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Abstract. Observation problems in control systems literature generally
refer to problems of estimation of state variables (or identification of
model parameters) from two sources of information: dynamic models of
systems consisting in first order differential equations relating all system
quantities, and online measurements of some of these quantities. For
nonlinear systems the classical approach stems from the work of R. E.
Kalman on the distinguishability of state space points given the knowl-
edge of time histories of the output and input. In the differential algebraic
approach observability is rather viewed as the ability to recover trajec-
tories. This approach turns out to be a particularly suitable language to
describe observability and related questions as structural properties of
control systems. The present paper is an update on the latter approach
initiated in the late eighties and early nineties by J. F. Pommaret, M.
Fliess, S. T. Glad and the author.

Keywords: Control observation problems; State estimation; Differen-
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1 Introduction

Observation problems in control systems literature generally refer to problems
of estimation of state variables x from two sources of information: online mea-
surements of external variables u and y, and first order dynamic models{

ẋ = f(t, u, x) ,
y = h(t, u, x) ,

(1)

relating x to u and y. See for instance [1, 2].
By using tools from differential algebraic geometry

– dynamic models are allowed to be implicit and of arbitrary order but re-
stricted to be polynomial in variables and their derivatives,

– and may be considered more general situations of estimating one subset of
system variables with respect to another subset of the system variables.
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Specifically, given a dynamic system described by algebraic differential equations{
Pi(w, z, ζ) = 0 (i = 1, 2, · · · ) ,

Q(w, z, ζ) 6= 0 ,
(2)

one observation problem consists of the online estimation of z(t) ∈ Rν from the
knowledge of the Pi’s and Q and time histories ([t0, t] 3 τ 7−→ w(τ) ∈ Rµ) of
w. Here the Pi’s and Q are differential polynomials in w, z and ζ, and ν, µ are
natural integers. This problem is under investigation since the pioneering work
of R. E. Kalman in the late fifties addressing its linear context. A complete non-
linear answer is still lacking. A general approach consists of a two part theory:
one of observability, that is, derivation of conditions on the Pi’s and Q guaran-
teeing the ability to some how estimate z from the supposedly known data, and
the other part of the theory, the observer design, searches algorithms for such
an estimation of z.

Though central the previous observation problem (observability and observer
design) is not the only one. For instance, closely related to it, are two problems
of robustness with respect to model and measurements uncertainties. Another
observation problem with important practical application consists of determining
subsets w of systems variables which make a given subset z observable.

Starting from the mid eighties (see [3–6]) differential algebra and differential
algebraic decision methods have been shown to provide a quite consistent lan-
guage to describe some of these observation problems along with some of their
solutions.

An account of this is proposed here. Some of the many open problems will
be described.

Reviewers of the present paper suggested appending to it materials of dif-
ferential algebra which are invoked throughout. Such an account has been done
already in [6] and would double the space of the present paper. These are the
reasons why we prefer referring the reader to the appendix of [6] instead of dupli-
cating here those materials of differential algebra, differential algebraic geometry
and and differential algebraic decision methods.

2 The differential algebraic approach

A thorough introduction to the differential algebraic approach is available in [6].
For the sake of completeness the following definition is recalled from there.

A (differential) (algebraic) system X with s variables, and with coefficients
in a differential field k is a proper differential quasi-affine variety X ⊆ k

s
defined

over k where k is a differential closure of k. In observation problems, the sys-
tem variable is partitioned into the data, or observations, w = w1, . . . , wµ, the
variable being observed (or estimated) z = z1, . . . , zn and the remaining vari-
ables, ζ. In the classical observation problem, the data consist exclusively of (u,
y), the control u and the measurements y. When the variable ζ is present, the
projection Xw,z of X along the variable ζ is considered. It is the set of elements

(w, z) ∈ k
µ × k

n
such that there is at least ζ such that (w, z, ζ) ∈ X .
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In terms of equations, previously defined systems are those described by{
Pi(w, z, ζ) = 0 , i = 1, 2, . . . ,
Q(w, z, ζ) 6= 0 ,

(3)

where the Pi’s and Q are finitely many polynomials in w, z, ζ and their deriva-
tives.

For a system X the variable z is said to be (algebraically) observable with
respect to w if the projection map π : Xw,z → Xw (sending every trajectory
(w, z) of Xw,z onto the corresponding observation w) is generically finite. If z
is observable with respect to w then the degree of π is called the observability
degree of z with respect to w, and is denoted by d◦wz. The variable z is said to be
rationally observable with respect to w if it is observable with respect to w with
observability degree one. State systems of the form (1) are said to be observable
if x is observable with respect to (u, y).

It was first proved in [5] (see [6] for more details) that the previous definition
has a differential algebraic translation, namely: z is observable with respect to
w iff z is algebraic over k〈w〉, that is, for each component, zi of z there is a
polynomial equation

Hi (zi, w, ẇ, . . .) = 0 (4)

in zi, and finitely many time derivatives of the data w, with coefficients in k.

The reader is referred to [6] more details on differential algebraic geometry
terms or notations used here without explanations.

3 How does it compare to the classical theory?

Formal definitions of observability can be found in [1, 2] for instance.

For linear state systems {
ẋ = F x+Gu ,
y = H x+ E u ,

(5)

the answer to the question is that algebraically observability of x with respect
to (u, y) is equivalent to the classical Kalman definition of observability of sys-
tem (5). The proof of this is as follows.

As is well known system (5) is observable in the classical sense iff rkRO(F,H) =
n, where n is the number of components of the state, x, and where

O(F,H) =


H
H F

...
H Fn−1

 .
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Now the following equalities

H x = y − E u = z0 ,
H F x = ż0 −H Gu = z1 ,
H F 2 x = ż1 −H F Gu = z2 ,

...
H Fn−1 x = żn−2 −H Fn−2Gu = zn−1 ,

(6)

result from the equations of system (5). The reader will notice that they are
written such that only supposedly differentiable quantities are differentiated.
They may be rewritten as

O(F,H) x =


z0
z1
z2
...

zn−1

 . (7)

Therefore if system (5) is observable in the classical sense then it is so in the
algebraic sense. The converse follows from Corollary 1 below.

The equivalence between the algebraic and the classical definitions of ob-
servability for the class of systems (5) was first mentioned in § 5.1.2 of [7] but
without a complete proof.

It is worth emphasizing the fact that the algebraic definition of systems
applies without any change to so-called implicit or descriptor linear systems{

M ẋ = F x+Gu ,
y = H x+ E u ,

where the matrix M is singular. Compare to [8] and references therein.
The largest class of systems where algebraic and classical observability may

be compared is the class of rational state systems
ẋi =

pi(u, x)

qi(u, x)
(1 ≤ i ≤ n) ,

yj =
fj(u, x)

gi(u, x)
(1 ≤ j ≤ p) ,

(8)

where u stands for u1, u2, . . . , um, and pi, qi, fi and gi are differential polynomials
of order zero in x with coefficients in k = R, the algebraic observability (of x with
respect to (u, y)) is equivalent to the generic local observability of the system as
defined in [1]. This was first obtained in [9].

4 Partial answers to some observation problems

Among all benefits of the differential algebraic approach to observation problems,
application of decision methods is perhaps the most appealing.
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4.1 Computing

One of the most used estimation algorithms, the Kalman filter (or its extended
form), is often applied in practice without prior asserting the validity of its
conditions. The reason of this is that there is no systematic method for such a
verification.

The differential algebraic theory of observability is constructive in principle.
Most of the decision methods which may be used are already described in [6].

This is the case for general polynomial systems

Pi(w, z, ζ) = 0 , i = 1, 2, . . . (9)

with constant coefficients. For rational state systems (8) the observability test
is formally similar to the Jacobian rank condition which is found in [1].

For polynomial state systems with nonconstant coefficients let k be an ordi-
nary differential field (not necessarily of constants). Let X be{

ẋi = fi(u, x) (1 ≤ i ≤ n) ,

yj = hj(u, x) (1 ≤ j ≤ p) ,
(10)

where the fi’s and hj ’s are (nondifferential) polynomials in their arguments with
coefficients in k. Let

Pi(U,X, Y ) = X
(1)
i − fi(U,X) (1 ≤ i ≤ n);

Pn+j(U,X, Y ) = hj(U,X)− Yj (1 ≤ j ≤ p)

be the differential polynomials defining X . Let σ : k {U, Y } → k {u, y} be the
substitution map which sends U to u and Y to y, where k {u, y} is the dif-
ferential k-subalgebra of k {u, x, y} generated over k by u and y. Let P be in
k {U,X, Y } and Pσ denote the element of k {u, y} {X} obtained by regarding P
as a differential polynomial in X with coefficients in k {U, Y } and by applying
σ to each of these coefficients, and let I (X )

σ
stand for the differential ideal of

k {u, y} {X} consisting of Pσ (P ∈ I (X )). The ideal of definition, a, of k〈u, y〉(x)

over k〈u, y〉 is equal to I (X )
σ⋂

k〈u, y〉
[
(Xi)1≤i≤n

]
. Note that the set A consist-

ing of the Pi (1 ≤ i ≤ n) form an autoreduced set with respect to any ranking of
k {U,X, Y } such that U, Y and their derivatives all are lower than X.

Let us now inductively define some polynomials which will turn out to be

generators of the ideal I (X )
σ⋂

k〈u, y〉
[
(Xi)1≤i≤n

]
of k〈u, y〉

[
(Xi)1≤i≤n

]
.

Starting with

Qi(U,X, Y ) = Pn+i(U,X, Y ) (1 ≤ i ≤ p),

then let Qp+i be the remainder of the derivative of Qi (1 ≤ j ≤ n) with respect
to the previously mentioned autoreduced set, A. The polynomial Qp+i is merely

the derivative of Qi in which X
(1)
j is eliminated by substituting Pj + fj for

X
(1)
j (1 ≤ j ≤ n) (The linear combination of Pj (1 ≤ j ≤ n) which appears
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reduces to zero when the remainder is taken, so that it can be ignored.) Explicitly,
Qp+i is as follows

Qp+i =
∑

1≤j≤m

∂Qi
∂Uj

U
(1)
j +

∑
1≤j≤n

∂Qi
∂Xj

fj − Y (1)
i

+ Qi • (1 ≤ i ≤ p) ,

where the notations
P• ≡ P(1) , P(2) , . . . (11)

for a differential polynomial P stand for the differential polynomials obtained
by replacing the coefficients of P by their respective derivatives respectively at
order 1, 2, etc.

Note that this formula is nothing but a counterpart of Lie derivatives: Au-
thors usually consider the functions hj as free of u and the functions fi and hj
as with constant coefficients so that in the left hand side of the latter equation
the first sum as well as the last term are absent.

This construction of Qp+i from Qi is iterated in order to get Q2p+i (1 ≤ i ≤ p)
as the remainder of the derivative of Qp+i (1 ≤ i ≤ p). And so on.

By their definition,

Qσi ∈ I (X )
σ
⋂

k〈u, y〉
[
(Xj)1≤j≤n

]
(i ∈ N) .

Conversely, let P

P ∈ I (X )
σ
⋂

k〈u, y〉
[
(Xj)1≤i≤n

]
.

As an element of I (X ), P may easily be written in the form

P =
∑

1≤i≤n, j∈N

Ai,j P
(j)
i +

∑
i∈N

BiQi.

where Bi (i ∈ N) are in

I (X )
⋂

k {U, Y }
[
(Xi)1≤i≤n

]
.

Since the differential ideal of k {U,X, Y } generated by Pi (1 ≤ i ≤ n) has no

nonzero element in common with I (X )
⋂

k {U, Y }
[
(Xj)1≤i≤n

]
(this results from

an obvious degree argument), the first sum in the previous equality must be
zero.

This ends the proof that Qσi (i ∈ N) form a basis of a.

Lemma 1. A set of generators of the ideal of definition of k〈u, y〉(x) over
k〈u, y〉 is given by

Q1(u,X, y), Q2(u,X, y), . . . , Qp(u,X, y),
Qp+1(u,X, y), Qp+2(u,X, y), . . . , Q2p(u,X, y),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Control observation problems 7

In addition, it comes from the Hilbert basis theorem that only finitely many Qi
suffice to generate the ideal a. That is, there is some µ in N such that the
first µ rows of the previous list of Qi(u,X, y) generate the ideal of definition of
k〈u, y〉(x) over k〈u, y〉. According to Theorem 16 of [6], the observability of X
is equivalent to the fact that the k〈u, y〉(x)-matrix

[
∂Qi
∂Xj

(u, x, y)

]
1≤i≤µ p
1≤j≤n

is of rank n.

Now it is a basic fact that the above rank is equal to the rank of the first n p
rows.

Corollary 1. If X possesses a state description as above, then X is observable
if, and only if, the following k〈u, y〉(x)-matrix

[
∂Qi
∂Xj

(u, y, x)

]
1≤i≤n p
1≤j≤n

(which is formally the counterpart of the matrix of Lie derivatives which appears
in the Hermann-Krener observability Jacobian rank condition) is of rank n.

The main difference between this rank condition and the one in [1] is that
the rank is not over k (which is usually R) but over a much bigger field (and,
here the rank condition is a necessary and sufficient condition).

For arbitrary systems, observability tests resort on decision methods such as
characteristic set of the defining differential ideal of X . See [6] for more details.
Very promising, Thomas decomposition was also proposed as decision methods
for the same tests, see [10, 11].

5 Regular observability

The notion of regular observability refers to the classical one of universal inputs
as thoroughly treated in [12]. Bad inputs (as opposed to universal ones) are
supposed to occlude the functioning of online estimation schemes when they
happened to be applied to a system. The present differential algebraic approach
has brought a new light to this notion of singularity of the observability property.
Here is an abstract of the result which may be found in [6] in more details.

Let X be a system with variables w, z, and ζ, and with coefficients in k.
It is a matter of fact that, when z is observable with respect to w then for
special observations w, π−1(w) may contain infinitely many elements, leading to
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a singularity of the generic notion of observability. Here π is the projection map
of § 2. An example of such situations is the following ẋ1 = x1x2 ,

ẋ2 = u+ x2 ,
y = x1 .

(12)

x is observable with respect to u, y since

x1 = y and x2 =
ẏ

y
.

But in practice, in any time interval where y is identically zero (or, merely,
small), the observability of x2 is singular in the sense that it is lost.

An observation w ∈ Xw is said to be singular for the observation of z with
respect to w if π−1(w) is infinite. Observations w ∈ Xw which are not singular
are called regular. The variable z is said to be regularly observable with respect
to w if there is no singular observation for its observability with respect to w.

The best result obtained in this approach reads as follows.

Theorem 1. Let X be a system with variables w, z, and ζ, and with coefficients
in k. The variable z is regularly observable with respect to w if z is primitive
over k{w}.

Recall that an element ξ of k {w, z} is said to be primitive over k {w} if it is
a zero of a polynomial

ad ξ
d + ad−1 ξ

d−1 + · · ·+ a0 = 0

such that

1. the ai’s are in k {w},
2. the perfect differential ideal {ad(w), ad−1(w), . . . , a0(w)} of k {w} is the unit

ideal.

5.1 Sensor selection

Given a dynamic system with differential field extension

k〈u, z〉

with input u and latent variable z the sensor selection problem consists of the
selection of sensors which endow the system with some properties. Among all
such desirable properties is the basic one of observability. In this section partial
answers to the following questions will be provided.

1. What is the minimal number of sensors that make the dynamics observable?
2. When the sensors are bound to measure state components, what is their

minimum number?
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3. How may the observability margin be improved by selecting the sensors?

Let y denote an arbitrary output of the system. By definition, an output, y, is
componentwise algebraic over k〈u, z〉. An output makes the dynamics observable
if

d◦k〈u,z,y〉k〈u, y〉 = 0 ,

that is, if each component of z is algebraic over k〈u, y〉. Clearly, y = z is an output
which makes the system observable. Let n denote the number of components of
z, and

I =
{
p ∈ N : ∃y1, y2, · · · , yp ∈ k (u, z) , d◦k〈u,z,y〉k〈u, y〉 = 0

}
The set I is the one of integers p such that there exists an output y with p
components which makes the system observable.

It is a nonempty (since n ∈ I) subset of N. Therefore, I contains a smallest
element which is precisely the minimal number of sensors which make the system
observable.

The sensor selection problem characterizing this minimum number, p, of sen-
sors is an open problem.

Later in this section it is shown that the minimum number of sensors is 1 for
rational state systems, providing a partial answer to Question 1 above.

Next, about Question 2, what if the output y is chosen as a subset of the
components of z, instead of vector rational function of u and z? A complete but
trivial, inelegant, and computationally costy answer consists of performing the
2n − 1 observability tests!

Up to the knowledge of the author there is no partial contribution to Question
3.

Back to Question 1, here is the surprising answer for the class of rational
state systems.

Theorem 2. Let the state of a system X be given by

ẋ = f(u, x) (13)

with a vector rational function f of input u, state x, and with coefficients in a
differential field k. Let m and n be the respective numbers of components of u
and x. Let K be a differential extension field of k. If K contains nonconstants
then there always is a scalar output

y =

n∑
i=1

αi xi (14)

with α1, α2, . . . , αn in K, which makes x observable with respect to (u, y). More-
over, for y as in (14) to make X observable it is sufficient that the associated
α’s be linearly independent over the subfield of constants of K.
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Proof. Let y[n] denote the vector

y[n] =


y
ẏ
...

y(n−1)

 .

By Corollary 1, for the output (14) to make x observable with respect to (u, y)
it is necessary, and sufficient, that the Jacobian matrix of y[n] with respect to x

∂y[n]

∂x′
=



∂y

∂x′

∂ẏ

∂x′

...

∂y(n−1)

∂x′


=



∂y

∂x1

∂y

∂x2
· · · ∂y

∂xn
∂ẏ

∂x1

∂ẏ

∂x2
· · · ∂ẏ

∂xn
...

∂y(n−1)

∂x1

∂y(n−1)

∂x2
· · · ∂y

(n−1)

∂xn



be of rank n over K〈u, y〉(x) where the complete system is considered as with
coefficients in K ⊇ k.

Now y may be written as

y = α′ x

where

α =

α1

...
αn

 .

The first row of ∂y[n]/∂x′ is merely

∂y

∂x′
= α′ .

The second row of the same matrix is

∂ẏ

∂x′
= α̇′ + α′

∂f(u, x)

∂x′
.
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Therefore,

rkk〈u,y〉(x)
∂y[n]

∂x′
= rkk〈u,y〉(x)



α′

α̇′

∂ÿ

∂x′

...

∂y(n−1)

∂x′


by substituting the linear combination

∂ẏ

∂x′
− ∂y

∂x′
∂f(u, x)

∂x′
= α̇′

over k〈u, y〉(x) of the first two rows for the second row of ∂y[n]/∂x′.
More generally, by the Leibniz formula,

y(i) = α(i)′x+

i∑
j=1

(
i

j

)
α(i−j)′x(j) ,

and by the fact that x(j) is in k〈u〉(x) for all j ≥ 1, it is clear that

rkk〈u,y〉(x)
∂y[n]

∂x′
= rkk〈u,y〉(x)


α′

α̇′

α̈′

...
α(n−1)


by an immediate induction on the row’s index of the Jacobian matrix.

Now note that the matrix

W(α) =


α′

α̇′

...
α(n−1)


is square, and of order n, and does not involve neither u nor x. Therefore it is
of rank n over K〈u, y〉(x) if, and only, its determinant is nonzero.

Next note that the determinant ofW(α) is simply a differential polynomial in
α1, α2, . . . , αn with coefficients in the field of constants of K. Then the following
theorem is used.

Theorem 3. If G is a nonzero differential polynomial in n indeterminates with
coefficients in a differential field containing nonconstant elements then G pos-
sesses a zero (z1, . . . , zn) over K.



12 Sette Diop

For a proof see [13–16] for instance.

This terminates the proof of the first assertion in the theorem.

The second assertion follows from the following. The n elements α1, α2, . . . , αn
of K are said to be linear dependent over constants if there is a nontrivial relation

c1 α1 + c2 α2 + . . .+ cn αn = 0

with constant coefficients. It is a classical result that

Theorem 4. α1, α2, . . . , αn are linearly dependent over constants if, and only
if, the Wronskian matrix W(α) is singular.

For a proof see the same references [13–16] for instance. This ends the proof of
the theorem.

6 Some of the questions without partial answers

The following is no way an exhaustive list of open problems. It is simply believed
that the reader may be inspired to contribute to their solution One of the most
challenging open question is actually of a foundation level.

6.1 A foundation problem

Observation problems are basically encountered in engineering practices where
real problems often refer to real valued parameters and variables. But as the
reader has already noticed the present differential algebraic geometry approach
has recourse to so-called differential closures of found fields. Basically such fields
are complex ones. For more details the reader may refer to section 4.1 of [6].

6.2 Robustness

Keeping in mind that engineering observation problems deal with systems which
may be inaccurately known. The most favorable lack of information is actually
that of true values of parameters or coefficients: in other words, the form and
orders and dimensions of the equations are exactly known, only actual parameter
values are uncertain.

The question is then how observability and other observation problems as-
sertions behave in the presence of parameter uncertainties?

For linear systems (5) a notion of observability margin may be defined char-
acterizing the distance of a given system to unobservable ones. This generally
uses matrix tools such as singular values.

For general systems the question is clearly related to the so-called field of
decisions methods for approximate systems as tacked in [17, 18] and many other
papers.
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6.3 Decision methods problems

Among decision methods capable of dealing with real examples such as those
one may find in biotechnology are also wanted. In this vein, there is a question
with practical importance: Given an observable variable z with respect to w,
what is the minimal order of derivatives of w involved in the observability of z
with respect to w?
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