43]	30.05 29.53 29.93 29.10 31.08 30.78 29.56 29.41	
	Proposed	30.86 30.33 30.31 30.14 31.72 31.69 30.42 30.09	

We consider normalised images, where the coefficient values are in [0, 1] (resp. [0, 1] 3 ) for grayscale (resp. color) images.

Code publicly available at https://github.com/basp-group/PnP-MMO-imaging

We noticed that the influence of ε > 0 in (3.10) was negligible compared with that of (λ, σ, γ).

As in[START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF], we consider 256 × 256 centered-crop versions of the datasets.
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Fig. 2: Blur kernels used in our simulations. (a)-(h) are kernels 1-8 from [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] respectively while (i) is the kernel from the GaussianA setup and (j) from the Square setup in [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF]. Fig. 3: Proposed DnCNN architecture of J, with a total of 20 convolutional layers. It corresponds to a modified version of the DnCNN-B architecture [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[END_REF]. The number of channels C is indicated above arrows (C = 1 for grayscale images and C = 3 for color ones).

that M = 20. It is derived from the DnCNN-B architecture [START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising[END_REF] from which we have removed batch normalization layers and where we have replaced ReLUs with LeakyReLUs (see Figure 3). We first pretrain the model J in order to perform a denoising task for a variable level of noise, without any Jacobian regularization. For each training batch, we generate randomly sampled patches of size 50 × 50 from images that are randomly rescaled and flipped. More precisely, we consider Problem (3.9)-(3.10) with λ = 0, and (σ ) 1 L chosen to be realizations of i.i.d. random variable with uniform distribution in [0, 0.1] for each patch. We use the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] to pretrain the network with learning rate 10 -4 , and considering 150 epochs, each consisting of 490 iterations of the optimizer. The learning rate is divided by 10 after 100 epochs and we clip gradient norms at 10 -2 for an improved stability during training. This pretrained network will serve as a basis for our subsequent studies. The details regarding the training of our networks will be given on a case-by-case basis in the following sections.

All models are trained on 2 Nvidia Tesla 32 Gb V100 GPUs and experiments are performed in PyTorch 2 .

Goal. We aim to study the PnP-FB algorithm (3.2) where J, chosen according to the architecture given in Figure 3, has been trained in order to solve (3.10). We will first study the impact of the choice of the different parameters appearing in the training loss (3.10) on the convergence of the PnP-FB algorithm and on the reconstruction quality. Then, we will compare the proposed method to state-of-theart iterative algorithms either based on purely variational or PnP methods.

We evaluate the reconstruction quality with Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) metrics [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. The PSNR between an image x ∈ R K and the ground truth x ∈ R K is defined as

Before discussing the simulation results, we present a heuristic argument suggesting that (i) σ should scale linearly with γ, and (ii) the appropriate scaling coefficient is given as 2ν h . Given the choice of the data-fidelity term (3.4), the PnP-FB algorithm (3.2) reads

We know that, under suitable conditions, the sequence (x n ) n∈N generated by (4.5) converges to a fixed point x, solution to the variational inclusion problem (3.3). We assume that x lies close to x up to a random residual e = H( x-x), whose components are uncorrelated and with equal standard deviation, typically expected to be bounded from above by the standard deviation ν of the components of the original noise e. Around convergence, (4.5) therefore reads as

suggesting that, J is acting as a denoiser of x for an effective noise -γH * (ee).

If the components of ee are uncorrelated, the standard deviation of this noise is bounded by γν eff , with ν eff = 2ν h , a value reached when e = -e. This linear function of γ with scaling coefficient ν eff thus provides a strong heuristic for the choice of the standard deviation σ of the training noise. For the considered kernel (shown in Figure 2(a)), we have ν eff = 0.0045, the interval σ ∈ [0.005, 0.01] also reads

In Figure 5 we provide the average PSNR (left) and SSIM (right) values associated with the solutions to the deblurring problem for the considered simulations as a function of σ/γν eff . For each sub-figure, the different curves correspond to different values of γ. We observe that, the values of γ, the reconstruction quality is sharply peaked around values of σ/γν eff consistently around 1, thus supporting our argument. We also observe that the peak value increases with γ. We recall that, according to the conditions imposed on γ in Proposition 3.1 to guarantee theoretically the convergence of the sequence generated by PnP-FB algorithm, one has γ < 2. The values γ = 1.99 and σ/γν eff = 1 (resp. γ = 1.99 and σ/γν eff = 0.9) gives the best results for the PSNR (resp. SSIM).

In Figure 6 we provide visual results for an image from the BSD10 test set, to the deblurring problem for different values of γ and σ. The original unknown image x and the observed blurred noisy image are displayed in Figure 6(a) and (g), respectively. On the top row, we set σ = 2ν eff , while the value of γ varies from 1 to 1.99. We observe that the reconstruction quality improves when γ increases, bringing the ratio σ/γν eff closer to unity. Precisely, in addition to the PSNR and SSIM values increasing with γ, we can see that the reconstructed image progressively loses its oversmoothed aspect, showing more details. The best reconstruction for this row is given in Figure 6(f), for γ = 1.99. On the bottom row, we set γ = 1 and vary σ from 1.3 ν eff to 2.2 ν eff . We see that sharper details appear in the reconstructed image when σ decreases, again bringing the ratio σ/γν eff closer to unity. The best reconstructions for this row are given in Figure 6(h) and (i), corresponding to the cases σ = 1.3 ν eff and σ = 1.6 ν eff , respectively. Overall, as we have already noticed, the best reconstruction is obtained for γ = 1.99 and σ/γν eff = 1, for which the associated image is displayed in Figure 6(f). It can also be noticed that for all the considered values of σ, the best quality reconstructions are achieved when γ = 1.99/µ. These results further support both our analysis of Figure 5 and our heuristic argument for a linear scaling of σ with the number of input/output channels to C = 3. We first pretrain our network as described in subsection 4.1. We then keep on training it considering the loss given in (3.10), in which we set ε = 5 × 10 -2 , λ = 10 -5 , and σ = 0.007. The average PSNR and SSIM values obtained with the different considered reconstruction methods, and for the different experimental settings, are reported in Figure 9. This figure shows that our method significantly improves reconstruction Appendix A. Nonexpansive networks: additional results. Based on the results in [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF], useful sufficient conditions for a NN to be nonexpansive are given below:

separable activation operator, in the sense that there exist real-valued onevariable functions (ρ m,k ) 1 k Km such that, for every

where, for every m ∈ {1, . . . , M -1}, D m,{1-2αm,1} denotes the set of diagonal K m × K m matrices with diagonal terms equal either to 1 -2α m or 1; (iii) for every m ∈ {1, . . . , M }, H m = R Km with K m ∈ N\{0} and W m is a matrix with nonnegative elements, (R m ) 1 m M -1 are separable activation operators, and

Note that the α-averageness assumption on (R m ) 1 m M -1 means that, for every m ∈ {1, . . . , M -1}, there exists a nonexpansive operator R m :

Actually, most of the activation operators employed in neural networks (ReLU, leaky ReLU, sigmoid, softmax,...) satisfy this assumption with α m = 1/2 [START_REF] Combettes | Deep neural network structures solving variational inequalities, Set-Valued and Variational Analysis[END_REF]. A few others like the sorting operator used in max-pooling correspond to a value of the constant α m larger than 1/2 [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF]. It is also worth mentioning that, although Condition (i) in Proposition A.1 is obviously the simplest one, it is usually quite restrictive. If equation (A.2) is weaker than Condition (i), Condition (iii) requires yet the network weights to be nonnegative as shown in [START_REF] Combettes | Lipschitz certificates for layered network structures driven by averaged activation operators[END_REF]. By summarizing the results of the previous section, Figure 11 shows a feedforward NN architecture for MMOs, for which Proposition A.1 can be applied. It can be noticed that (2.1) induces the presence of a skip connection in the global structure. Let (p, q) ∈ H 2 . Every (p , q ) ∈ A(p) × A(q) is such p = U * r and q = U * s, (B.4) where r ∈ B(U p) and s ∈ B(U q). Using (B.2) and (B.4) yield, for every k ∈ {1, . . . , K},