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LEARNING MAXIMALLY MONOTONE OPERATORS
FOR IMAGE RECOVERY∗

JEAN-CHRISTOPHE PESQUET† , AUDREY REPETTI‡ , MATTHIEU TERRIS§ , AND

YVES WIAUX¶

Abstract. We introduce a new paradigm for solving regularized variational problems. These are
typically formulated to address ill-posed inverse problems encountered in signal and image process-
ing. The objective function is traditionally defined by adding a regularization function to a data fit
term, which is subsequently minimized by using iterative optimization algorithms. Recently, several
works have proposed to replace the operator related to the regularization by a more sophisticated
denoiser. These approaches, known as plug-and-play (PnP) methods, have shown excellent perfor-
mance. Although it has been noticed that, under nonexpansiveness assumptions on the denoisers,
the convergence of the resulting algorithm is guaranteed, little is known about characterizing the
asymptotically delivered solution. In the current article, we propose to address this limitation. More
specifically, instead of employing a functional regularization, we perform an operator regularization,
where a maximally monotone operator (MMO) is learned in a supervised manner. This formulation
is flexible as it allows the solution to be characterized through a broad range of variational inequal-
ities, and it includes convex regularizations as special cases. From an algorithmic standpoint, the
proposed approach consists in replacing the resolvent of the MMO by a neural network (NN). We
provide a universal approximation theorem proving that nonexpansive NNs provide suitable models
for the resolvent of a wide class of MMOs. The proposed approach thus provides a sound theoret-
ical framework for analyzing the asymptotic behavior of first-order PnP algorithms. In addition,
we propose a numerical strategy to train NNs corresponding to resolvents of MMOs. We apply our
approach to image restoration problems and demonstrate its validity in terms of both convergence
and quality.

Key words. Monotone operators, neural networks, convex optimization, plug-and-play meth-
ods, inverse problems, computational imaging, nonlinear approximation
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1. Introduction. In many problems in data science, in particular when dealing
with inverse problems, a variational approach is adopted which amounts to

(1.1) minimize
x∈H

f(x) + g(x)

where H is the underlying data space, here assumed to be a real Hilbert space,
f : H → ]−∞,+∞] is a data fit (or data fidelity) term related to some available
data z (observations), and g : H → ]−∞,+∞] is some regularization function. The
data fit term is often derived from statistical considerations on the observation model
through the maximum likelihood principle. For many standard noise distributions,
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the negative log-likelihood corresponds to a smooth function (e.g. Gaussian, Poisson-
Gauss, or logistic distributions). The regularization term is often necessary to avoid
overfitting or to overcome ill-posedness problems. A vast literature has been devel-
oped on the choice of this term. It often tends to promote the smoothness of the
solution or to enforce its sparsity by adopting a functional analysis viewpoint. Good
examples of such regularization functions are the total variation semi-norm [51] and
its various extensions [12, 25], and penalizations based on wavelet (or “x-let”) frame
representations [26]. Alternatively, a Bayesian approach can be followed where this
regularization is viewed as the negative-log of some prior distribution, in which case
the minimizer of the objective function in (1.1) can be understood as a Maximum A
Posteriori (MAP) estimator. In any case, the choice of this regularization introduces
two main roadblocks. First, the function g has to be chosen so that the minimization
problem in (1.1) be tractable, which limits its choice to relatively simple forms. Sec-
ondly, the definition of this function involves some parameters which need to be set.
The simplest case consists of a single scaling parameter usually called the regulariza-
tion factor, the choice of which is often very sensitive on the quality of the results.
Note that, in some works, this regularization function is the indicator function of
some set encoding some smoothness or sparsity constraint. For example, it can model
some upper bound on some functional of the discrete gradient of the sought signal,
this bound playing then a role equivalent to a regularization parameter [19]. Using
an indicator function can also model standard constraints in some image restoration
problems, where the image values are bounded [1, 10].

By denoting by Γ0(H) the class of lower-semicontinuous convex functions from H
to ]−∞,+∞] with a nonempty domain, let us now assume that both f and g belong
to Γ0(H). The Moreau subdifferentials of these functions will be denoted by ∂f and
∂g, respectively. Under these convexity assumptions, if

(1.2) 0 ∈ ∂f(x) + ∂g(x),

then x is a solution to the minimization problem (1.1). Actually, under mild qualifi-
cation conditions the sets of solutions to (1.1) and (1.2) coincide [7]. By reformulating
the original optimization problem under the latter form, we have moved to the field
of variational inequalities. Interestingly, it is a well-established fact that the subdif-
ferential of a function in Γ0(H) is a maximally monotone operator (MMO), which
means that (1.2) is a special case of the following monotone inclusion problem:

(1.3) Find x ∈ H such that 0 ∈ ∂f(x) +A(x),

where A is an MMO. We recall that a multivalued operator A defined on H is maxi-
mally monotone if and only if, for every (x1, u1) ∈ H2,

(1.4) u1 ∈ Ax1 ⇔ (∀x2 ∈ H)(∀u2 ∈ Ax2)〈x1 − x2 | u1 − u2〉 > 0.

Actually the class of monotone inclusion problems is much wider than the class of
convex optimization problems and, in particular, includes saddle point problems and
game theory equilibria [18]. What is also worth noting is that many existing algo-
rithms for solving convex optimization have their equivalent for solving monotone
inclusion problems. This suggests that it is more flexible and probably more efficient,
to substitute (1.3) for (1.1) in problems encountered in data science. In other words,
instead of performing a functional regularization, we can introduce an operator reg-
ularization through the maximally monotone mapping A. Although this extension of
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(1.1) may appear both natural and elegant, it induces a high degree of freedom in the
choice of the regularization strategy. However, if we except the standard case when
A = ∂g, it is hard to have a good intuition about how to make a relevant choice for
A. To circumvent this difficulty, our proposed approach will consist in learning A in
a supervised manner by using some available dataset in the targeted application.

Since a MMO is fully characterized by its resolvent, our approach enters into the
family of so-called plug-and-play (PnP) methods [57], where one replaces the prox-
imity operator of an optimization algorithm with a denoiser, e.g. a denoising neural
network (NN) [67]. It is worth mentioning that by doing so, any algorithm whose
proof is based on MMO theory can be turned into a PnP algorithm, e.g., Forward-
Backward (FB), Douglas-Rachford, Peaceman-Rachford, primal-dual approaches, and
more [7, 20, 35]. To ensure the convergence of such PnP algorithms, it is known from
fixed point theory that (under mild conditions) it is sufficient for the denoiser to be
firmly nonexpansive. Unfortunately, most pre-defined denoisers do not satisfy this
assumption, and learning a firmly nonexpansive denoiser remains challenging [52, 56].
The main bottleneck is the ability to tightly constrain the Lipschitz constant of a NN.
During the last years, several works proposed to control the Lipschitz constant (see
e.g. [5, 9, 16, 30, 45, 52, 54, 56, 63]). Nevertheless, only few of them are accurate
enough to ensure the convergence of the associated PnP algorithm and often come at
the price of strong computational and architectural restrictions (e.g., absence of resid-
ual skip connections) [9, 30, 52, 56]. The method proposed in [9] allows a tight control
of convolutional layers, but in order to ensure the nonexpansiveness of the resulting
architecture, one cannot use residual skip connections, despite their wide use in NNs
for denoising applications. In [30], the authors propose to train an averaged NN by
projecting the full convolutional layers on the Stiefel manifold and showcase the usage
of their network in a PnP algorithm. Yet, the architecture proposed by the authors
remains constrained by proximal calculus rules. The assumption [52, Assumption A]
introduced by Ryu et al. allowed the authors to propose the first convergent NN-
based PnP algorithm in a more general framework, but this assumption is rather non
standard and applies only to FB and ADMM. In our previous work [56], we proposed
a method to build firmly nonexpansive convolutional NNs; to the best of our knowl-
edge, this was the first method ensuring the firm nonexpansiveness of a denoising NN.
However, the resulting architecture was strongly constrained and did not improve over
the state-of-the-art. Since building firmly nonexpansive denoisers is difficult, many
works on PnP methods leverage ADMM algorithm which may appear easier to handle
in practice [52]. At this point, it is worth mentioning that the convergence of ADMM
requires restrictive conditions on the involved linear operators [35].

Another drawback of PnP algorithms is that, even if some results exist concerning
their convergence to a limit point, little is known about the characterization of this
limit point - given that it exists. The regularization by denoising (RED) approach
[3, 17], provides a partial answer to this question. By considering a minimum mean
square error (MMSE) denoiser, one can link the PnP algorithms based on FB or
ADMM to a minimization problem [3, 62]. However, as underlined by the authors,
the denoising NN is only an approximation to the MMSE regressor. Eventually, [17]
proposes a comprehensive theoretical study of the RED framework under a demi-
contractivity assumption. This assumption remains however less convenient to check
than the standard firm nonexpansiveness condition which allows the convergence of
the resulting PnP algorithm to be ensured in a quite versatile context.

Our main contribution is to show that one can train a neural network (NN) so
that it corresponds to the resolvent of some MMO. We first explore the theoretical
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side of the question by stating a universal approximation theorem. Then, we put
emphasis on the algorithmic side of the problem. To do so, we propose to regularize the
training loss with the spectral norm of the Jacobian of a suitable nonlinear operator.
Although the resulting NN could be plugged into a variety of iterative algorithms,
our work is focused on the standard FB algorithm. We illustrate the convergence of
the corresponding PnP scheme in an image restoration problems. We show that our
method compares positively in terms of quality to both state-of-the-art PnP methods
and regularized optimization approaches.

This article is organized as follows. In section 2, we recall how MMOs can be
mathematically characterized and explain how their resolvent can be modeled by an
averaged residual neural network. We also establish that NNs are generic models
for a wide class of MMOs. In section 3, we show the usefulness of learning MMOs
in the context of plug-and-play (PnP) first-order algorithms employed for solving
inverse problems. We also describe the training approach which has been adopted.
In section 4, we provide illustrative results for the restoration of monochromatic and
color images. Finally, some concluding remarks are made in section 5.
Notation: Throughout the article, we will denote by ‖ · ‖ the norm endowing any
real Hilbert space H. The same notation (being clear from the context) will be used
to denote the norm of a bounded linear operator L from H to some real Hilbert
space G, that is ‖L‖ = supx∈H\{0} ‖Lx‖/‖x‖. The inner product of H associated
to ‖ · ‖ will be denoted by 〈· | ·〉, here again without making explicit the associated
space. Let D be a subset of H and T : D → H. The operator T is µ-Lipschitzian
for µ > 0 if, for every (x, y) ∈ D2, ‖Tx − Ty‖ 6 µ‖x − y‖. If T is 1-Lipschitzian,
its is said to be nonexpansive. The operator T is firmly nonexpansive if, for every
(x, y) ∈ D2, ‖Tx − Ty‖2 6 〈x− y | Tx− Ty〉. Let A : H ⇒ H be a multivariate
operator, i.e., for every x ∈ H, A(x) is a subset of H. The graph of A is defined
as graA = {(x, u) ∈ H2 | u ∈ Ax}. The operator A : H → 2H is monotone if, for
every (x, u) ∈ graA and (y, v) ∈ graA, 〈x− y | u− v〉 > 0, and maximally-monotone
if (1.4) holds, for every (x1, u1) ∈ H2. The resolvent of A is JA = (Id +A)−1, where
the inverse is here defined in the sense of the inversion of the graph of the operator.
For further details on monotone operator theory, we refer the reader to [7].

2. Neural network models for maximally monotone operators.

2.1. A property of maximally monotone operators. Any multivalued op-
erator operating on H is fully characterized by its resolvent. A main property for our
purpose is the following:

Proposition 2.1. Let A : H⇒ H. A is a maximally monotone operator (MMO)
if and only if there exists a nonexpansive (i.e. 1-Lipschitzian) operator Q : H → H
such that

JA : H → H : x 7→ x+Q(x)

2
,(2.1)

that is

(2.2) A = 2(Id +Q)−1 − Id .

Proof. This result is a direct consequence of Minty’s theorem and the fact that
any firmly nonexpansive operator can be expressed as the arithmetic mean of the
identity operator and some nonexpansive operator Q (see [7]). (2.2) is deduced by
inverting (2.1).
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The above result means that the class of MMOs can be derived from the class of
nonexpansive mappings. The focus should therefore turn on how to model operators
in the latter class with neural networks.

2.2. Nonexpansive neural networks. Our objective will be next to derive a
parametric model for the nonexpansive operator Q in (2.1). Due to their oustanding
approximation capabilities, neural networks appear as good choices for building such
models. We will restrict our attention to feedforward NNs.

Model 2.2. Let (Hm)06m6M be real Hilbert spaces such that H0 = HM = H.
A feedforward NN having m layer and both input and ouput in H can be seen as a
composition of operators:

(2.3) Q = TM · · ·T1,

where

(∀m ∈ {1, . . . ,M}) Tm : Hm−1 → Hm : x 7→ Rm(Wmx+ bm).(2.4)

At each layer m ∈ {1, . . . ,M}, Rm : Hm → Hm is a nonlinear activation operator,
Wm : Hm−1 → Hm is a bounded linear operator corresponding to the weights of the
network, and bm ∈ Hm is a bias parameter vector.

In the remainder, we will use the following notation:

Notation 2.3. Let V and V ′ be nonempty subsets of some Euclidean space and
let NF (V, V ′) denote the class of nonexpansive feedforward NNs with inputs in V and
outputs in V ′ built from a given dictionary F of allowable activation operators.

Also, we will make the following assumption:

Assumption 2.4. The identity operator as well as the sorting operator performed
on blocks of size 2 belong to dictionary F .

In other words, a network in NF (V, V ′) can be linear, or it can be built by using max-
pooling with blocksize 2 and any other kind of activation function, say some given
function ρ : R→ R, operating componentwise in some of its layers, provided that the
resulting structure is 1-Lipschitzian.

The main difficulty is to design such a feedforward NN so that Q in (2.3) has a
Lipschitz constant smaller or equal to 1. An extensive literature has been devoted to
the estimation of Lipschitz constants of NNs [5, 53, 55], but the main goal was different
from ours since these works were motivated by robustness issues in the presence of
adversarial perturbations [28, 36, 48, 55]. Based on the results in [23], useful sufficient
conditions for a NN to be nonexpansive are given below:

Proposition 2.5. Let Q be a feedforward NN as defined in Model 2.2. Assume
that, for every m ∈ {1, . . . ,M}, Rm is αm-averaged with αm ∈ [0, 1]. Then Q is
nonexpansive if one of the following conditions holds:

(i) ‖W1‖ · · · ‖WM‖ 6 1;
(ii) for every m ∈ {1, . . . ,M − 1}, Hm = RKm with Km ∈ N \ {0}, Rm is a

separable activation operator, in the sense that there exist real-valued one-
variable functions (ρm,k)16k6Km such that, for every x = (ξk)16k6Km ∈ Hm,
Rm(x) = (ρm,k(ξk))16k6Km , and

(2.5) (∀Λ1 ∈ D1,{1−2α1,1}) . . . (∀ΛM−1 ∈ DM−1,{1−2αM−1,1})

‖WMΛM−1 · · ·Λ1W1‖ 6 1,
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W1 R1+

b1

x b b b WM RM+

bM

Tx+ ×

1/2

Fig. 1: Neural network modelling the resolvent of a maximally monotone operator. The
weight operators (Wm)16m6M have to be set according to the conditions provided in Propo-
sition 2.5.

where, for every m ∈ {1, . . . ,M−1}, Dm,{1−2αm,1} denotes the set of diagonal
Km ×Km matrices with diagonal terms equal either to 1− 2αm or 1;

(iii) for every m ∈ {1, . . . ,M}, Hm = RKm with Km ∈ N\{0} and Wm is a matrix
with nonnegative elements, (Rm)16m6M−1 are separable activation operators,
and

(2.6) ‖WM · · ·W1‖ 6 1.

Note that the α-averageness assumption on (Rm)16m6M−1 means that, for every

m ∈ {1, . . . ,M − 1}, there exists a nonexpansive operator R̃m : Hm → Hm such that

Rm = (1− αm) Id +αmR̃m. Actually, most of the activation operators employed in
neural networks (ReLU, leaky ReLU, sigmoid, softmax,...) satisfy this assumption
with αm = 1/2 [21]. A few others like the sorting operator used in max-pooling
correspond to a value of the constant αm larger than 1/2 [23]. It is also worth
mentioning that, although Condition (i) in Proposition 2.5 is obviously the simplest
one, it is usually quite restrictive, the weakest condition being given by (2.6) which
requires yet the network weights to be nonnegative.

By summarizing the results of the previous section, Figure 1 shows a feedforward
NN architecture for MMOs, for which Proposition 2.5 can be applied. It can be
noticed that (2.1) induces the presence of a skip connection in the global structure.

2.3. Stationary maximally monotone operators. In the remainder, we will
focus our attention on a particular subclass of operators.

Definition 2.6. Let (Hk)16k6K be real Hilbert spaces. An operator A defined on
the product space space H = H1×· · ·×HK will be said to be a stationary MMO if its
resolvent JA is an operator from H to H such that, for every k ∈ {1, . . . ,K}, there
exists a bounded linear operator Πk : H → Hk and a self-adjoint nonnegative operator
Ωk : H → H such that

(2.7)
(
∀(x, y) ∈ H2

)
‖Πk

(
2JA(x)− x− 2JA(y) + y

)
‖2 6 〈x− y | Ωk(x− y)〉

with

K∑

k=1

Π∗k Πk = Id(2.8)

∥∥∥
K∑

k=1

Ωk

∥∥∥ 6 1.(2.9)

Immediate consequences of this definition are given below. In particular, we will
see that stationary MMOs define a subclass of the set of MMOs.
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Proposition 2.7. Let (Hk)16k6K be real Hilbert spaces and let H = H1 × · · · ×
HK . Let A : H⇒ H.

(i) If A is a stationary MMO on H, then it is maximally monotone.
(ii) Assume that (2.8) is satisfied where, for every k ∈ {1, . . . ,K}, Πk : H → Hk

is a bounded linear operator. If ran (A+ Id) = H and
(2.10)

(∀(p, q) ∈ H2)(∀p′ ∈ A(p))(∀q′ ∈ A(q)) 〈Πk(p− q) | Πk(p′ − q′)〉 > 0,

then A is a stationary MMO.

Proof. (i): Let A be a stationary MMO defined on H. Summing over k in (2.7)
yields, for every (x, y) ∈ H2,

(2.11)

〈
2JA(x)− x− 2JA(y) + y |

( K∑

k=1

Π∗k Πk

)
(2JA(x)− x− 2JA(y) + y)

〉

6

〈
x− y |

K∑

k=1

Ωk(x− y)

〉
.

It thus follows from (2.8), (2.9), and the nonnegativity of (Ωk)16k6K that

(2.12) ‖2JA(x)− x− 2JA(y) + y‖2 6
∥∥∥

K∑

k=1

Ωk

∥∥∥‖x− y‖2 6 ‖x− y‖2.

This shows that 2JA−Id is a nonexpansive operator. Hence, based on Proposition 2.5,
A is an MMO.
(ii): Let k be an arbitrary integer in {1, . . . ,K}. (2.10) can be reexpressed as

(2.13) (∀(p, q) ∈ H2)(∀p′ ∈ A(p))(∀q′ ∈ A(q))

〈Π∗kΠk(p− q) | p′ − q′ + p− q〉 > 〈Π∗kΠk(p− q) | p− q〉.

In particular, this inequality holds if p ∈ JA(x) and q ∈ JA(y) where x and y are
arbitrary elements of H. Then, by definition of JA, we have x−p ∈ A(p), y−q ∈ A(q),
and (2.13) yields

(2.14) 〈Π∗kΠk(p− q) | x− y〉 > 〈Π∗kΠk(p− q) | p− q〉.

By summing over k and using (2.8), it follows that JA is firmly nonexpansive and it
is thus single valued. (2.14) is then equivalent to

(2.15) ‖Πk

(
2JA(x)− x− 2JA(y) + y

)
‖2 6 〈x− y | Π∗kΠk(x− y)〉.

This shows that Inequality (2.7) holds with Ωk = Π∗kΠk. Since (2.9) is then obviously
satisfied, A is a stationary MMO.

A natural question at this point is: how generic are stationary MMOs? To provide
a partial answer to this question, we feature a few examples of such operators.

Example 2.8. For every k ∈ {1, . . . ,K}, let Bk be an MMO defined on a real
Hilbert space Hk and let B be the operator defined as

(2.16) (∀x = (x(k))16k6K ∈ H = H1×· · ·×HK) B(x) = B1(x(1))×· · ·×BK(x(K)).

Let U : H → H be a unitary linear operator. Then A = U∗BU is a stationary MMO.
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Proof. As B is an MMO and U is surjective, U∗BU is an MMO [7, Corollary
25.6]. We are thus guaranteed that ran (Id +A) = H [7, Theorem 21.1].
For every k ∈ {1, . . . ,K}, let

Dk : H → Hk : (x(`))16`6K 7→ x(k)(2.17)

Πk = DkU.(2.18)

It can be noticed that

(2.19)

K∑

k=1

Π∗kΠk = U∗U = Id .

Let (p, q) ∈ H2. Every (p′, q′) ∈ A(p)×A(q) is such

p′ = U∗r(2.20)

q′ = U∗s,(2.21)

where r ∈ B(Up) and s ∈ B(Uq). Using (2.18), (2.20), and (2.21) yield, for every
k ∈ {1, . . . ,K},

(2.22) 〈Πk(p− q) | Πk(p′ − q′)〉 = 〈DkUp−DkUq | Dkr −Dks〉.

Because of the separable form of B, Dkr ∈ Bk(DkUp) and Dks ∈ Bk(DkUq). It then
follows from (2.22) and the monotonicity of Bk that

(2.23) 〈Πk(p− q) | Πk(p′ − q′)〉 > 0.

By invoking Proposition 2.7(ii), we conclude that A is a stationary MMO.

Example 2.9. For every k ∈ {1, . . . ,K}, let ϕk ∈ Γ0(R), and let the function g
be defined as

(2.24) (∀x = (x(k))16k6K ∈ RK) g(x) =

K∑

k=1

ϕk(x(k)).

Let U ∈ RK×K be an orthogonal matrix. Then the subdifferential of g ◦ U is a
stationary MMO.

Proof. This corresponds to the special case of Example 2.8 when, for every k ∈
{1, . . . ,K}, Hk = R (see [7, Theorem 16.47,Corollary 22.23]).

Example 2.10. Let (Hk)16k6K be real Hilbert spaces and let B be a bounded
linear operator from H = H1×· · ·×HK to H such that one of the following conditions
holds:

(i) B +B∗ is nonnegative
(ii) B is skewed
(iii) B is cocoercive.

Let c ∈ H. Then the affine operator A : H → H : x 7→ Bx+ c is a stationary MMO.

Proof. If B+B∗ is nonnegative, B, hence A, are maximally monotone and JA =
JB(· − c) is firmly nonexpansive. As a consequence, the reflected resolvent of B

(2.25) Q = 2(Id +B)−1 − Id
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is nonexpansive. For every k ∈ {1, . . . ,K}, let Dk be the decimation operator defined
in (2.17) and let

Πk = Dk(2.26)

Ωk = Q∗D∗kDkQ(2.27)

Πk satisfies (2.8) and, since

(2.28)
∥∥∥

K∑

k=1

Ωk

∥∥∥ = ‖Q∗Q‖ = ‖Q‖2 6 1,

(2.9) is also satisfied. In addition, for every (x, y) ∈ H2 and, for every k ∈ {1, . . . ,K},
we have

‖Πk

(
2JA(x)− x− 2JA(y) + y

)
‖2

= ‖Πk

(
2JB(x− c)− x+ c− 2JB(y − c) + y − c

)
‖2

= 〈x− y | Ωk(x− y)〉,(2.29)

which shows that A is a stationary MMO.
Note finally that, if B is skewed or cocoercive linear operator, then B + B∗ is non-
negative.

Example 2.11. Let (Hk)16k6K be real Hilbert spaces, let H = H1 × · · · × HK ,
and let A : H⇒ H be a stationary MMO. Then its inverse A−1 is a stationary MMO.

Proof. The resolvent of A−1 is given by JA−1 = Id−JA. In addition, since A is
stationary, there exist bounded linear operators (Πk)16k6K and self-adjoint operators
(Ωk)16k6K satisfying (2.7)-(2.9). For every k ∈ {1, . . . ,K}, we have then, for every
(x, y) ∈ H2,

‖Πk

(
2JA−1(x)− x− 2JA−1(y) + y

)
‖2 = ‖Πk

(
2JA(y)− y − 2JA(x) + x

)
‖2

6 〈y − x | Ωk(y − x)〉.(2.30)

Example 2.12. Let (Hk)16k6K be real Hilbert spaces, let H = H1 × · · · × HK ,
and let A : H ⇒ H be a stationary MMO. Then, for every ρ ∈ R \ {0}, ρA(·/ρ) is a
stationary MMO.

Proof. B = ρA(·/ρ) is maximally monotone and its resolvent reads JB = ρJA(·/ρ)
[7, Corollary 23.26]. Using the same notation as previously, for every k ∈ {1, . . . ,K}
and for every (x, y) ∈ H2,

‖Πk

(
2JB(x)− x− 2JB(y) + y

)
‖2 = ρ2

∥∥∥∥Πk

(
2JA

(x
ρ

)
− x

ρ
− 2JA

(y
ρ

)
+
y

ρ

)∥∥∥∥
2

6 〈y − x | Ωk(y − x)〉.(2.31)

2.4. Universal approximation theorem. In this section we provide one of the
main contributions of this article, consisting in a universal approximation theorem for
MMOs defined on H = RK . To this aim, we first need to introduce useful results,
starting by recalling the definition of a lattice.

Definition 2.13. A set LE of functions from a set E to R is said to be a lattice
if, for every (h(1), h(2)) ∈ L2

E, min{h(1), h(2)} and max{h(1), h(2)} belong to LE. A
sub-lattice of LE is a lattice included in LE.
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This notion of lattice is essential in the variant of the Stone-Weierstrass theorem
provided below.

Proposition 2.14. [5] Let (E, d) be a compact metric space with at least two
distinct points. Let LE be a sub-lattice of Lip1(E,R), the class of 1-Lipschtzian (i.e.
nonexpansive) functions from E to R. Assume that, for every (u, v) ∈ E2 with u 6= v
and, for every (ζ, η) ∈ R2 such that |ζ − η| 6 d(u, v), there exists a function h ∈ LE
such that h(u) = ζ and h(v) = η. Then LE is dense in Lip1(E,R) for the uniform
norm.

This allows us to derive the following approximation result that will be instru-
mental to prove our main result.

Corollary 2.15. Let V be a subspace of RK and let h ∈ Lip1(V,R). Let E be a
compact subset of V . Then, for every ε ∈ ]0,+∞[, there exists hε ∈ NF (V,R), where
F is any dictionary of activation function satisfying Assumption 2.4, such that

(2.32) (∀x ∈ E) |h(x)− hε(x)| 6 ε.

Proof. First note thatNF (V,R) is a lattice. Indeed, if h(1) : V → R and h(2) : V →
R are 1-Lipschitzian, then min{h(1), h(2)} and max{h(1), h(2)} are 1-Lipschitzian. In
addition, if h(1) and h(2) are elements inNF (V,R), then by applying sorting operations
on the two outputs of these two networks, min{h(1), h(2)} and max{h(1), h(2)} are
generated. Each of these outputs can be further selected by applying weight matrices
either equal to [1 0] or [0 1] as a last operation, so leading to a NN in NF (V,R).

Let E be a compact subset of V . Assume that E has at least two distinct points.
Since NF (V,R) is a lattice, the set of restrictions to E of elements in NF (V,R) is
a sub-lattice LE of Lip1(E,R). In addition, let (u, v) ∈ E2 with u 6= v and let
(ζ, η) ∈ R2 be such that |ζ − η| 6 ‖u− v‖. Set h : V → R : x 7→ w>(x− v) + η where
w = (ζ − η)(u− v)/‖u− v‖2. Since ‖w‖ = |ζ − η|/‖u− v‖ 6 1, h is a linear network
in NF (V,R) and we have h(u) = ζ and h(v) = η. This shows that the restriction of h
to E is an element of LE satisfying the assumptions of Proposition 2.14. It can thus
be deduced from this proposition that (2.32) holds.

The inequality also trivially holds if E reduces to a single point x since it is always
possible to find a linear network in NF (V,R) whose output equals h(x).

Remark 2.16. This result is valid whatever the norm used on V .

We are now able to state a universal approximation theorem for MMOs defined
on H = RK (i.e., for every k ∈ {1, . . . ,K}, Hk = R in Definition 2.6).

Theorem 2.17. Let H = RK . Let A : H ⇒ H be a stationary MMO. For every
compact set S ⊂ H and every ε ∈ ]0,+∞[, there exists a NN Qε ∈ NF (H,H),
where F is any dictionary of activation function satisfying Assumption 2.4, such that

Aε = 2(Id +Qε
)−1 − Id satisfies the following properties.

(i) For every x ∈ S, ‖JA(x)− JAε(x)‖ 6 ε.
(ii) Let x ∈ H and let y ∈ A(x) be such that x+y ∈ S. Then, there exists xε ∈ H

and yε ∈ Aε(xε) such that ‖x− xε‖ 6 ε and ‖y − yε‖ 6 ε.
Proof. (i): If A : RK ⇒ RK is a stationary MMO then it follows from Proposi-

tions 2.1 and 2.7(i) and that there exists a nonexpansive operator Q : RK → RK such
that JA = (Id +Q)/2. In addition, according to Definition 2.6, there exist vectors
(pk)16k6K in RK such that, for every k ∈ {1, . . . ,K},

(2.33)
(
∀(x, y) ∈ H2

)
|〈pk | Q(x)−Q(y)〉|2 6 〈x− y | Ωk(x− y)〉
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where

(2.34)

K∑

k=1

pkp
>
k = Id

and (Ωk)16k6K are positive semidefinite matrices in RK×K satisfying (2.9).
Set k ∈ {1, . . . ,K} and define hk : x 7→ 〈pk | Q(x)〉. Let Vk be the nullspace of

Ωk and let V ⊥k be its orthogonal space. We distinguish the cases when V ⊥k 6= {0}
and when V ⊥k = {0}. Assume that V ⊥k 6= {0}. It follows from (2.33) that, for every
x ∈ V ⊥k and (y, z) ∈ V 2

k ,

(2.35) hk(x+ y) = hk(x+ z) = h̃k(x)

where h̃k : V ⊥k → R is such that

(2.36)
(
∀(x, x′) ∈ (V ⊥k )2

)
|h̃k(x)− h̃k(x′)| 6 ‖x− x′‖Ωk

and (∀x ∈ RK) ‖x‖Ωk = 〈x | Ωkx〉1/2. ‖ · ‖Ωk defines a norm on V ⊥k . Inequality (2.36)

shows that h̃k is 1-Lipschitzian on V ⊥k equipped with this norm. Let S be a compact
subset of RK and let projV ⊥k be the orthogonal projection onto V ⊥k . Ek = projV ⊥k (S)

is a compact set and, in view of Corollary 2.15, for every ε ∈ R, there exists h̃k,ε ∈
NF (V ⊥k ,R) such that

(2.37) (∀x ∈ Ek) |h̃k(x)− h̃k,ε(x)| 6 2ε√
K
.

Set now hk,ε = h̃k,ε ◦ projV ⊥k . According to (2.35) and (2.37), we have

(∀x ∈ S) |hk(x)− hk,ε(x)|
= |hk(projVk(x) + projV ⊥k (x))− hk,ε(projVk(x) + projV ⊥k (x))|
= |h̃k(projV ⊥k (x))− h̃k,ε(projV ⊥k (x))|

6
2ε√
K
.(2.38)

In addition, by using the Lipschitz property of h̃k,ε with respect to norm ‖ · ‖Ωk , for
every (x, x′) ∈ RK ,

(
hk,ε(x)− hk,ε(x′)

)2

=
(
h̃k,ε(projV ⊥k (x))− h̃k,ε(projV ⊥k (x′))

)2

6 ‖ projV ⊥k (x)− projV ⊥k (x′)‖2Ωk
=
〈

projV ⊥k (x− x′) | Ωk projV ⊥k (x− x′)
〉

=
〈

Ω
1/2
k projV ⊥k (x− x′) | Ω1/2

k projV ⊥k (x− x′)
〉

= 〈x− x′ | Ωk(x− x′)〉.(2.39)

If V ⊥k = {0}, then it follows from (2.33) that hk = 0. Therefore, (2.38) holds with
hk,ε = 0, which belongs to NF (V ⊥k ,R) and obviously satisfies (2.39).
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Condition (2.34) means that (pk)16k6K is an orthornormal basis of RK in the
standard Euclidean metric. This implies that

(2.40) (∀x ∈ RK) Q(x) =

K∑

k=1

hk(x) pk.

Set

(2.41) (∀x ∈ RK) Qε(x) =

K∑

k=1

hk,ε(x) pk.

It follows from (2.39) and (2.9) that, for every (x, x′) ∈ (RK)2,

‖Qε(x)−Qε(x′)‖2

=
K∑

k=1

(
hk,ε(x)− hk,ε(x′)

)2

6
K∑

k=1

〈x− x′ | Ωk(x− x′)〉

6 ‖x− x′‖2,(2.42)

which shows that Qε ∈ Lip1(RK ,RK). In addition since, for every x ∈ RK ,

(2.43) Qε(x) = W [h1,ε(x), . . . , hK,ε(x)]>

with W = [p1, . . . , pK ] and, for every k ∈ N, hk,ε ∈ NF (RK ,R), Qε belongs to

NF (RK ,RK). Let Aε = 2(Id +Qε
)−1 − Id. We finally deduce from (2.38) that, for

every x ∈ S,

‖JA(x)− JAε(x)‖2

=
∥∥∥x+Q(x)

2
− x+Qε(x)

2

∥∥∥
2

=
1

4

K∑

k=1

(
hk(x)− hk,ε(x)

)2
6 ε2.(2.44)

(ii): Let (x, y) ∈ (RK)2. We have

(2.45) y ∈ A(x) ⇔ x = JA(x+ y).

Assume that x + y ∈ S. It follows from (i) that there exists xε ∈ RK such that
xε = JAε(x+ y) and ‖x− xε‖ 6 ε. Let yε = x− xε + y. We have xε = JAε(xε + yε),
that is yε ∈ Aε(xε). In addition, ‖y − yε‖ = ‖x− xε‖ 6 ε.

We will next show that Theorem 2.17 extends to a wider class of MMOs.

Corollary 2.18. Let H = RK . Let (ωi)16i6I ∈]0, 1]I be such that
∑I
i=1 ωi = 1.

For every i ∈ {1, . . . , I}, let Ai : H ⇒ H be a stationary MMO. Then the same
properties as in Theorem 2.17 hold if A : H ⇒ H is the MMO with resolvent JA =∑I
i=1 ωiJAi .
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Proof. First note that JA : H → H is firmly nonexpansive [7, Proposition 4.6]),
hence A is indeed an MMO. As a consequence of Theorem 2.17, for every compact
set S ⊂ H and every ε ∈ ]0,+∞[, there exist NNs (Qi,ε)16i6I in NF (H,H) such that

(Ai,ε)16i6I =
(
2(Id +Qi,ε

)−1 − Id
)

16i6I
satisfy:

(2.46) (∀i ∈ {1, . . . , Q})(∀x ∈ S) ‖JAi(x)− JAi,ε(x)‖ 6 ε.

Let Qε =
∑I
i=1 ωiQi,ε. Then Qε ∈ Lip1(RK ,RK) and, since it is built from a linear

combination of the outputs of I NNs in NF (H,H) driven with the same input, it

belongs to NF (H,H). In addition, Aε = 2(Id +Qε
)−1 − Id is such that

(2.47) JAε =
1

2

( I∑

i=1

ωiQi,ε + Id
)

=

I∑

i=1

ωiJAi,ε ,

which allows us to deduce from (2.46) that

(2.48) (∀x ∈ S) ‖JA(x)− JAε(x)‖ 6
I∑

i=1

ωi‖JAi(x)− JAi,ε(x)‖ 6 ε.

The rest of the proof follows the same line as for Theorem 2.17.

Remark 2.19. The above results are less accurate than standard universal ap-
proximations ones which, for example, guarantee an arbitrary close approximation
to any continuous function with a network having only one hidden layer [32, 38].
Indeed, the requirement that the resolvent of a MMO must be firmly nonexpansive
induces some significant increase of the difficulty of the mathematical problem. None-
theless, the firm nonexpansiveness will enable us to build convergent PnP algorithms
described in the next sections.

3. Proposed algorithm.

3.1. Forward-backward algorithm. Let us now come back to problems of
the form (1.3). Such monotone inclusion problems can be tackled by a number of
algorithms [18, 22], which are all grounded on the use of the resolvent of A (or a
scaled version of this operator). For simplicity, let us assume that f is a smooth
function. In this case, a famous algorithm for solving (1.3) is the forward-backward
(FB) algorithm [14, 24], which is expressed as

(3.1) (∀n ∈ N) xn+1 = JγA
(
xn − γ∇f(xn)

)

where γ > 0. If a neural network J̃ is used to approximate JγA, then a natural
substitute for (3.1) is

(3.2) (∀n ∈ N) xn+1 = J̃
(
xn − γ∇f(xn)

)
.

The following convergence result then straightforwardly follows from standard asymp-
totic properties of the FB algorithm [24].

Proposition 3.1. Let µ ∈ ]0,+∞[ and let γ ∈]0, 2/µ[. Let f : H → R be a convex

differentiable function with µ-Lipschitzian gradient. Let J̃ be a neural network such
that J̃ is 1/2-averaged as in (2.1). Let Ã be the maximally monotone operator equal

to (J̃−1 − Id). Assume that the set Sγ of zeros of ∇f + γ−1Ã is nonempty. Then,
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b b bJ̃x0 x1Id − γ∇f J̃xN−1 xNId − γ∇f

Fig. 2: Unfolded FB algorithm over N iterations.

the sequence (xn)n∈N generated by iteration (3.2) converges (weakly) to x̂ ∈ Sγ , i.e.,
x̂ satisfies

(3.3) 0 ∈ ∇f(x̂) + γ−1Ã(x̂).

Remark 3.2.
(i) The technical assumption Sγ 6= ∅ can be waived if ∇f + γ−1Ã is strongly

monotone [7, Corollary 23.37]). Then there exists a unique solution to (3.3).

This is achieved if f is strongly convex or if J̃ = (Id +Q)/2 where Q =

Q̃/(1 + δ) with δ ∈ ]0,+∞[ and Q̃ : H → H nonexpansive. In the latter

case, Ã = B + δ(2 + δ)−1 Id where B : H ⇒ H is maximally monotone. An

example of such a strongly monotone operator Ã is encountered in elastic net
regularization.

(ii) A classical result by Rockafellar states that Ã is the subdifferential of some

convex lower-semincontinuous function if and only if Ã is maximally cycli-
cally monotone [18, 50]. As we only enforce the maximal monotonicity, (3.3)
does not necessarily correspond to a minimization problem in general.

If a finite number N of iterations of Algorithm (3.1) are performed, unfolding
the FB algorithm results in the NN architecture given in Figure 2. If γ < 2/µ, the
gradient operator (Id−γ∇f) is a γµ/2-averaged operator. It can thus be interpreted
as an activation operator [23]. This activation operator is however non standard both
because of its form and its dependence on the observed data z. A special case arises
when f corresponds to a least squares data fit term, i.e.,

(3.4) (∀x ∈ H) f(x) =
1

2
‖Hx− z‖2,

where z belongs to some real Hilbert space G and H is a bounded operator from
H to G modelling some underlying linear observation process (e.g. a degradation
operator in image recovery). Then, ∇f : x 7→ H∗(Hx − z) where H∗ denotes the
adjoint of H and µ = ‖H‖2. Hence, Id−γ∇f is an affine operator involving a self-
adjoint weight operator Id−γH∗H and a bias γH∗z. The unfolded network has thus a
structure similar to a residual network where groups of layers are identically repeated
and the bias introduced in the gradient operator depends on z. A parallel could
also be drawn with a recurrent neural network driven with a stationary input, which
would here correspond to z. It is worth pointing out that, under the assumptions
of Proposition 3.1, the unfolded network in Figure 2 is robust to adversarial input
perturbations, since it is globally nonexpansive. Note finally that, in the case when
f is given by (3.4), allowing the parameter γ and the operator J̃ to be dependent
on n ∈ {1, . . . , N} in Figure 2 would yield an extension of ISTA-net [64]. However,
as shown in [15], convergence of such a scheme requires specific assumptions on the
target signal model. Other works have also proposed NN architectures inspired from
primal dual algorithms [2, 6, 33].
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3.2. Training. A standard way of training a NN operating on H = RK for PnP
algorithms is to train a denoiser for data corrupted with Gaussian noise [68]. Let
x = (x`)16`6L be training set of L images of H and let

(3.5) (∀` ∈ {1, . . . , L}) y` = x` + σ`w`

be a noisy observation of x`, where σ` ∈ ]0,+∞[. In practice, either σ` ≡ σ > 0 is
chosen to be constant during training [67], or σ` is chosen to be a realization of a
random variable with uniform distribution in [0, σ], for σ ∈ ]0,+∞[ (w`)16`6L are
assumed to be realizations of standard normal i.i.d. random variables. [69].

The NN J̃ described in the previous section will be optimally chosen within a
family {J̃θ | θ ∈ RP } of NNs. For example, the parameter vector θ will account for
the convolutional kernels and biases of a given network architecture. An optimal value
θ̂ of the parameter vector is thus a solution to the following problem:

(3.6) minimize
θ

L∑

`=1

‖J̃θ(y`)− x`‖2 s.t. Qθ = 2J̃θ − Id is nonexpansive.

(The squared `2 norm in (3.6) can be replaced by another cost function, e.g., an `1
norm [65].) The main difficulty with respect to a standard training procedure is the
nonexpansiveness constraint stemming from Proposition 2.1 which is crucial to ensure
the convergence of the overall PnP algorithm. In this context, the tight sufficient con-
ditions described in Proposition 2.5 for building the associated nonexpansive operator
Qθ are however difficult to enforce. For example, the maximum value of the left-hand
side in inequality (2.5) is NP-hard to compute [58] and estimating an accurate esti-
mate of the Lipschitz constant of a NN requires some additional assumptions [48] or
some techniques which do not scale well to high-dimensional data [28]. In turn, by
assuming that, for every θ ∈ RP Qθ is differentiable, we leverage on the fact that Qθ
is nonexpansive if and only if its Jacobian ∇∇∇Qθ satisfies

(3.7) (∀x ∈ H) ‖∇∇∇Qθ(x)‖ 6 1.

In practice, one cannot enforce the constraint in (3.7) for all x ∈ H. We therefore

propose to impose this constraint on every segment [x`, J̃θ(y`)] with ` ∈ {1, . . . , L},
or more precisely at points

(3.8) x̃` = %`x` + (1− %`)J̃θ(y`),

where %` is a realization of a random variable with uniform distribution on [0,1]. To
cope with the resulting constraints, instead of using projection techniques which might
be slow [56] and raise convergence issues when embedded in existing training algo-
rithms [4], we propose to employ an exterior penalty approach. The final optimization
problem thus reads

(3.9) minimize
θ

L∑

`=1

Φ`(θ),

where, for every ` ∈ {1, . . . , L},

(3.10) Φ`(θ) = ‖J̃θ(y`)− x`‖2 + λmax
{
‖∇∇∇Qθ(x̃`)‖2, 1− ε

}
,
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λ ∈ ]0,+∞[ is a penalization parameter, and ε ∈]0, 1[ is a parameter allowing us to
control the constraints. Standard results concerning penalization methods [40, Section

13.1], guarantee that, if θ̂λ is a solution to (3.9) for λ ∈ ]0,+∞[, then (∀` ∈ {1, . . . , L})
limλ→+∞ ‖∇∇∇Qθ̂λ(x̃`)‖2 6 1 − ε. Then, there exists λ ∈ ]0,+∞[ such that, for every

λ ∈ [λ,+∞[ and every ` ∈ {1, . . . , L}, ‖∇∇∇Qθ̂λ(x̃`)‖ 6 1.

Remark 3.3.
(i) Hereabove, we have made the assumptions that the network is differential. Au-

tomatic differentiation tools however are applicable to networks which contain
nonsmooth linearities such as ReLU (see [11] for a theoretical justification for
this fact).

(ii) Note that this regularization strategy has the same flavour as the one in [31],
where the loss is regularized with the Froebenius norm of the Jacobian. How-
ever, the latter is not enough to ensure convergence of the PnP method (3.2)
which requires to constrain the spectral norm ‖·‖ of the Jacobian. Other works
in the GAN literature have investigated similar regularizations [29, 49, 60].

To solve (3.9) numerically, we resort to the Adam optimizer [69] as described in
Algorithm 3.1. This algorithm uses a fixed number of iterations N ∈ N∗ and relies
on approximations to the gradient of

∑
` Φ` computed on randomly sampled batches

of size D, selected from the training set of images (x`)16`6L. More precisely, at each

iteration t ∈ {1, . . . , N}, we build the approximated gradient 1
D

∑D
d=1 gd (see lines

3-9), followed by an Adam update (line 10) consisting in a gradient step on θd with
adaptive moment [34]. Then the approximated gradient is computed as follows. For
every d ∈ {1, . . . , D}, we select randomly an image from the training set (line 4), we
draw at random a realization of a normal i.i.d. noise that we use to build a noisy
observation yd (line 5-6). We then build x̃d as in (3.8) (lines 5-7) and compute the
gradient gd of the loss Φd w.r.t. to the parameter vector at its current estimate θn
(line 8). Note that any other gradient-based algorithm, such as SGD or RMSprop
[47] could be used to solve (3.9).

Algorithm 3.1 Adam algorithm to solve (3.9)

1: Let D ∈ N∗ be the batch size, and N ∈ N∗ be the number of training iterations.
2: for n = 1, . . . , N do
3: for d = 1, . . . , D do
4: Select randomly ` ∈ {1, . . . , L};
5: Draw at random wd ∼ N (0, 1) and %d ∼ U([0, 1]);
6: yd = x` + σwd;
7: x̃d = %dx` + (1− %d)J̃θn(yd);
8: gd = ∇θΦd(θn);
9: end for

10: θn+1 = Adam( 1
D

∑D
d=1 gd, θn);

11: end for
12: return J̃θN

Remark 3.4. To compute the spectral norm ‖∇∇∇Qθ(x)‖ for a given image x ∈ H,
we use the power iterative method where the Jacobian is computed by backpropagation.

4. Simulations and results.

4.1. Experimental setting.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 3: Blur kernels used in our simulations. (a)-(h) are kernels 1-8 from [39] respectively
while (i) is the kernel from the GaussianA setup and (j) from the Square setup in [8].

Inverse Problem. We focus on inverse deblurring imaging problems, where the
objective is to find an estimate x̂ ∈ RK of an original unknown image x ∈ RK , from
degraded measurements z ∈ RK given by

(4.1) z = Hx+ e,

where H : RK → RK is a blur operator and e ∈ RK is a realization of an additive
white Gaussian random noise with zero-mean and standard deviation ν ∈ ]0,+∞[.
In this context, a standard choice for the data-fidelity term is given by (3.4) In our
simulations, H models a blurring operator implemented as a circular convolution with
impulse response h. We will consider different kernels h taken from [39] and [8], see
Figure 3 for an illustration. The considered kernels are normalized such that the
Lipschitz constant µ of the gradient of f is equal to 1.

Datasets. Our training dataset consists of 50000 test images from the ImageNet
dataset [27] that we randomly split in 98% for training and 2% for validation. In the
case of grayscale images, we investigate the behaviour of our method either on the
full BSD68 dataset [43] or on a subset of 10 images, which we refer to as the BSD10
set. For color images, we consider both the BSD500 test set [43] and the Flickr30 test
set [61].1 Eventually, when some fine-tuning is required, we employ the Set12 and
Set18 datasets [67] for grayscale and color images, respectively.

Network architecture and pretraining. In existing PnP algorithms involving NNs
(see e.g. [37, 66, 67, 69]), the NN architecture J̃ often relies on residual skip con-

nections. This is equivalent, in (2.3), to set Q = Id +T̃M . . . T̃1 where, for every

m ∈ {1, . . . ,M}, T̃m is standard neural network layer (affine operator followed by

activation operator). More specifically, the architecture we consider for J̃ is such that
M = 20. It is derived from DnCNN-B architecture [66] from which we have removed
batch normalization layers and where we have replaced ReLUs with LeakyReLUs (see
Figure 4).

We first pretrain the model J̃ in order to perform a blind denoising task without
any Jacobian regularization. For each training batch, we generate randomly sampled
patches of size 50 × 50 from images that are randomly rescaled and flipped. More
precisely, we consider Problem (3.9)-(3.10) with λ = 0, and (σ`)16`6L chosen to be
realizations of i.i.d. random variable with uniform distribution in [0, 0.1] for each
patch. We use the Adam optimizer [34] to pretrain the network with learning rate
10−4, clipped gradient norms at 10−2, and considering 150 epochs, each consisting of
490 iterations of the optimizer. The learning rate is divided by 10 after 100 epochs.
This pretrained network will serve as a basis for our subsequent studies. The details
regarding the training of our networks will be given on a case-by-case basis in the
following sections.

1We consider normalised images, where the coefficient values are in [0, 1] (resp. [0, 1]3) for
grayscale (resp. color) images.
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Fig. 4: Proposed DnCNN architecture of J̃ , with a total of 20 convolutional layers. It
corresponds to a modified version of the DnCNN-B architecture [66]. The number of channels
C is indicated above arrows (C = 1 for grayscale images and C = 3 for color ones).

All models are trained on 2 Nvidia Tesla 32 Gb V100 GPUs and experiments are
performed in PyTorch2.

Goal. We aim to study the PnP-FB algorithm (3.2) where J̃ , chosen according
to the architecture given in Figure 4, has been trained in order to solve (3.10). We
will first study the impact of the choice of the different parameters appearing in
the training loss (3.10) on the convergence of the PnP-FB algorithm and on the
reconstruction quality. Then, we will compare the proposed method to state-of-the-
art iterative algorithms either based on purely variational or PnP methods.

We evaluate the reconstruction quality with Peak Signal to Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) metrics [59]. The PSNR between an
image x ∈ RK and the ground truth x ∈ RK is defined as

(4.2) PSNR(x, x) = 20 log10

(√
K max16`6L x`
‖x− x`‖

)
,

where, in our case, we have max16`6L x` = 1. The SSIM is given by

(4.3) SSIM(x, x) =
(2µxµx + ϑ1)(2σxx + ϑ2)

(µ2
x + µ2

x + ϑ1)(σ2
x + σ2

x + ϑ2)
,

where (µx, σx) and (µx, σx) are the mean and the variance of x and x respectively,
σxx is the cross-covariance between x and x, and (ϑ1, ϑ2) = (10−4, 9× 10−4).

4.2. Choice of the parameters. In this section, we study the influence of the
parameters (λ, σ, γ) on the results of the PnP-FB algorithm 3.2 applied to the NN in
Figure 4. We recall that λ is the parameter acting on the Jacobian regularization, σ
is the noise level for which the denoiser is trained, and γ is the stepsize in the PnP-FB
algorithm (3.2).

Simulation settings. We consider problem (4.1) withH associated with the kernels
shown in Figure 3(a)-(h), and ν = 0.01. In this section, we consider the grayscale
images from the BSD68 dataset.

To investigate the convergence behaviour of the PnP-FB algorithm, we consider
the quantity defined at iteration n ∈ N \ {0} as

(4.4) cn = ‖xn − xn−1‖/‖x0‖,

where (xn)n∈N is the sequence generated by the PnP-FB algorithm (3.2). Note that

the quantity (cn)n∈N is known to be monotonically decreasing if the network J̃ is
firmly nonexpansive [7].

2Code publicly available at https://github.com/basp-group/xxx (upon acceptance of the paper)

https://github.com/basp-group/xxx
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Influence of the Jacobian penalization. First we study the influence of λ on the
convergence behaviour of the PnP-FB algorithm (3.2). In particular we consider
λ ∈ {5 × 10−7, 10−6, 2 × 10−6, 5 × 10−6, 10−5, 2 × 10−5, 4 × 10−5, 1.6 × 10−4, 3.2 ×
10−4, 6.4× 10−4}.

After pretraining, we train our DnCNN by considering the loss given in (3.10), in
which we set ε = 5× 10−2 and σ = 0.01. The batches are built as in the pretraining
setting. The network is trained for 100 epochs and the learning rate is divided by
10 at epoch 80. The training is performed with Algorithm 3.1 where D = 100 and
N = 4.9 × 104. For Adam’s parameters, we set the learning rate to 10−4 and the
remaining parameters to the default values provided in [34].

To verify that our training loss enables the firm nonexpansiveness of our NN J̃ ,
we evaluate the norm of the Jacobian ‖∇∇∇Q(y`)‖ on a set of noisy images (y`)16`668,
obtained from the BSD68 test set considering the denoising problem (3.5). The max-
imum of these values is given in Table 1 for the different considered values of λ. We
observe that the norm of the Jacobian decreases as λ increases and is smaller than 1
for λ > 10−5.

We now investigate the convergence behaviour of the PnP-FB algorithm, de-
pending on λ, considering BSD10 (a subset of BSD68). In our simulations, we set
γ = 1/µ = 1. In Figure 5 we show the values (cn)16n61000 for 1000 iterations, consid-
ering kernel (a) from Figure 3 for the different values of λ. The case λ = 0 corresponds
to training a DnCNN without the Jacobian regularization. We observe that the sta-
bility of the PnP-FB algorithm greatly improves as λ increases: for λ > 10−5, all
curves are monotonically decreasing. These observations are in line with the metrics
from Table 1 showing that ‖∇∇∇Q(y`)‖ 6 1 for λ > 10−5.

These results confirm that by choosing an appropriate value of λ, one can ensure
Q to be 1-Lipschitz, i.e. J̃ to be firmly nonexpansive, and consequently we secure the
convergence of the PnP-FB algorithm (3.2).

λ 0 5×10−7 1×10−6 2×10−6 5×10−6 1×10−5 4×10−5 1.6×10−4 3.2×10−4

‖∇∇∇Q‖2 31.36 1.65 1.349 1.156 1.028 0.9799 0.9449 0.9440 0.9401

Table 1: Numerical evaluation of the firm nonexpansiveness J̃ on a denoising problem on
the BSD68 test set for different values of λ.

Influence of the stepsize and training noise level. Second, we investigate the influ-
ence (σ, γ) on the reconstruction quality of the images restored with the PnP-FB algo-

rithm. We train the NN J̃ given in Figure 4 for σ ∈ {0.005, 0.006, 0.007, 0.008, 0.009,
0.01}. As per the procedure followed in the study of the parameter λ, after pretrain-

ing, we train J̃ by considering the loss given in (3.10), in which we set ε = 5× 10−2.
The value of λ was fine-tuned around 10−5. The batches are built as in the pretraining
setting. The network is trained for 100 epochs and the learning rate is divided by
10 at epoch 80. The training is performed with Algorithm 3.1 where D = 100 and
N = 4.9 × 104. For Adam’s parameters, we set the learning rate to 10−4 and the
remaining parameters to the default values provided in [34]. We subsequently plug

the trained DnCNN J̃ in the PnP-FB algorithm (3.2), considering different values
for γ ∈ [0, 2[. In these simulations, we focus on the case when the blur kernel in
Problem (4.1) corresponds to the one shown in Figure 3(a).

Before discussing the simulation results, we present a heuristic argument suggest-
ing that (i) σ should scale linearly with γ, and (ii) the appropriate scaling coefficient
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Fig. 5: Influence of λ ∈ {0, 5× 10−7, 10−6, 2× 10−6, 5× 10−6, 10−5, 4× 10−5, 1.6× 10−4} on
the stability of the PnP-FB algorithm for the deblurring problem with kernel in Figure 3(a).
(a)-(h): On each graph, evolution of the quantity cn defined in (4.4) for each image of the
BSD10 test set, for a value of λ, along the iterations of the PnP-FB algorithm (3.2).

is given as 2ν‖h‖. Given the choice of the data-fidelity term (3.4), the PnP-FB algo-
rithm (3.2) reads

(∀n ∈ N) xn+1 = J̃
(
xn − γH∗(Hxn −Hx− e)

)
.(4.5)

We know that, under suitable conditions, the sequence (xn)n∈N generated by (4.5)
converges to a fixed point x̂, solution to the variational inclusion problem (3.3). We
assume that x̂ lies close to x up to a random residual e′ = H(x̂−x), whose components
are uncorrelated and with equal standard deviation, typically expected to be bounded
from above by the standard deviation ν of the components of the original noise e.
Around convergence, (4.5) therefore reads as

x̂ = J̃ (x̂− γH∗ (e′ − e)) ,(4.6)

suggesting that, J̃ is acting as a denoiser of x̂ for an effective noise −γH∗(e′ − e).
If the components of e′ − e are uncorrelated, the standard deviation of this noise
is bounded by γνeff, with νeff = 2ν‖h‖, a value reached when e′ = −e. This linear
function of γ with scaling coefficient νeff thus provides a strong heuristic for the choice
of the standard deviation σ of the training noise. For the considered kernel (shown
in Figure 3(a)), we have νeff = 0.0045, so the interval σ ∈ [0.005, 0.01] also reads
σ ∈ [1.1 νeff, 2.2 νeff].

In Figure 6 we provide the average PSNR (left) and SSIM (right) values associ-
ated with the solutions to the deblurring problem for the considered simulations as a
function of σ/γνeff. For each sub-figure, the different curves correspond to different
values of γ. We observe that, whichever the values of γ, the reconstruction quality is
sharply peaked around values of σ/γνeff consistently around 1, thus supporting our
heuristic argument. We also observe that the peak value increases with γ. We recall
that, according to the conditions imposed on γ in Proposition 3.1 to guarantee the-
oretically the convergence of the sequence generated by PnP-FB algorithm, one has
γ < 2. The values γ = 1.99 and σ/γνeff = 1 (resp. γ = 1.99 and σ/γνeff = 0.9) gives
the best results for the PSNR (resp. SSIM).
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Fig. 6: Influence of γ ∈]0, 1.99] and σ ∈ [0.005, 0.01] on the reconstruction quality for the
deblurring problem with kernel from Figure 3(a) on the BSD10 test set. For this experiment
νeff = 0.0045. Left: average PSNR, right: average SSIM.

In Figure 7 we provide visual results for an image from the BSD10 test set, to the
deblurring problem for different values of γ and σ. The original unknown image x and
the observed blurred noisy image are displayed in Figure 7(a) and (g), respectively.
On the top row, we set σ = 2νeff, while the value of γ varies from 1 to 1.99. We observe
that the reconstruction quality improves when γ increases, bringing the ratio σ/γνeff

closer to unity. Precisely, in addition to the PSNR and SSIM values increasing with γ,
we can see that the reconstructed image progressively loses its oversmoothed aspect,
showing more details. The best reconstruction for this row is given in Figure 7(f),
for γ = 1.99. On the bottom row, we set γ = 1 and vary σ from 1.3 νeff to 2.2 νeff.
We see that sharper details appear in the reconstructed image when σ decreases,
again bringing the ratio σ/γνeff closer to unity. The best reconstructions for this
row are given in Figure 7(h) and (i), corresponding to the cases σ = 1.3 νeff and
σ = 1.6 νeff, respectively. Overall, as we have already noticed, the best reconstruction
is obtained for γ = 1.99 and σ/γνeff = 1, for which the associated image is displayed
in Figure 7(f). These results further support both our analysis of Figure 6 and our
heuristic argument for a linear scaling of σ with γ, with scaling coefficient closely
driven by the value νeff.

4.3. Comparison with other PnP methods. In this section we investigate
the behaviour of the PnP-FB algorithm (3.2) with J̃ corresponding either to the
proposed DnCNN provided in Figure 4, or to other denoisers. In this section, we aim
to solve problem (4.1), considering either grayscale or color images.

Grayscale images. We consider the deblurring problem (4.1) with H associated
with the kernels from Figure 3(a)-(h), ν = 0.01, evaluated on the BSD10 test set.

We choose the parameters of our method to be the ones leading to the best PSNR
values in Figure 6, i.e. σ = 0.009 and γ = 1.99 corresponding to σ/γνeff = 1 for the
kernel (a) of Figure 3, and we set λ = 4× 10−6.

We compare our method with other PnP-FB algorithms, where the denoiser cor-
responds either to RealSN [52], BM3D [41], DnCNN [66], or standard proximity op-
erators [24, 46]. In our simulations, we consider the proximal operators of the two
following functions: (i) the `1-norm composed with a sparsifying operator consisting
in the concatenation of the first eight Daubechies (db) wavelet bases [13, 42], and
(ii) the total variation (TV) norm [51]. In both cases, the regularization parameters
are fine-tuned on the Set12 dataset [66] to maximize the reconstruction quality. Note
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(a) Groundtruth
(b) γ = 1.0
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(d) γ = 1.4
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(e) γ = 1.8

(26.91, 0.7767)
(f) γ = 1.99
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(g) Observation
(20.48, 0.3871)

(h) σ/νeff = 1.3
(26.41, 0.7697)

(i) σ/νeff = 1.6
(26.55, 0.7510)

(j) σ/νeff = 1.8
(26.25, 0.7318)

(k) σ/νeff = 2.0
(25.79, 0.7056)

(l) σ/νeff = 2.2
(25.33, 0.6840)

Fig. 7: Reconstructions of an image from the BSD10 test set obtained with the PnP-FB
algorithm (3.2) for the deblurring problem with kernel from Figure 3(a) for which νeff =
0.0045. Top row: results for γ ∈ [1, 1.99] in algorithm (3.2) and σ/νeff = 2 (i.e. σ =
0.009). Bottom row: results for σ/νeff ∈ [1.3, 2.2] during training in (3.10) and γ = 1 in
algorithm (3.2).
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Fig. 8: Convergence profile of the PnP-FB algorithm (3.2) for different denoisers plugged

in as J̃ , namely BM3D (a), RealSN (b) and the proposed firmly nonexpansive DnCNN (c).
Results are shown for the deblurring problem (4.1) with kernel from Figure 3(a). Each graph
shows the evolution of cn defined in (4.4) for each image of the BSD10 test set.

that the training process for RealSN has been adapted for the problem of interest.
We first check the convergence of the PnP-FB algorithm considering the above-

mentioned different denoisers. We study the quantity (cn)n∈N defined in (4.4), con-
sidering the inverse problem (4.1) with kernel in Figure 3(a). Figure 8 shows the cn
values with respect to the iterations n ∈ {1, . . . , 1000} of the PnP-FB algorithm for

various denoisers J̃ : BM3D (Figure 8(a)), RealSN (Figure 8(b)), and the proposed
firmly nonexpansive DnCNN (Figure 8(c)). On the one hand, we notice that the
PnP-FB algorithm with BM3D or RealSN does not converge since (cn)n∈N does not
tend to zero, which confirms that neither BM3D nor RealSN are firmly nonexpansive.
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denoiser
kernel (see Figure 3)

convergence
(a) (b) (c) (d) (e) (f) (g) (h)

Observation 23.36 22.93 23.43 19.49 23.84 19.85 20.75 20.67
RealSN [52] 26.24 26.25 26.34 25.89 25.08 25.84 24.81 23.92 X

proxµ`1‖Ψ
†·‖1 29.44 29.20 29.31 28.87 30.90 30.81 29.40 29.06 X

proxµTV‖·‖TV
29.70 29.35 29.43 29.15 30.67 30.62 29.61 29.23 X

DnCNN [66] 29.82 29.24 29.26 28.88 30.84 30.95 29.54 29.17 7
BM3D [41] 30.05 29.53 29.93 29.10 31.08 30.78 29.56 29.41 7
Proposed 30.91 30.47 30.46 30.24 31.72 31.75 30.60 30.23 X

Table 2: Average PSNR values obtained by different denoisers plugged in the PnP-FB algo-
rithm (3.2), to solve the deblurring problem (4.1) with kernels of Figure 3(a)-(h) considering
the BSD10 test set. The last row provides the average SSIM values for the observed blurred
image y in each experimental setting. Each algorithm is stopped after a fixed number of
iterations equal to 1000. The best PSNR values are indicated in bold.

On the other hand, as expected, PnP-FB with our network, which has been trained
to be firmly nonexpansive, shows a convergent behaviour with monotonic decrease of
cn.

In Table 2 we provide a quantitative analysis of the restoration quality obtained
on the BSD10 dataset with the different denoisers. Although DnCNN and BM3D
do not benefit from any convergence guarantees, we report the SNR values obtained
after 1000 iterations. For all the eight considered kernels, the best PSNR values are
delivered by the proposed firmly nonexpansive DnCNN.

In Figure 9 we show visual results and associated PSNR and SSIM values ob-
tained with the different methods on the deblurring problem (4.1) with kernel from
Figure 3(a). We notice that despite good PSNR and SSIM values, the proximal meth-
ods yield reconstructions with strong visual artifacts (wavelet artifacts in Figure 9(c)
and cartoon effects in Figure 9(d)). PnP-FB with BM3D provides a smoother image
with more appealing visual results, yet some grid-like artifacts appear in some places
(see e.g. red boxed zoom in Figure 9(e)). RealSN introduces ripple and dotted arti-
facts, while DnCNN introduces geometrical artifacts, neither of those corresponding
to features in the target image. For this image, we can observe that our method
provides better visual results as well as higher PSNR and SSIM values than other
methods.

The results presented in this section show that the introduction of the Jacobian
regularizer in the training loss (3.10) not only allows to build convergent PnP-FB
methods, but also improves the reconstruction quality over both FB algorithms in-
volving standard proximity operators, and existing PnP-FB approaches.

Color images. We now apply our strategy to a color image deblurring problem of
the form (4.1), where the noise level and blurring operator are chosen to reproduce
the experimental settings of [8], focusing on the four following experiments: First, the
Motion A (M. A) setup with blur kernel (h) from Figure 3 and ν = 0.01; second, the
Motion B (M. B) setup with blur kernel (c) from Figure 3 and ν = 0.01; third, the
Gaussian A (G. A) setup with kernel (i) from Figure 3 and ν = 0.008; finally, the
Square (S.) setup with kernel (j) from Figure 3 ν = 0.01. The experiments in this
section are run on the Flickr30 dataset and on the test set from BSD5003. We compare
our method on these problems with the variational method VAR from [8], and three

3As in [8], we consider 256× 256 centered-crop versions of the datasets.
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(a) Groundtruth
(b) Observation
(20.48, 0.387)

(c) proxµ‖Ψ†·‖1
(26.13, 0.775)

(d) proxµ‖·‖TV

(26.57, 0.787)

(e) BM3D
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(f) RealSN
(24.68, 0.726)

(g) DnCNN
(26.12, 0.643)
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Fig. 9: Reconstructions of an image from the BSD10 test set obtained with the PnP-FB
algorithm (3.2), considering different denoisers as J̃ , for the deblurring problem with kernel
from Figure 3(a) and ν = 0.01. Associated (PSNR, SSIM) values are indicated below each
image, best values are highlighted in bold. Each algorithm is stopped after a fixed number
of iteration equal to 1000.

PnP algorithms, namely PDHG [44], and the PnP-FB algorithm combined with the
BM3D or DnCNN denoisers. It is worth mentioning that, among the above mentioned
methods, only the proposed approach and VAR have convergence guaranties. The
results for PDHG and VAR are borrowed from [8].

For the proposed method, we choose γ = 1.99 in the PnP-FB algorithm (3.2),

and we keep the same DnCNN architecture for J̃ given in Figure 4, only changing
the number of input/output channels to C = 3. We first pretrain our network as
described in subsection 4.1. We then keep on training it considering the loss given
in (3.10), in which we set ε = 5× 10−2, λ = 10−5, and σ = 0.007.

The average PSNR and SSIM values obtained with the different considered re-
construction methods, and for the different experimental settings, are reported in
Figure 10. This figure shows that our method significantly improves reconstruction
quality over the other considered PnP methods.

Visual comparisons are provided in Figure 11 for the different approaches. These
results show that our method also yields better visual results. The reconstructed im-
ages contain finer details and do not show the oversmoothed appearance of PnP-FB
with DnCNN or slightly blurred aspect of PnP-FB with BM3D. Note, in particular,
that thanks to its convergence, the proposed method shows an homogeneous perfor-
mance over all images, unlike PnP-FB with DnCNN that may show some divergence
effects (see the boat picture for Motion A, row (f)). One can observe that the im-
provement obtained with our approach are more noticeable on settings M. A and M.
B than on G. A and S.
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Fig. 10: Average PSNR and SSIM values obtained on the Flickr30 (top) and BSD500
(bottom) test sets using the experimental setups of [8]: G. A, M. A, M. B, and S., for
different methods.

5. Conclusion. In this paper, we investigated the interplay between PnP al-
gorithms and monotone operator theory, in order to propose a sound mathematical
framework yielding both convergence guarantees and a good reconstruction quality in
the context of computational imaging.

First, we established a universal approximation theorem for a wide range of
MMOs, in particular the new class of stationary MMOs we have introduced. This the-
orem constitutes the theoretical backbone of our work by proving that the resolvents
of these MMOs can be approximated by building nonexpansive NNs. Leveraging this
result, we proposed to learn MMOs in a supervised manner for PnP algorithms. A
main advantage of this approach is that it allows us to characterize their limit as a
solution to a variational inclusion problem.

Second, we proposed a novel training loss to learn the resolvent of an MMO for
high dimensional data, by imposing mild conditions on the underlying NN architec-
ture. This loss uses information of the Jacobian of the NN, and can be optimized
efficiently using existing training strategies. Finally, we demonstrated that the re-
sulting PnP algorithms grounded on the FB scheme have good convergence proper-
ties. We showcased our method on an image deblurring problem and showed that
the proposed PnP-FB algorithm outperforms both standard variational methods and
state-of-the-art PnP algorithms.

Note that the ability of approximating resolvents as we did would be applicable
to a much wider class of iterative algorithms than the forward-backward splitting
[22]. In addition, we could consider a wider scope of applications than the restoration
problems addressed in this work.
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Fig. 11: Visual results on Flickr30 (first two columns) and BSD500 (last three columns)
datasets for different methods (VAR, PDHG, PnP-FB with BM3D, PnP-FB with DnCNN
and ours) for different deblurring problems with ν = 0.01. Associated (PSNR, SSIM) values
are indicated below each image, best values are highlighted in bold. Except PDHG, each
algorithm is stopped after 1000 iterations.
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