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1. Summary 
 
Due to the increasing trend of using renewable energy, the development of an energy storage system (ESS) 
attracts great research interest. A zinc-air battery (ZAB) is a promising ESS due to its high capacity, low cost and 
high potential to support circular economy principles. However, despite ZABs technological advancements, a 
generic dynamic model for a ZAB, which is a key component for effective battery management and monitoring, 
is still lacking. ZABs show nonlinear behaviour where the steady state gain is strongly dependent on operating 
conditions. The present study aims to develop a dynamic model, being capable of predicting the nonlinear 
dynamic behaviour of a refuellable ZAB, using a linear parameter varying (LPV) technique. The LPV model is 
constructed from a family of linear time-invariant (LTI) models, where the discharge current level is used as a 
scheduling parameter. The developed LPV model is benchmarked against linear and nonlinear model 
counterparts. Herein, the LPV model performs remarkably well in capturing the nonlinear behaviour of a ZAB. 
It significantly outperforms the linear model. Overall, the LPV approach provides a systematic way to construct 
a robust dynamic model which well represents the nonlinear behaviour of a ZAB. 
 

2. Introduction 
 
Renewable energy has great potential to sustain global energy security. Nevertheless, renewable energy is very 
intermittent and highly erratic, resulting in fluctuation in energy production. An ESS can stabilize such 
fluctuation and effectively support energy management and integration. Recently, ESS has become an 
immensely focused topic in energy research. An ESS can enhance the efficiency and stability of various energy 
systems [1, 2]. 

Of the various types of ESS, ZABs prove to be the most promising, providing excellent specific capacity. 
ZAB technology has made substantial research progress and is approaching commercialization [3-5]. ZABs 
utilize the electrochemical reaction between zinc (Zn) and oxygen (O2) to store and release electricity. ZABs 
characteristically have high energy density but low power. It is reported that ZABs are able to deliver peak 
power density up to 430 mW/cm2 and energy density up to 837 Wh/kg [6]. These values have already exceeded 
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the specific energy of commercialized lithium ion batteries (LIBs) many times. Moreover, Zn is abundant on 
earth; therefore, its cost is quite low [7-9]. In addition, Zn is safe, environmentally friendly, and highly stable. 
Zinc oxide (ZnO), which is the discharge product, can be easily recycled. O2, supplied from atmospheric air, is 
also quasi-free and virtually unlimited. Thus, ZABs present great potential and feasibility in providing a decent 
ESS on a large scale. 

Generally, a ZAB consists of two electrodes: a Zn electrode (negative electrode) and an air electrode 
(positive electrode). The most common electrolyte for a ZAB is an aqueous alkaline electrolyte such as potassium 
hydroxide (KOH) solution. As regards discharging, Zn serves as an electron donor at the negative electrode. Zn 
reacts with hydroxide ions (OH-) producing zincate ions (Zn(OH)4

2-) and electrons (e-). Zincate ions remain in 
the electrolyte and can precipitate to form ZnO. At the positive electrode, O2 from the ambient air acts as an 
electron acceptor. Oxygen reduction reaction (ORR) proceeds and provides OH- as the product. The overall 
reaction of a ZAB is the redox reaction of Zn and O2, thereby producing ZnO. The overall reactions that occur 
in the battery are described as follows [10, 11]: 

Negative Electrode:  Zn + 4OH-	↔ Zn(OH)4
2- + 2e-  

Zn(OH)4
2-	↔ ZnO + 2OH-+ H2O 

Positive Electrode:   1
2

O2 + H2O + 2e-	↔	2OH- 

Overall Reaction:  Zn + 1
2

O2	↔ ZnO  

The theoretical open circuit voltage (OCV) is approximately 1.65 V [10] which can be calculated from 
the following equation:  

 E0,cell= #E0,air+
RT
!!F

ln [O2]0.5

[OH-]2$ -%E0,Zn+ RT
!!F

ln
$Zn(OH)4

2-%
[OH-]4 &    (1) 

where E0,cell is the standard cell potential or theoretical OCV,  E0,air is the standard electrode potential of the air 

electrode (corresponding to ORR) which is 0.401 V vs standard hydrogen electrode (SHE), E0,Zn is the standard 
electrode potential of Zn electrode (corresponding to Zn oxidation reaction) which is -1.26 V vs SHE, R is gas 
constant, T is temperature, ne is the number of electron transfers in the reaction, F is faraday constant. This 
equation uses the concentration of the reactants to calculate the standard cell potential. 

However, the practical OCV obtained from laboratory prototypes is about 1.4 V [12-14]. Charging can 
be done in a rechargeable ZAB by applying a potential higher than the theoretical OCV. When charging, the 
reactions proceed backwards and regenerate Zn and O2. 

The development of a ZAB encompasses many aspects [15-18]. In the past decade, the focus has been 
on improving the performance and stability of the battery such as development of ORR catalyst or battery 
electrolyte. It is noted that the performance of a ZAB has been improved by optimizing  battery parameters [19]. 
The development of battery operation i.e. pulse-current charging has also been investigated. Pulse-current 
charging is a technique developed to prevent the growth of dendritic zinc when charging the battery [20-22]. 
While most research concentrates on the improvement of material and battery design, management and 
monitoring tools for a ZAB have received less attention and clearly represent an incomplete field of study. 
Management systems can improve the performance of batteries and protect batteries from inappropriate 
operations [23, 24]. For instance, when ZABs are charged with excessive voltage, both the detrimental dendritic 
formation as well as hydrogen evolution reaction (HER) occur. Management systems require precise prediction 
of dynamic behavior and state of the battery, which is typically achieved via modeling. Some types of modeling 
have been used in ZAB researches. As such, theoretical continuum models have been carried out and used to 
examine phenomena occurring inside the battery [20, 25, 26].  



 

 

The dynamic behavior of a battery focuses on the discharge current and voltage of the battery, which is 
considered as being the input and output of the system. Thus, empirical modeling has regularly been preferred, 
due to its simplicity in computation. For example, an equivalent circuit model (ECM) is the most commonly 
used empirical model in the investigation of battery dynamics. An ECM describes the dynamic behavior of the 
battery via simple electrical elements that are comparable to the electrochemical characteristics of the battery 
[27]. This type of model has been used in various batteries, such as LIBs [28-30], Zn-Ni batteries [31, 32] or lead-
acid batteries [33]. However, only a few works on a ZAB have utilized ECM to predict battery behavior [34], 
although electrochemical impedance spectroscopy (EIS) has frequently been applied. For a more empirical 
approach, a state space model has been developed. This model is normally used with both state and parameter 
estimation algorithms [27]. 

Although the dynamic behavior of a ZAB is strongly nonlinear, previous studies have centered on the 
development of empirical linear models. Nonlinear behavior can be realized by invoking first principles-based 
models or nonlinear empirical modeling techniques. However, it is acknowledged that nonlinear models are 
less flexible than comparable linear models and the mathematical tools are lacking for nonlinear systems. 
Alternatively, nonlinear behavior can be captured via an LPV model, which approximates a nonlinear system 
with high accuracy [35, 36]. 

LPV models have been applied in various systems, but only a few works have employed this technique 
in a battery system [37-39]. For instance, a subspace method has been introduced for the identification of an LPV 
battery model for LIBs, where state of charge (SOC) estimation was done using LPV techniques [37, 38]. Results 
indicated that this technique provides good and stable performance and is easy to tune compared with other 
algorithms. In another example, LPV modeling has been used to assist in monitoring the state of health (SOH) 
for a LIB cell [39]. This model combined with a nonlinear Kalman filter proved capable of online estimating SOC 
and SOH. The model was validated via measurement data and provided good validation results. 

Herein, an LPV model is developed to account for all nonlinearities within a ZAB directly. Nonlinear 
ZAB characteristics, therefore, are empirically exhibited in the form of change in parameters of the underlying 
LTI models, with respect to a reference condition. The LPV model is seen to combine the varying parameters 
into a single model. Besides, it proved capable of effectively predicting battery nonlinear behavior over a wide 
range of conditions. Furthermore, the LPV model adopted the linear characteristic of the LTI model. Hence, it 
possessed considerable robustness. 

This work proposes to use LPV models for predicting the input-output discharge behavior of a ZAB. Data 
employed in this scheme were obtained from an in-house refuellable ZAB [40]. The underlying linear models 
obtained at different conditions are then combined into a single LPV model, where the discharge current level 
is used as a scheduling parameter. As regards validation, the developed LPV model is used to predict various 
sets of response data. A nonlinear model was further implemented to compare results between the nonlinear 
and LPV model. 
 

3. Battery description and experimental data  
 
Battery response data previously published by Lao-atiman et al.[40] have been implemented for parameter 
estimation and model validation. As shown in Fig. 1, such data were acquired from a tubular refuellable ZAB, 
designed in-house. The cylindrical structure of the cell was made of stainless-steel mesh. The active material for 
the anode was 6 g of 20 mesh Zn pellets packed into another stainless-steel mesh tube. The cathode current 
collector was comprised of nickel (Ni) foam coated with ORR catalyst (MnO2) and a gas diffusion layer. The cell 
contained 8 M KOH aqueous solution as the electrolyte.  

After battery fabrication, both the discharge current and voltage of the battery were measured by BA500 
battery analyzer (Battery Metric, Toronto, ON, Canada). Sampling time was 1 second. Then, the discharge 



 

 

current setpoint was set. Subsequently, the battery was forced to discharge in accordance with the setpoint. 
Next, both the actual discharge current and voltage were measured and recorded along with the selected 
sampling time. The set of data used for model identification contained a time-series of discharge current (as 
input) and discharge voltage (as output). The discharge voltage was measured at the specified discharge 
current. Step response data, including the discharging current steps from 0 to 100 mA, 0 to 450 mA, and 0 to 900 
mA, were used to identify linear models. With respect to validation, response data with increased variability 
and complexity were examined. All data used in this work, including data names and descriptions, are 
summarized in Table 1. Graphical representation for each data set can be found in Figs. S1-S10 in the 
supplementary file. 

 
 

4. Methodology 
 

The LPV model is a collection of LTI state-space models whose parameters vary, as a function of scheduling 
parameters. In the case of a ZAB, discharge current is considered to be the scheduling variable, which is 
available for measurement. More importantly, the discharge current is the signal which directly enables 
modifications of a ZAB’s dynamic behavior to occur. 

In terms of methodology, this approach follows a classical operation mode: namely, a certain number 
of points in the scheduling space were selected. Thus, an LTI model was constructed and assigned to each point, 
representing the dynamics in the local vicinity of that point. The dynamics at scheduling locations in between 
the specified grid points were acquired by interpolation of LTI models at neighboring points. 

In addition, a nonlinear model was constructed to benchmark the LPV model in terms of precision and 
complexity of the prediction. 

 

4.1 Linear state-space model 
 

The LPV model uses local LTI models: the choice being made here is to represent these models in a discrete 
domain, taking into account that available data is inherently obtained on a discrete timescale after sampling. 
Trajectories of a state vector (X) and output vector (Y) are commonly measured and tracked as they move 
through time. The LTI model, at each local operation point, is expressed as in Eqs. (2) and (3): 

X(k+1) = AX(k) + Bu(k)   (2) 

 Y(k) = CX(k) + Du(k)      (3) 

where u is an input vector. As for a single-input, single-output case: 

A ∈ ℝ!×!, B ∈ ℝ!×', C ∈ ℝ'×! and D ∈ ℝ 
A, B, C and D matrices are estimated from the experimental data (Y(k), u(k)) via least square regression. 

In this case, the input and output of the experimental data are discharge current and cell voltage, 
respectively. For convenience of computation, Y represents the deviation of cell voltage from the OCV (potential 
loss). Then, u represents the discharge current. This change of coordinate ensures that both Y and u is expressed 
in the absence of excitation and have a fixed point at 0, according to the LTI model, as shown in Eqs. (2) and (3). 
 

4.2 LPV model 
 



 

 

As regards the LPV model, system dynamics are represented as a linear state space model having parameters 

expressed in terms of functions of ) scheduling variables [41]. The case of a single-input, single-output system 
is denoted as follows: 

*:ℝ( → ℝ!×!, .:ℝ( → ℝ!×', /: ℝ( → ℝ'×!	and	0:ℝ( → ℝ 
The LPV model is a generalization of the LTI structure, building on the principles that dynamic 

properties vary with respect to the functioning conditions (represented by exogenous or internal signals) or 
parameters. Explicitly, model parameters are a function of the scheduling vector of parameters p which in turn 
is time-varying: 

 A = A(p(k)), B = B(p(k)), C = C(p(k)) and D = D(p(k))    (4) 

Accordingly, the state space model becomes: 

 X(k+1) = A(p(k))X(k) + B(p(k))u(k)     (5) 

 Y(k) = C(p(k))X(k) + D(p(k))u(k)     
 (6) 

For simplicity of notation, in time, the time dependence of the parameter will be dropped. With respect 
to ZAB modeling, given the fact that the experiments are conducted at constant external temperature, it is 
therefore assumed that the parameters are concentrated in the discharge current.  

An important remark related to the particular single-input single-output form is that parametric 
dependence in both B and C has a certain degree of redundancy, as long as it relates to the input-output gain in 
Eqs. (2) and (3) and can lead to non-unicity problems. To solve this issue and simplify Eqs. (5) and (6), the 
coefficients of the matrix C are assumed to be time-independent and considered constant through an 
appropriate change of coordinate leading to the form, as shown in Eqs. (7) and (8): 

 1(k+1) = A(p)X(k) + B(p)u(k)     
 (7) 

 Y(k) = CX(k) + D(p)u(k)      (8) 

The state space model becomes more useful as the number of parameters are reduced. This form of 
model can also be interpreted as first-order resistor-capacitor (RC) model, as illustrated in Fig. 2. 

In the circuit, there is a resistor–capacitor (RC) loop (RC and CP) connected with another resistor (R0). In 
a comparison between the state space model and the equivalent circuit, it was found that the input, u, is 
equivalent to the discharge current (Icell). Output, Y, is equivalent to VRCR which is potential loss of battery. The 
state variable, X, can be interpreted as the potential drop across the RC loop (VRC). Parameter A is equivalent to 
1-Ts/RCCP. Parameters B and D are Ts/CP and R0, respectively. Parameter C equals to 1 which agrees with the 
assumption previously made. The state space model can be rewritten as ECM, as follows: 

 4)*(k+1) = (1- +"
)#*$

)4)*(k) + +"*$ 6,-..(k)     (9) 

 4)*)(k) = 4)*(k) + 7/6,-..(k)      (10) 

For physical interpretation, ECM is normally used for investigating battery behavior via EIS. Herein, 
the RC loop contributed to potential loss due to the electrochemical reactions: so-called activation overpotential. 
This overpotential is the potential required to drive the reactions viz. Zn oxidation and ORR for discharging the 
ZAB. Several researches have suggested that the overpotential strongly depends on the discharge current level 
and can be theoretically described by the Butler-Volmer approach [15, 25, 42]. Next, R0 contributed to the 
potential loss to internal resistance: so-called ohmic overpotential. This loss increases proportionally with the 
current drawn from the battery. 



 

 

As regards battery modeling, scheduling parameters can be chosen from various parameters. In this 
work, input-output behavior depends on the level of discharge current. Therefore, the sets of parameters used 
for constructing the LPV model were obtained from the data having different discharge current conditions. 

As regards model parameters, the correlation between the model parameters (coefficients of the 
matrices in Eqs. (7) and (8)) and discharge current was estimated via such forms as quadratic polynomial or 
exponential function: 

Quadratic Polynomial:  ξ = μ180+μ2 p +μ3      (11) 

Two-term Exponential: ξ= 9:12 + ;:32      (12) 

where ξ denotes the estimated parameter. μ1, μ2 and μ3 are the parameters acquired from the curve fitting. α, β, 
γ and δ are the coefficients of the exponential function obtained from the curve fitting. 

The parameters of the linear model from the previous section were used to build the correlations with 
respect to after-stepping current levels, as scheduling parameters. From the experimental data, the conditions 
of current levels used for constructing the correlations were 0, 100, 450, and 900 mA. The correlations of 
parameters A, B and C were estimated by a second-order polynomial function. For parameter C, a linear 
function was used. An exponential function was used to fit the correlation of parameter BC. Correlations for 
parameters of the LPV model are provided in Table S4 of the supplementary file. 

 
4.3 Nonlinear model 

 
The nonlinear model used for comparison in this work was Hammerstein-Wiener (HW) model. The HW model 
is a block-oriented model which contains nonlinear functions and a linear block separately [43, 44]. As shown 
in Fig. 3, the HW model is depicted as a series of three connected blocks. 

The first and last blocks are nonlinear functions which transform the input and output signals, 
respectively. The second block located between the two nonlinear blocks is the linear block. The first nonlinear 
block is called “Hammerstein block” and is represented by function f, as shown in Eq. (13). This nonlinear block 
transforms the input signal before entering the linear block: 

 w(k) = f [u(k)]       (13) 

where u(k) and w(k) are the input and output of nonlinear block f, respectively. 
The next block is the linear block and is denoted by B/F. The linear block is derived from an output-

error (OE) model and transfers input w(k) to output x(k), as in Eq. (14): 

 <(k) = (B/F)w(k-nk)      (14) 

where nk is an input delay. B and F are polynomials in a linear output-error model with respect to the delay 
operator z-1 and defined, as follows in Eqs. (15) and (16): 

B(z) = b1 + b2z-1 + … + bnbz-nb+1 for B order = nb     (15) 

F(=) = 1 + f1z-1 + … + fnfz-nf  for F order = nf     (16) 

The last nonlinear block h is called “Wiener block”. This block transforms the output signal of the linear 
block, as in Eq. (17): 

 y(k) = h[x(k)]       (17) 

where y(k) is the output of the nonlinear block h and the output of HW model. 
The output of the HW model y(k) can be rewritten as a function of u(k), as in Eq. (18): 



 

 

 y(k) = h[(B/F)f[u(k)]]      (18) 

For this study, only the Hammerstein nonlinear block was used. The HW model, therefore, is reduced 
to Hammerstein model. 

In contrast with the linear model, the nonlinear models were identified from the data with multiple 
steps under varying conditions. In Table 2, model identification data for all developed models are tabulated. 

 

5. Results and Discussion 
 

In Table S2 of the supplementary file, the LTI model parameters are shown. From these LTI models, the LPV 
model was developed. The correlations of the model parameters were constructed via curve fitting. The 
nonlinear models were identified from the multiple step and various step data [40]. A third-order polynomial 
function was selected for the Hammerstein block. The model order of the OE model was nb = 2, nf = 1 and nk = 
0. In Table 2, the identifying conditions are summarized. In addition, parameter values estimated in this work 
are provided in Table S3 of the supplementary file. 
 In the following sections, the graphical highlights of validation and comparison results are displayed. 
Full graphical results of the linear model and the LPV model are shown in Figs. S11 and S12 of the 
supplementary file, respectively. In Table S5 of the supplementary file, the fit percentage values of the prediction 
results are tabulated. 

 

5.1 Linear state-space model 
 

The linear models were identified as first-order state space models. The number of states (n) was 1. Model 
parameters were estimated using one set of experimental data. To validate the models, different sets of 
experimental data were applied. In Fig. 4, validation results for the linear models are shown. Fig. 4a shows the 
validation results with the same conditions (current steps) as used in the estimation (0 to 100 mA). Results 
demonstrate that the models were able to accurately predict individual response data.  

Fig. 4b highlights the results when the models were validated at different conditions (different current 
steps). It was found that the models could predict accurately only the data used to identify the models’ 
parameters. The models poorly estimated other data. The gain of the models significantly deviated. Results 
suggested that the linear model was only accurate locally. 

Fig. 4c provides an example by displaying a comparison between model predictions and measured data 
in the context of multiple step current discharges. Results clarified the dependency between gain and current 
level. Thus, from the results shown, the linear models were able to accurately predict the responses if the current 
level corresponded with the models. Nevertheless, most of the battery data contain more than one current level. 
Consequently, the linear model cannot be applied in most cases. In this situation, the LPV model proved to offer 
the level of flexibility necessary for adapting to the LTI responses. 

 

5.2 LPV model  
 

As previously stated, the LPV model was developed from linear state space models. Consequently, the models 
with different current level conditions were combined into one model. For this model, the conditions of current 
level included: 0 mA, 100 mA, 450 mA and 900 mA. Each condition, with respect to the final current level, 
provided a different set of model parameters. For instance, the state space model estimated from the current 
step of 0 to 100 mA provided the values of model parameters at the 100 mA current level. At each current level, 
three data sets of the same condition were used. For validation, the LPV model was then used to predict the 
various response data. 



 

 

As shown in Fig. 5, correlations between model parameters and current levels were fitted in accordance 
with Eqs. (5) and (6). In Figs. 5a and 5b, the correlation of model parameters A and D was able to be fitted using 
a second-order polynomial function as well as a linear function, respectively. Parameters A and D showed 
consistent trends with respect to current levels. However, parameters B and C were found to be inconsistent in 
their trends. Moreover, the values of B and C contained both positive and negative values which can cause 
discrepancy in prediction. To address this issue, C was fixed at C=1, whilst B and C were multiplied together, 
resulting in the parameter BC which proved to be more consistent, as described in Eqs. (7) and (8). Accordingly, 
the LPV model becomes: 

 1(k+1) = A(p)X(k) + BC(p)u(k)     (19) 

 Y(k) = X(k) + D(p)u(k)      (20) 

The trend of parameter BC exhibited good consistency and was able to be fitted via a two-term 
exponential function, as shown in Fig. 5c. For physical interpretation, Eqs. (19) and (20) are equivalent to the 
ECM as expressed in Eqs. (9) and (10). Parameter D was expressed as a linear function having a small slope. 
This indicated that the discharge current level had little effect on R0. Parameters A and BC were fitted with a 
polynomial and exponential function, respectively. As the RC loop represented the activation loss, these 
correlations agreed with the nonlinear trend of the activation loss. 

As regards validation, the developed LPV model was used to predict the same response data as used 
previously in section 5.1. A comparison of the fit percentage between various model predictions is shown in 
Fig. 6. As for the single step responses (0T100A and 0T900A), results demonstrated good agreement between 
measured data and predicted data. Compared with the linear model, however, the LPV model proved to be 
slightly less accurate due to the error in correlation fitting. Yet, the LPV model performed much better globally 
because the models used for constructing this LPV model were estimated from data measured directly. In 
addition to the LPV model, two nonlinear models, nonlinear A and nonlinear B (Table 2), were identified and 
compared for response prediction. Results showed that the LPV model performed better than the nonlinear 
models in this case. The nonlinear models, identified from the data, were seen to have high complexity. Thereby, 
the models were found to be less robust (especially nonlinear model B). 

As regards multiple step responses (MULTI), prediction results of the multiple step responses are 
displayed in Fig. 7a. Results highlighted the benefit of the LPV model revealing that the LPV model was able to 
predict multiple step responses with acceptable agreement. In comparison with the linear model, the LPV model 
confirmed improvement in prediction. In addition, when the current level changed, the LPV model was able to 
predict cell voltage more accurately than the linear model. The gain of the LPV model prediction was able to 
adapt to current level change. The LPV model proved to be comparable with that of the nonlinear model 
identified from the matching data (nonlinear A). However, the nonlinear model identified from the other 
condition (nonlinear B) indicated less accurate prediction. 

For validation purposes, the LPV model was tested further, using the different sets of data that had not 
been used for estimation of the coefficients in the underlying LTI models. The measured data with the repeating 
step currents: 400 to 500 mA (400T500R) and 500 to 1000 mA (500T1000R) were used for validation. A 
comparison of the fit percentages found that all the proposed models including the LPV model and nonlinear 
models were less accurate than the other data sets in predicting the responses. As shown in Fig. S12, the response 
comparison revealed two limitations of the LPV model: the effect of SOC and the input range of the underlying 
LTI models.  

Regarding the effect of SOC, the error of prediction increased as time passed because cell voltage is also 
a function of SOC [14]. As the battery discharged over time, cell voltage dropped because of the decrease in 
SOC. However, in this model, the effect of SOC on cell voltage was not considered. Another limitation shown 
is regarding the input range of the underlying LTI model. For instance, the upper bound of the current level of 



 

 

the underlying LTI models was 900 mA. For the current level higher than 900 mA, the correlation of the model 
parameters was found to be incorrect; less accurate values were obtained from extrapolation. Thus, this 
indicated that the LPV model was not precise in predicting conditions which are out of the input range of the 
underlying LTI models. 

In Fig. 7b, prediction results of the various step responses (VARIOUS) are displayed, verifying the 
models against more complicated data. Limitation of the model appeared the same as in a previous test where 
cell voltage is dependent on SOC. Nonetheless, the LPV model exhibited superior performance when compared 
with the linear model and its performance was comparable to that of the nonlinear model. This result revealed 
the feasibility of using the LPV model. The LPV approach sets out to prove its significance as a modelling tool 
for the nonlinear behaviour of a ZAB. Herein, the discharge current level is demonstrated as the effective 
scheduling parameter for predicting the nonlinear behaviour of a ZAB. For some large-scale refuellable ZABs, 
the influence of SOC is less concerned. Hence, the management system having only discharge current 
scheduling might be viable over a wide range of operations. To improve the LPV model, the model may have 
to be developed further by including other scheduling parameters such as SOC or temperature. Moreover, it 
might be feasible to study the LPV model in a rechargeable ZAB, as the charging process of this battery also 
adopts the nonlinear characteristic. 

 

6. Conclusion 
 
In this work, an LPV model was developed to predict the nonlinear dynamic behavior of a ZAB. LTI models 
were used as the basis to construct the LPV model. The experimental data acquired from an in-house designed 
tubular refuellable ZAB were used for identification purposes and validation. By comparing model accuracy 
based on normalized root mean square error, results showed that the linear model, identified at each local point, 
was able to predict the behavior of a ZAB but only at the local vicinity of that point. However, it was unable to 
capture the nonlinear behavior of the ZAB where the gain intensely varied with the discharge current levels. In 
contrast, the LPV model could well predict battery response. Further, the LPV model was found to be more 
robust than two other nonlinear models. The LPV model sets out to prove its worth as a dynamic modeling 
approach for a ZAB. 
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Abbreviations 

ECM Equivalent circuit model 
EIS Electrochemical impedance spectroscopy 
ESS Energy storage system 
HW Hammerstein-Wiener 
LPV Linear parameter varying 
LTI Linear time-invariant 

OCV Open circuit voltage 
OE Output-error 
RC Resistor-capacitor 

SHE Standard hydrogen electrode 
SOC State of charge 
SOH State of health 
ZAB Zinc-air battery 

 
Nomenclature 

A State matrix in state space model 
B Input matrix in state space model 

BC Combined parameter between parameters B and C 
B/F Linear block in HW model 
B(z) Numerator polynomial function of linear block in HW model 
bnb Polynomial coefficient of B(z) 
C Output matrix in state space model 
CP Capacitance in RC loop, F 
D Feedthrough matrix in state space model 

E0,air Standard electrode potential of air electrode, 0.401 V vs SHE 
E0,cell Standard cell potential or theoretical OCV, V 
E0,zn Standard electrode potential of Zn electrode, -1.26 V vs SHE 

F Faraday constant, 96485.3329 A·s / mol 
F(z) Denominator polynomial function of linear block in HW model 

f Input nonlinear block 
fnf Polynomial coefficient of F(z) 
h Output nonlinear block 

Icell Discharge current, A 
k Discrete time, sec 
n Number of states = 1 
nb Order of B(z) polynomial 
ne Number of electron transfer in the reaction 
nf Order of F(z) polynomial 
nk Input delay of linear block in HW model 
p Scheduling parameter 
R Gas constant, 8.3145 J / mol·K 
RC Resistance in RC loop, Ω 
R0 Ohmic resistance, Ω 
T Temperature, K 
T4 Sampling time, s 
u Input vector of state space model and HW model 

VOC Open circuit potential, V 
VRC Potential loss, V 
VRCR Potential drop across RC loop, V 

w Input of linear block in HW model 
X State vector in state space model 
x Output of linear block in HW model 
Y Output vector of state space model 
y Output of HW model 
z Delay operator in output-error model 
α Coefficient of two-term exponential function 



 

 

β Coefficient of two-term exponential function 
γ Coefficient of two-term exponential function 
δ Coefficient of two-term exponential function 
μ Coefficient of third-order polynomial function 
ξ Model parameter estimated from correlations 

 
Tables 

Table 1. Summary of experimental data used for identification and validation of models 

Data name Description Description 

0T100 Current step from 0 to 100 mA StepDischarge.xlsx [40] 
Sheet: 100STEP0-100-0 

100T0 Current step from 100 to 0 mA StepDischarge.xlsx [40] 
Sheet: 100STEP0-100-0 

0T450 Current step from 0 to 450 mA StepDischarge.xlsx [40] 
Sheet: 450STEP0-450-0 

450T0 Current step from 450 to 0 mA StepDischarge.xlsx [40] 
Sheet: 450STEP0-450-0 

0T900 Current step from 0 to 900 mA StepDischarge.xlsx [40] 
Sheet: 900STEP0-900-0 

900T0 Current step from 900 to 0 mA StepDischarge.xlsx [40] 
Sheet: 900STEP0-900-0 

400T500R Repeating current step between 
400 to 500 mA 

StepDischarge.xlsx [40] 
Sheet: 100STEP400-500 

500T1000R Repeating current step between 
500 to 1000 mA 

StepDischarge.xlsx [40] 
Sheet: 500STEP500-1000 

MULTI Multiple current step from 0 to 
100, 450 and 900 mA 

Supplementary.xlsx1 
Sheet: MULTI 

VARIOUS Various current step with 
random pattern 

Supplementary.xlsx1 
Sheet: VARIOUS 

1The data are located in the supplementary file. 
  



 

 

Table 2. Summary of conditions for identification of the model used in this work 

Model name Model type Identification data1 Identifying condition 
SS0T100A Linear model 0T100A 

First-order model with feedthrough 
and 1 sec sampling time 
Number of states (n) = 1 

SS0T100B Linear model 0T100B 
SS0T100C Linear model 0T100C 
SS100T0A Linear model 100T0A 
SS100T0B Linear model 100T0B 
SS100T0C Linear model 100T0C 
SS0T450A Linear model 0T450A 
SS0T450B Linear model 0T450B 
SS0T450C Linear model 0T450C 
SS450T0A Linear model 450T0A 
SS450T0B Linear model 450T0B 
SS450T0C Linear model 450T0C 
SS0T900A Linear model 0T900A 
SS0T900B Linear model 0T900B 
SS0T900C Linear model 0T900C 
SS900T0A Linear model 900T0A 
SS900T0B Linear model 900T0B 
SS900T0C Linear model 900T0C 

LPV LPV model 

Linear models:  
SS0T100A, SS0T100B, 
SS0T100C, SS100T0A, 
SS100T0B, SS100T0C, 
SS0T450A, SS0T450B, 
SS0T450C, SS450T0A, 
SS450T0B, SS450T0C, 
SS0T900A, SS0T900B, 
SS0T900C, SS900T0A, 
SS900T0B, SS900T0C 

Curve fitting: 
A: second-order polynomial 
B: second-order polynomial 
C: second-order polynomial 

D: linear function 
BC: two-term exponential 

Nonlinear A Nonlinear HW 
model MULTI 

Input nonlinearity: third-order 
polynomial 

Output nonlinearity: unit gain 
(absent) 

OE model order: nb = 2, nf = 1, nk = 0 

Nonlinear B Nonlinear HW 
model VARIOUS 

Input nonlinearity: third-order 
polynomial 

Output nonlinearity: unit gain 
(absent) 

OE model order: nb = 2, nf = 1, nk = 0 
1 The data location is tabulated in Table S1 in supplementary file. 

 
  



 

 

Figures 
 

 
Figure 1. Schematic diagram of experimental ZAB  

 

 

Figure 2. Electrical equivalent circuit diagram of potential loss of battery: first-order RC model 

 

 

Figure 3. Block diagram of Hammerstein-Wiener model 

 
 



 

 

 
 

 
Figure 4. Comparison of response between measured data (blue lines) and predicted data from linear models: a) 
Matching conditions with current step from 0 to 100 mA b) Different conditions with current step from 0 to 100 
mA and c) Multiple current steps from 0 to 100, 450 and 900 mA 

 

  



 

 

  

 

Figure 5. Correlations of state space model parameters as functions of current levels: a) Parameter A b) Parameter 
D and c) Parameter BC 

  





 

 

Figure and table captions 
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Figure 1. Schematic diagram of experimental ZAB  
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Figure 4. Comparison of response between measured data (blue lines) and predicted data from linear models: 
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100 mA and c) Multiple current steps from 0 to 100, 450 and 900 mA 
Figure 5. Correlations of state space model parameters as functions of current levels: a) Parameter A b) 
Parameter D and c) Parameter BC 
Figure 6. Comparison of fit percentage of model prediction between various models and data. Fit % indicates 

how well the model prediction fits the estimation data and expressed as: 100 !1- !y-y"!
!y-mean(y)!". 

Figure 7. Comparison of response between measured data (dark blue lines), predicted data from linear model 
(red line), LPV model (green line) and nonlinear models: a) Multiple current steps from 0 to 100, 450 and 900 
mA and b) Various current steps 




