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Optimal multi-model control for nonlinear systems with parametric
uncertainties - Diesel Engine case study*

Mihaela-Ancuta Mone' Sette Diop? Dumitru Popescu

Abstract— The paper proposes a novel solution to control the
combustion regime of Diesel engines in order to obtain NOx
reduction and to minimize fuel consumption. The nonlinear
dynamic model associated to a Diesel platform equipped with
an EGR and VGT is estimated. The linearized and reduced
state model structure has been approximated. The optimal
control procedure for the air flow in the intake manifold of the
cylinders and the pressure inside the combustion chamber of the
Diesel engine is proposed. A multi-model control for nonlinear
systems with parametric uncertainties solution is developed.
Our procedure is implying the minimization of the multi-model
structure by reducing the identification effort of the number of
models and associated controllers. The simulation results will be
implemented and validated on the experimental Diesel engine.

I. INTRODUCTION

The Diesel engine is widely embarked on vans, tractors,
tube, motorcycles, underwater and ships. The majority of
vehicles are powered by Diesel. A 200 years old invention
became the most important engine of the 2Ist century.
Throughout the years, many analyses have been performed
as to whether the utilization of Diesel engines is dangerous
for the human health or not in terms of pollution. As to
reduce the negative impact of the Diesel engines on human's
health and environment pollution, we want to obtain the NOx
reduction and the reduction of the consumed fuel by these
engines [1].

Section II presents the mathematical models associated
to the dynamic the experimental Diesel engine. The data
was obtained on the experimental platform located at the
University Picardie in Amiens, France [3]. The engine is
equipped with an exhaust gas recirculation system and a
variable geometry turbocharger. The models presented here
are as follows: state-space model with linear parameter-
varying, invariant model, reduced invariant model. Given the
difficulties to access the parameters of the invariant model,
the system has been decoupled and we have considered the
direct transfer from the most two important inputs of the
system to the outputs. Therefore, section II-D presents the
input/output engine models, for which state-space minimal
realizations are presented in II-E. For the latter, LQR control
law is discussed in section III.
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Section IV includes a robustness analysis regarding the
parametric uncertainties of the models concerning the LQR
control. The structural deviations of the command have
been obtained so that the closed-loop system remains stable.
Three operating points have been proposed on the non-linear
characteristic so that the commutation mechanism of the
multi-model control is improved.

The results obtained in simulation and the corresponding
analysis results are listed in section V.

II. ENGINE’S DYNAMIC MODELS
A. State-space model with linear parameter-varying

Starting from the following linear parameter-varying
model:

{ #(t) = A(p(t)(t) + B(p(t))u(t) "
y(t) = Cp(t))(t) + D(p(t))u(?)

where the non-linear matrices A, B, C and D depend on p(t),
an unknown exogenous time-varying parameter, we want to
acquire a reduced order model, but whose approximation is
to be counteracted by the control laws designed later.

The mathematical model of the engine is obtained working
on the general gas equation:

pV =vRT 2)

where v is the amount of substance present in a tube of
volume V', pressure p and the temperature 7'. R is the ideal
gas constant (R = 8.314%).

We apply the time derivative on equation (2) and write one
differential equation for the intake and one for the exhaust.

We obtain the dynamic of the system:

RT; T,
)i = Wei + Fie) + 7 pi 3
i = (Wei + Fie) + 7.7 3)
RT, T,
.x - Fic F _F:m'_Fa: T 4
Pr = (Fic + Fy t) + 7.7 ©)
. 1
P. = ;(—PC +P) 5)

where p; is the intake manifold pressure, p, is the ex-
haust manifold pressure, (5) is the dynamic of the tur-
bocharger'given by the power transfer delayed by 7.

By considering the temperatures in the intake manifold
and exhaust manifold at a constant value, the effect of the
variables Ti, ng, p; and p, is not important, and we obtain
the first approximation of the non-linear model (3) - (5).

Using the flow rate formula, we have determined the EGR
flow rate(i.e. F,;) and the VGT flow rate (i.e. F,;). The
variation of the air flow inside the intake manifold to the
cylinders (i.e. Fj.) was determined based on the speed -
density equation.



We consider the parameters of the flow inside the VGT (i.e.
F,+) at a constant value, and also the temperatures inside the
intake and exhaust manifolds, 7; and T, respectively. There-
fore, we can say that (3) — (5) have constant parameters [2].
This new model approximation does not affect the engine's
dynamics at low and medium engine speed even though, in
reality, these parameters vary based on the operating point.

B. Invariant model

The following state-space model, i.e. the invariant model,
is obtained based on (3) — (5):

. A,
bi Di T
p:ac =Alp. | +B ]\17}
PC PC
Wi (©)
i Ar
Di P N
C Wf

The inputs are represented by the position of the VGT valve,
A,., the position of the EGR valve, z,, the engine speed, IV,
and the fuel flow, W;. The outputs are the mass air flow,
Wi, and the manifold absolute pressure, p;. The states are
given by p;, p, and Po. The matrices A, B, C and D
have corresponding dimensions, and D is the null matrix.
Therefore, we have a three-order model.

C. Reduced invariant model

We considered the following approximation in order to
reduce the model given by (6), meaning following two inputs
were redefined as below:

(7

A, = A, +8.9%107°[m?]
Ty =T, + 0.5

The values of the fuel flow Wy and the engine speed N are
considered constant.

Reducing the number of inputs from four to two, the
following state-space representation has been obtained:

;

Di Di

. A,
Pz =A|pe +B<m >
P. P, v

, 2
<Wéz> _c|op.
pZ Pc
where each element of the matrices A, B and C are identified
using (3) — (9).

\

D. Input/Output Models

It is difficult to access the parameters of the invariant
model, therefore we decouple the system (6) and consider the
direct transfer from the EGR to p; and VGT to W, respec-
tively. Through model identification, using the recursive least
squares method on the data acquired on the experimental
Diesel platform, we obtain the input/output models of the
two systems.

1) Multi-models associated to the EGR-p; transfer: The
discrete transfer function from A, to the pressure p; is:

280.82% — 102.92% — 273.62 — 99.22 9
=8 20712 4 16172 - 03458 )

The choice of operating points has been made based on
the non-linear characteristic of the EGR valve. Therefore,
the operating domain has been split into three ranges, corre-
sponding to the movement of the EGR valve: 20-40%, 40-
60% and 60-80% opening.

Therefore, we have the following three dynamic models:

_ 280.823 — 102.92% — 273.62 — 99.22

HdA.,-fpi (Z)

H . —
a4, -p:(2) 23 — 9227122 + 1.6172 — 0.3458
(10)
2102% — 56.822 — 198.452 — 77.28
H, 4 . (2) = 11
a4, —pi (2) 23 — 227122 + 1.6172 — 0.3458 (b
178.52% — 12.722 — 102.337 — 24.44
HdBA'r'_pi <Z> =

23 —2.2712% + 1.617z — 0.3458
(12)

2) Multi-models associated to the VGT-W; transfer: The
discrete transfer function from x, to the air mass flow W;
is:

0.037113 — 0.078522

23 — 227122 4 1.617z — 0.3458
0.09375z + 0.02185

* 23 — 227122 4 1.617z — 0.3458

The choice of operating points has been made based on
the non-linear characteristic of the VGT valve. Therefore,
the operating domain has been split into three ranges, corre-
sponding to the movement of the VGT valve: 0-40%, 40-60%
and 60-100% opening.

Therefore, we have the following three liniarized dynamic
models:

Haz,-w,.(2) = 03

0.0371123 — 0.078522

23 — 227122 4 1.617z — 0.3458
0.09375z + 0.02185

+ 23 —2.27122 +1.6172 — 0.3458
(14)

HdMlxv _WLL (Z) =

0.028992% — 0.06222>

23 — 227122 +1.617z — 0.3458
0.08945z + 0.01765

23 —2.2712% + 1.617z — 0.3458
(15)

Hairye,—w.; (2) =

0.0248923 — 0.055822

23 — 227122 4 1.617z — 0.3458
0.08012z + 0.01247

+ 23 — 227122 +1.617z — 0.3458
(16)

E. State-space minimal realization

If we apply z-transform to the discrete-time LTI state space
model given by (1) and assume that the initial condition of
the system xp = 0, we obtain the next connection between
the input and the output of the system:

Y (2) = H(z)U(2) (17)



The transfer function H of the system is given by:
H(z) =C(:I-A)"'B+D (18)

For a SISO transfer function of a LTI system with by
normalized to 1,

H(z) =

an equivalent state-space representation is given by the
matrices (A, B, C, D) whose elements are:

biz" "+ 4 by
AL S agz”—l + -+ Ap 41

(19)

_—az —as —Qn —Gn+1_
1 0 0
A = 1 0
| 0 0 1 0 i
1 (20)
0
B =|.
0
C == _bl b2 bnfl bn]
D = [0]

Therefore, for each I/O model presented in II-D we can
obtain the corresponding state-space minimal realization.

III. LINEAR-QUADRATIC REGULATOR

The solution of the LQR control law is the command
matrix Krqr so that the command:

u = —KLQRJ?

KLQR — RleTP (21)
minimizes the quadratic cost function:
J= / (27Qx + u' Ru)dt (22)
t=0

P from (21) is the solution of the continuous time Riccati
differential equation:

AP +PA-PBR 'B"P+ Q=0 (23)

Hence, for the three models corresponding to the three
operating points described in II-D, we obtain a corresponding
command matrix that ensures the closed-loop stability of the
two systems.

IV. MULTI-MODEL CONTROL

The multi-model control structure for the three operating
points can be observed in Fig. 1 (adapted from [4]), where
r is the set-point, M; represent the models for different
operating points 7;. P is the process to be controlled, C;
represent the controllers, u; represent the commands, y is
the process output, y; represent the models output, e; is the
model error, SWITCH is the commutation law, ¢ = 1..3.

In order to improve the commutation between the control
algorithms, we propose a robustness analysis of the LQR
command designed in III. In [5] is presented an approach
towards non-structural parametric uncertainties bounded by
norm.

For the state-space models presented in (6) and (8), we
consider the following uncertainty model:

i(t) = (A + AA®)z(t) + B+ AB(®)u(t)  (24)

where AA (¢) and AB(t) represent the parametric uncertain-
ties that affect the matrices A and B, respectively.
There is defined the uncertainty domain, D;:

Di= {AA(t),AB()|
AAT(H)AA(t) < 7.Qo, AB(#) < vRo}

where Qg and Ry are symmetric positive definite matrices
and v, and +, are positive scalars.

The problem of interest is to find the maximum value of
the scalars 7, and ~; so that the closed-loop system in (24)-
(25) is stable given the control law (21)-(23) developed for
the nominal system.

Q and R are defined as follows:

Q=Qo+Q
R=Ry+ Ry

(25)

(26)
(27)

[5] provides the theorem according to which the closed-
loop uncertain system (24)-(25) with the control law (21)-
(23) is stable within the domain [ which satisfies:

M= a+w)I<T (28)

where

I'=P Qi+ K[prRiKror)P ™' (29)

is a symmetric positive definite matrix. The control law is
developed on the nominal system using the standard LQ
criteria. The uncertainties are taken into account through
the control matrices (26) and (27). The theorem gives the
possible upper bound of the uncertainties that are rendering
unstable the closed-loop system.

Our procedure is implying the minimization of the multi-
model structure by reducing the identification effort of the
number of models and associated controllers. By enlarging
the domain of uncertainties, we obtain the reduction of
(model, controller) pairs in the proposed structure [14].

In other words, we have to determine the maximum values
of AA and AB so that the closed-loop system in (24)-(25)
is stable given the LQR control law (21)-(23) developed for
the nominal system.

V. SIMULATION RESULTS
The results presented in this section correspond to the
reduced invariant model discussed in II-C.
A. Input/Output models simulation

Using the Matlab environment, the following minimal
state-space realizations were obtained.
Therefore, for the transfer function in (9), we obtained:

[2.271 —1.617 0.3458
A, = 1 0 0
| 0 1 0
1
Bpi = O (30)
0

C,, =[p348 —727.7 —2.119]
D, =0



For the transfer function in (13), we obtained:

[2.271 —1.617 0.3458
Ay, =1 1 0 0
0 1 0
1
Buw. = |0 (31)
0
Cw,, =[0.0058 0.0337 0.0347]

Dy.. = [0]

For each transfer function in (10)—(12) and (14)—(16),
respectively, the following minimal realizations were com-
puted:

[2.271 —1.617 0.3458
Ay, = 1 0 0
0 1 0
1
B, - |0 (32)
0
Cip, = (5348 —T27.7 —2.119]
D, = [0]
[2.271 —1.617 0.3458
Ay, = 1 0 0
0 1 0
1
Bop, =0 G
0
Cap, = [420.11 —538.02 —4.662]
D2pi = O]
[2.271 —1.617 0.3458
A;,, = 1 0 0
| 0 1 0
1
Bap, =10 GY
0
Csp, = [392.6735 —390.9645 37.2853]
Ds,, = [0]
[2.271 —1.617 0.3458
A, =11 0 0
0 1 0
1
Buv. = |0 (35)
0
Ciw,, = [0.005777 0.03374 0.03468]
Diw., = _U]
[2.271 —1.617 0.3458
Aoy, = 1 0 0
0 1 0
1
Bow. = |0 (36)
0

Caw,, = |0.0036363 0.04257 0.02768]
D2W - _O:I

[2.271 —1.617 0.3458
Az, =1 1 0 0
0 1 0
1
Baw. = |0 (37)
0

Caw,, = [0.0007252 0.039873 0.021077]

Dsw,, = [0]

The step response of (30) can be observed in Fig. 2 and
the step response of (31) can be observed in Fig. 3.

For the multi-model approach, the state-space minimal
realizations step response of (10)—(12) are plotted in Fig. 4.

In the case of the multi-model approach, the state-space
minimal realizations step response of (14)—(16) can be ob-
served in Fig. 5.

B. Optimal control

The step response for the closed-loop systems can be
observed in Fig. 6.

VI. CONCLUSIONS AND PERSPECTIVES

The paper presents the dynamic of an experimental Diesel
engine. Minimal realizations for the linearized input/output
transfer functions for both EGR and VGT were proposed.

A LQR control procedure controls the air flow inside the
VGT and the pressure inside the EGR, both systems being
present on the experimental platform. A robustness analysis
for the LQR command has been performed.

A multi-model structure is proposed and for the LQ control
law the upper bound of the non-structural uncertainties are
computed so that the closed-loop system remains stable. The
commutation problem between the models is addressed using
the previous mentioned approach regarding the non-structural
uncertainties bounded by norm. Therefore, three operating
points have been proposed on the non-linear characteristic
and the commutation of the command has been improved.

The stability of the closed-loop system with structural
uncertainties can be addressed as further research.
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