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The notions of negative refraction and negative index, introduced by V. Veselago more than 50 years ago, have appeared beyond the frontiers of macroscopic electromagnetism and purely formal during 30 years, until the work of J. Pendry in the late 1990s. Since then, the negative index materials and the metamaterials displayed extraordinary properties and spectacular effects which have tested the domain of validity of macroscopic electromagnetism. In this article, several of these properties and phenomena are reviewed. First, mechanisms underlying the negative index and negative refraction are briefly presented. Then, it is shown that the frame of the time-harmonic Maxwell's equations cannot describe the behavior of electromagnetic waves in the situations of the perfect flat lens and corner reflector due to the presence of essential spectrum at the perfect -1 index frequency. More generally, it is shown that simple corner structures filled with frequency dispersive permittivity have a whole interval of essential spectrum associated with an analog of "black hole" phenomenon. Finally, arguments are provided to support that, in passive media, the imaginary part of the magnetic permeability can take positive and negative values. These arguments are notably based on the exact expression, for all frequency and wave vector, of the spatiallydispersive effective permittivity tensor of a multilayered structure.

Introduction

The notion of negative index of refraction has been introduced more than 50 years ago by V. Veselago [START_REF] Veselago | The Electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. The refraction at an interface separating two media with positive and negative refractive indices is subject to the usual Snell-Descartes law:

n 1 sin φ 1 = n 2 sin φ 2 .
(1)

Consequently, if the refractive indices n 1 and n 2 of the two media have opposite sign, e.g. n 1 > 0 and n 2 < 0, then the refraction angles φ 1 and φ 2 have also opposite sign, so that the ray is negatively refracted at the interface (see Fig. 1).

In macroscopic electromagnetism, media with negative refractive index can be modelled by magnetodielectric materials with simultenously negative values of the dielectric permittivity ε and magnetic permeability µ [START_REF] Veselago | The Electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. In such media, the wave vector k has opposite direction from the Poynting vector S = E × H , and the triplet formed by the electric field E , the induction field H and the wave vector k is left-handed. Thus V. Veselago also coined a medium with negative 10 refractive index a "left-handed material" [START_REF] Veselago | The Electrodynamics of substances with simultaneously negative values of ε and µ[END_REF].

Since no material can be found in nature with simultaneously negative values of the permittivity ε and permeability µ, the notion of negative refractive index has appeared beyond the frontiers of macroscopic electromagnetism and thus remained purely formal for thirty years, until the work of J. Pendry in 1999. In [START_REF] Pendry | Magnetism from conductors and enhanced nonlinear phenomena[END_REF], J. Pendry et al. showed that "microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability µ eff , which can be tuned to values not accessible in naturally occurring materials", paving the way towards artificial magnetism, negative index materials and, more generally, metamaterials with extraordinary properties. Since then, the notion of negative index material has opened a vast range of possibilities and has tested the domain of validity of macroscopic electromagnetism.

In this paper, a brief overview of the electromagnetic negative index materials is presented through the mechanisms underlying the negative index of refraction, the negative index and the proposal of the perfect -1 index lens.

The fundamental role of frequency dispersion in negative index materials and metamaterials is shown. Then, the spectral properties of corner structures with frequency dispersive permittivity are analyzed and an analog of "black hole" phenomenon is discussed. Finally, the key role of spatial dispersion (or nonlocality) in effective permeability and metamaterials is highlighted. In particular the question on the sign of the imaginary part of the permeability in passive media is addressed. The new phenomena and questions brought by these topics within the frame of the macroscopic electromagnetism will be discussed.

Mechanisms underlying negative index materials

Media with negative refractive index have appeared unavailable since no natural medium may have simultaneously permittivity ε and permeability µ with real part taking negative values. Indeed, negative values of the permittivity occur in metals at frequencies around the visible range while, in the same range, the values of the permeability must be restricted around that of vaccum permeability [START_REF] Landau | Electrodynamics of Continuous Media[END_REF]. The range of possible macroscopic electromagnetic responses has been first extended with the works on the so-called bounds on the effective parameters of composite materials, for instance on the effective permeability [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF] and permittivity [START_REF] Bergman | The dielectric constant of a composite materiala problem in classical physics[END_REF][START_REF] Milton | Bounds on the complex dielectric constant of a composite material[END_REF][START_REF] Milton | Bounds on the complex permittivity of a two-component composite material[END_REF][START_REF] Milton | Bounds on the electromagnetic, elastic, and other properties of two-component composites[END_REF]. For given permittivity constants and volume fractions of the components constituting a composite, such bounds characterize the set of possible macroscopic responses and identify the microstructure producing the extreme effective parameters in this set, see the book of G. Milton [START_REF] Milton | The theory of composites[END_REF] for an extensive presentation of the bounds of composites. These works on bounds offered new possibilities in terms of achievable values of permittivity and anisotropy. These works have been however restricted to the quasistatic regime in the frame of classical homogenization [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF], where the effective parameters result from an averaging process. In this frame, the range of frequencies with negative values of permittivity cannot be significantly extended and, moreover, the effective permeability remains equal to the vacuum permeability as soon as the components constituting the composite are non-magnetic, leaving the negative refractive index unachievable in theory and in practice.

The fundamental steps that led to the negative indices have been completed

thanks to the works of J. Pendry and his colleagues. Back in 1996, they proposed three-dimensional network structures made of thin metallic wires and showed theoretically, numerically and experimentally that such structures exhibit metallic behavior with low plasma frequency in the range of GHz [START_REF] Pendry | Extremely low frequency plasmons in metallic mesostructures[END_REF][START_REF] Pendry | Low frequency plasmons in thin-wire structures[END_REF].

In such structures, the plasma frequency of the original metal ω p , which is proportional to the ratio N/m eff of the electron density N and the electron effective mass m eff , is made lower using two mechanisms: i) the electron density N is reduced since the fraction of metal in the wires network is lower than in the bulk metal and ii) the electron effective mass m eff is enhanced by confining the electrons in the thin wires. With these mechanisms, the effective plasma frequency is strongly reduced and the metallic behavior encountered in the visible range is extended to the Ghz range, which allows effective permittivity with negative values in a new range of frequencies. Then, in 1999, these physicists proposed structures made of the so-called split rings that exhibit resonant effective magnetic permeability in the GHz range [START_REF] Pendry | Magnetism from conductors and enhanced nonlinear phenomena[END_REF]. Here, the magnetic response is induced by loops of current in the rings. In addition, this magnetic response is enhanced by introducing a thin split which makes the split ring equivalent to a LC resonator, the capacitance C resulting from the thin split and the in-ductance L resulting from the ring. The resonance is essential since it enhances the effective magnetic response and thus offers the possibility to address negative values of the effective permeability. Finally, combining these conducting non-magnetic split ring resonators with thin wires, D. Smith et al. proposed a composite medium with simultaneously negative permittivity and permeability in the GHz range [START_REF] Smith | Composite medium with simultaneously negative permeability and permittivity[END_REF]: this work enabled the experimental demonstration in the Ghz range of a negative refractive index [START_REF] Shelby | Experimental verification of a negative index of refraction[END_REF], the extraordinary electromagnetic property imagined by V. Veselago in 1968 [START_REF] Veselago | The Electrodynamics of substances with simultaneously negative values of ε and µ[END_REF].

It is stressed that, in this new kind of metallic composites proposed by J.

Pendry and his colleagues, the microstructure induces resonances in the effective electric and magnetic responses, which makes the nature of the underlying mechanism different from the one encountered so far in classical homogenization and in the bounds of composites. Hence this new kind of composites offering extraordinary properties has been coined metamaterials in 2001 [START_REF] Walser | Electromagnetic metamaterials[END_REF].

The implementation of metallic resonant composites operating at frequencies higher than Ghz appeared difficult and remains challenging, notably in the visible range, because of the requirements on the dimensions of the nanostructures and the presence of absorption in metals. However, in the visible and the near-infrared, purely dielectric periodic strutures, or photonic crystals [START_REF] Yablonovitch | Inhibited spontaneous emission in solid-state physics and electronics[END_REF][START_REF] Sajeev | Strong localization of photons in certain disordered dielectric superlattices[END_REF],

have been exploited to obtain negative refraction at in interface separating such a structure and a homogeneous medium [START_REF] Gralak | Anomalous refractive properties of photonic crystals[END_REF][START_REF] Notomi | Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap[END_REF]. In that case the resonance is not produced by the solely resonator itself (e.g a split ring) but by the interaction between the dielectric particles periodically arranged. This resonant interaction requires that the distance between the particles be comparable to the wavelength, which results in severe limitations to consider a photonic crystal as an effectif homogeneous medium. Nevertheless, their ability to induce negative refraction in the visible range may have important consequences.

The mechanism leading to negative refraction with photonic crystals exploits the richness, in such periodic structures, of the dispersion law, i.e. the relationship ω(k) between the frequency ω and the Bloch wave vector k. Indeed, the propagation of electromagnetic waves is governed by the group velocity v g [START_REF] Yeh | Electromagnetic propagation in birefringent layered media[END_REF][START_REF] Gralak | Superprism effects and EBG antenna applications[END_REF][START_REF] Gralak | Electromagnetic waves in photonic crystals: laws of dispersion, causality and analytical properties[END_REF] defined as the gradient of the dispersion law: 

v g = ∂ k ω(k). At
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Effect of the folding of the dispersion law on group velocity. The red cone represents the dispersion law in a homogeneous medium with positive index: the group velocity vg and the wave vector k in abscissa point in the same direction. The blue curve represents the dispersion law in a photonic crystals: if the dispersion law is unfolded (dotted blue curve) then the group velocity ug and the wave vector k both point in the same direction; if the dispersion law is folded (continuous blue curve) then the group velocity vg and the wave vector k point in opposite directions. At the couple (ω, k) indicated by the black circle, the folded dispersion law must be considered and the photonic crystal generates negative refraction.

tion of electromagnetic waves in photonic crystals can be found in [START_REF] Gralak | Anomalous refractive properties of photonic crystals[END_REF][START_REF] Notomi | Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap[END_REF][START_REF] Gralak | Superprism effects and EBG antenna applications[END_REF], and experimental verification in [START_REF] Cubukcu | Negative refraction by photonic crystals[END_REF].

The discovery of metamaterials and of their extraordinary properties stimulated the development of new homogenization techniques and effective medium theories, beyond the classical homogenization operating in the quasistatic limit, i.e. where the size of the microstructure tends to zero [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]. Indeed, classical homogenization results in an averaging process which cannot report properties like artificial magnetism and negative refractive index from purely dielectric constituents. For instance, the analysis of metamaterials with negative permittivity and permeability [START_REF] Simovski | Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators[END_REF] has shown that the effective parameters of such structures are not quasistatic. Hence, in addition to the seminal works of J. Pendry [START_REF] Pendry | Extremely low frequency plasmons in metallic mesostructures[END_REF][START_REF] Pendry | Low frequency plasmons in thin-wire structures[END_REF][START_REF] Pendry | Magnetism from conductors and enhanced nonlinear phenomena[END_REF], several new techniques have been proposed in applied mathematics and theoretical physics, extending the notion and validity of homogenization and of effective medium theory to new situations, see reference [START_REF] Simovski | Material parameters of metamaterials (a review)[END_REF] for a review in 2009. The classical two-scale homogenization technique [START_REF] Zhikov | On an extension of the method of two-scale convergence and its applications[END_REF] has been extended to high-contrast inclusions [START_REF] Bouchitté | Homogenization near resonances and artificial magnetism from dielectrics[END_REF] and led to the prediction of effective permeability. The retrieval method, based on the extraction of constitutive parameters from Fresnel reflexion and transmission coefficients, has been investigated for layered metamaterials [START_REF] Smith | Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[END_REF][START_REF] Simovski | Local constitutive parameters of metamaterials from an effective-medium perspective[END_REF]. The classical quasistatic limit as been also overcome in the case of periodic metamaterials made of dielectric meta-atoms, by an approach relating the macroscopic fields to the microscopic fields averaged over the Floquet unit cell [START_REF] Silveirinha | Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters[END_REF][START_REF] Silveirinha | Generalized lorentz-lorenz formulas for microstructured materials[END_REF][START_REF] Alù | First-principles homogenization theory for periodic metamaterials[END_REF], which can be considered as an extension to periodic arrays of meta-atoms of the classical derivation of macroscopic Maxwell's equations [START_REF] Jackson | Classical Electrodynamics, 3rd Edition[END_REF]. Also, perturbative expansions with respect to the frequency have been proposed: when starting from the quasistatic limit [START_REF] Liu | Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers[END_REF], it has been shown that the first order in frequency reports magnetoelectric coupling while the second order in frequency reports effective magnetism (the higher orders bringing refined corrections to all these parameters), a mechanism similar to the expansion on the wave vector [START_REF] Landau | Electrodynamics of Continuous Media[END_REF][START_REF] Agranovich | Spatial dispersion and negative refraction of light[END_REF]; and when starting from higher bands, it has been shown [START_REF] Craster | High-frequency homogenization for periodic media[END_REF][START_REF] Craster | High-frequency homogenization for checkerboard structures: defect modes, ultrarefraction, and all-angle negative refraction[END_REF] that the structure can be homogenized using the two-scale homogenization, leading to the notion of high frequency homogenization. These non-asymptotic techniques revealed the importance of the effect of the physical boundaries of metamaterials and periodic structures [START_REF] Belov | Boundary conditions for interfaces of electromagnetic crystals and the generalized ewald-oseen extinction principle[END_REF][START_REF] Silveirinha | Additional boundary condition for the wire medium[END_REF][START_REF] Smigaj | Validity of the effective-medium approximation of photonic crystals[END_REF][START_REF] Pierre | Appropriate truncation for photonic crystals[END_REF][START_REF] Simovski | On electromagnetic characterization and homogenization of nanostructured metamaterials[END_REF][START_REF] Markel | Homogenization of Maxwells equations in periodic composites: Boundary effects and dispersion relations[END_REF][START_REF] Markel | Current-driven homogenization and effective medium parameters for finite samples[END_REF][START_REF] Tsukerman | Classical and non-classical effective medium theories: New perspectives[END_REF]. They also highlighted the crucial role of the non-locality or spatial dispersion [START_REF] Agranovich | Spatial dispersion and negative refraction of light[END_REF][START_REF] Simovski | Local constitutive parameters of metamaterials from an effective-medium perspective[END_REF][START_REF] Silveirinha | Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters[END_REF][START_REF] Silveirinha | Generalized lorentz-lorenz formulas for microstructured materials[END_REF][START_REF] Demetriadou | Taming spatial dispersion in wire metamaterial[END_REF][START_REF] Cabuz | Spatial dispersion in negative-index composite metamaterials[END_REF][START_REF] Simovski | On electromagnetic characterization and homogenization of nanostructured metamaterials[END_REF][START_REF] Alù | First-principles homogenization theory for periodic metamaterials[END_REF] in metamaterials and negative refractive index structures. In general, the modelling of metamaterials and periodic composites with techniques beyond the classical quasistatic limit, results unavoidably in the definition of effective parameters depending on (ω, k), the frequency (frequency dispersion) and the wave vector (spatial dispersion).

Frequency and spatial dispersions are inherent to metamaterials and negative refractive media, which generated numerous questions and investigations on the causality principle and passivity of effective parameters [START_REF] Markel | Can the imaginary part of permeability be negative?[END_REF][START_REF] Silveirinha | Poynting vector, heating rate, and stored energy in structured materials: A first-principles derivation[END_REF][START_REF] Alù | Restoring the physical meaning of metamaterial constitutive parameters[END_REF][START_REF] Silveirinha | Examining the validity of kramers-kronig relations for the magnetic permeability[END_REF][START_REF] Alù | Causality relations in the homogenization of metamaterials[END_REF][START_REF] Liu | Causality and passivity properties of effective parameters of electromagnetic multilayered structures[END_REF].

In the next sections, these questions related to the dispersion are addressed.

The perfect lens and the spectral properties of frequency dispersive structures with negative permittivity

The most spectacular devices based on metamaterials are probably the perfect lens [START_REF] Pendry | Negative refraction makes a perfect lens[END_REF] and the invisibility cloak [START_REF] Pendry | Controlling electromagnetic fields[END_REF][START_REF] Shuring | Metamaterial electromagnetic cloak at microwave frequencies[END_REF][START_REF] Leonhard | Optical conformal mapping[END_REF] proposed by J. Pendry. These propositions generated numerous interesting discussions and investigations in the community of classical electrodynamics. For the invisibility, the possibility to perfectly hide an obstacle implies that the solution to Maxwell's equations is strictly the same outside the invisibility cloak, independently of the obstacle inside the cloak, to that one would have in the absence of scattering object and cloak (so in free space). As a consequence, if the invisibility cloak is causal and passive, then the perfect invisibility can occur only at isolated frequencies [START_REF] Cassier | Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking[END_REF]. Indeed, let E (x, ω) and E 0 (x, ω) be the time-harmonic electric fields oscillating at the frequency ω in the presence of the cloak, respectively with and without the obstacle. For perfect invisibility, these two electric fields are equal for position vector x outside the cloak: E (x, ω) = E 0 (x, ω). As for causal and passive media these electric fields are analytic functions of the frequency (as soon as ω has positive imaginary part) [START_REF] Gralak | Analytic properties of the electromagnetic Greens function[END_REF], they must be equal either for isolated frequencies ω, or for all real frequencies. Perfect invisibility is therefore only achieved at isolated frequencies and is impossible over a frequency interval. These ar-guments show that a causal and passive invisibility cloak must be a frequency dispersive structure.

Frequency dispersion is also an important dimension of negative index materials and the perfect lens. In 1968, V. Veselago introduced the notion of negative index of refraction and showed that a simple plate of such a medium with thickness d "can focus at a point the radiation from a point source located at a distance l < d " [START_REF] Veselago | The Electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. In 2000, J. Pendry extended this flat lens to negative index material including evanescent waves, and concluded that it makes a perfect lens with infinite resolution [START_REF] Pendry | Negative refraction makes a perfect lens[END_REF], beyond the diffraction limit. This perfect lens and the many potential applications have been debated in the literature with intense discussions about the infinite resolution and the underlying arguments [START_REF] Hooft | Comment on "Negative refraction makes a perfect lens[END_REF][START_REF] Williams | Some problems with negative refraction[END_REF][START_REF] Garcia | Left-handed materials do not make a perfect lens[END_REF][START_REF] Nieto-Vesperinas | Problem of image superresolution with a negativerefractive-index slab[END_REF], the divergence of the field [START_REF] Maystre | Perfect lenses made with left-handed materials:alice's mirror?[END_REF], the causality principle [START_REF] Maystre | Perfect lenses made with left-handed materials:alice's mirror?[END_REF][START_REF] Stockman | Criterion for negative refraction with low optical losses from a fundamental principle of causality[END_REF], and even about the existence of negative index [START_REF] Valanju | Wave refraction in negativeindex media: Always positive and very inhomogeneous[END_REF][START_REF] Stockman | Criterion for negative refraction with low optical losses from a fundamental principle of causality[END_REF]. The difficulty comes from the presence of a singularity in the Green's function and the solution of the time-harmonic Maxwell's equations at the frequency ω 1 of the perfect -1 index, where the relative permittivity and permeability take simultaneously the value -1: ε(ω 1 ) = -ε 0 and µ(ω 1 ) = -µ 0 , where ε 0 and µ 0 are respectively the permittivity and the permeability in vacuum. This singularity is unusual since, in mathematics, it appears at the frequency ω 1 which is an eigenvalue with infinite degeneracy of the operator associated to the Maxwell's equations [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF], i.e. at a frequency in the essential spectrum of Maxwell's equations. In physics, the strategy may be to consider the low absorption limit: a small absorption is introduced, e.g. ε (γ) = -ε 0 + iγ and µ (γ) = -µ 0 + iγ with γ > 0, so that the time-harmonic Maxwell's equations are well posed for γ > 0 [START_REF] Nieto-Vesperinas | Problem of image superresolution with a negativerefractive-index slab[END_REF], and then the limit γ ↓ 0 is taken. However, the solution of time-harmonic Maxwell's equations does not converge when the absorption γ tends to zero. Therefore the low absorption limit fails in the situation of the flat lens at the frequency ω 1 of the perfect -1 index. In other words, one can conclude that the solution to the time-harmonic Maxwell's equations does not exist at the frequency ω 1 in the case of the perfect lens. Such situations where the time-harmonic Maxwell's equations have no solutions have been also uncountered with active (or gain) media [START_REF] Dorofeenko | Light propagation in composite materials with gain layers[END_REF][START_REF] Hagenvik | Fourierlaplace analysis and instabilities of a gainy slab[END_REF][START_REF] Hagenvik | Fourier theory of linear gain media[END_REF].

The absence of solutions to the time-harmonic Maxwell's equations generated difficulties to analyze the behavior of the perfect flat lens, to the point of even questioning the possibility and the existence of perfect negative index media. The solution to all these difficulties lies in rigorously taking into account the frequency dispersion.

It has been noticed by V. Veselago in his seminal article [START_REF] Veselago | The Electrodynamics of substances with simultaneously negative values of ε and µ[END_REF] that the permittivity and the permeability must depend on frequency in negative index media. This requirement, which is a consequence of the causality principle and the passivity, can be established from the generalized expression of the Kramers-Kronig relations [START_REF] Tip | Linear absorptive dielectric[END_REF][START_REF] Combes | Spectral properties of absorptive photonic crystals[END_REF][START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF][START_REF] Gralak | Analytic properties of the electromagnetic Greens function[END_REF]] corresponding to the Herglotz-Nevanlinna representation theorem [START_REF] Cassier | Mathematical models for dispersive electromagnetic waves: an overview[END_REF]. For a complex frequency ω with positive imaginary part, Im ω > 0, this generalized Kramers-Kronig expression of the permittivity is [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF] 

ε(x, ω) = ε 0 - R dν σ(x, ν) ω 2 -ν 2 , σ(x, ν) = Im νε(x, ν) π ≥ 0 , (2) 
where the relation σ(x, ν) ≥ 0 is a consequence of the passivity [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF]. Notice that the quantity σ(x, ν) is a generalized function of ν and may contain Dirac contributions (for instance in the non-aborptive case [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF][START_REF] Cassier | Mathematical models for dispersive electromagnetic waves: an overview[END_REF]). This passivity requirement for real frequency ν can be extended to complex frequencies ω with positive imaginary part, since the imaginary part of the integral multiplied by ω in the expression above is positive:

Im ωε(x, ω) ≥ Im ωε 0 . (3) 
Let ω 1 be a real frequency at which the imaginary part of the permittivity vanishes. Then σ(x, ω 1 ) = 0 and the integral in the expression

ω 1 ε(x, ω 1 ) = ω 1 ε 0 - R dν σ(x, ν) ω 1 -ν , (4) 
is well-defined and real. Considering the derivative of this equation and using that σ(x, ν) ≥ 0, the following well-known inequality [START_REF] Veselago | The Electrodynamics of substances with simultaneously negative values of ε and µ[END_REF][START_REF] Landau | Electrodynamics of Continuous Media[END_REF] 

is obtained: if Im ε(x, ω 1 ) = 0, then Re ∂ ωε ∂ω (x, ω 1 ) ≥ ε 0 ⇐⇒ Re ε(x, ω 1 ) ≥ ε 0 -Re ∂ε ∂ω (x, ω 1 ) . (5) 
This inequality means that, if the permittivity ε(x, ω 1 ) takes at the frequency ω 1 a real value less than the vacuum permittivity ε 0 , then the derivative of the permittivity with respect to the frequency cannot vanish at the frequency ω 1 . This corresponds precisely to the case of negative index materials and, more generally, to the situations offered by metamaterials for which the effective permittivity (and possibly the effective permeability) takes negative values or values below ε 0 . Therefore, the frequency dispersion must be considered in negative index media and in metamaterials (for instance for effective refractive index below unity, also called ultra-refraction). Otherwise, the absence of frequency dispersion introduces contradictions with the causality principle or the passivity requirement.

A canonical approach for frequency dispersion has been established in 1998 by A. Tip with the auxiliary field formalism [START_REF] Tip | Linear absorptive dielectric[END_REF]. This formalism has been originally introduced to define a proper frame for macroscopic Maxwell's equations in absorptive and frequency dispersive dieletric media, for their quantized version [START_REF] Tip | Linear absorptive dielectric[END_REF][START_REF] Tip | Equivalence of the Langevin and auxiliary-field quantization methods for absorbing dielectrics[END_REF], and for the generalization of the density of states and the description of the atomic decay in absorptive and frequency dispersive structures [START_REF] Tip | Linear absorptive dielectric[END_REF][START_REF] Guerrin | Singularity of the dyadic Green's function for heterogeneous dielectrics[END_REF]. This formalism is based on the introduction of auxiliary fields so that macroscopic Maxwell's equations can be written equivalently as a unitary time evolution equation involving both electromagnetic and auxiliary fields: the new augmented system satisfies an overall energy conservation and the frequency dependence of the permittivity is transferred to the auxiliary fields. In other words, this general technique transforms a time-dependent and non self-adjoint dissipative operator into a time-independent and self-adjoint augmented operator. In 2005, A. Figotin and J. Schenker have shown that this auxiliary field formalism introduced by A. Tip is precisely the unique minimal self-adjoint extension of the dissipative Maxwell's equations [START_REF] Figotin | Spectral Theory of Time Dispersive and Dissipative Systems[END_REF]. This canonical formalism has been extended to magnetodielectric materials in order to describe frequency dispersive negative index materials [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF]. It has been shown that the time evolution of a system comprising a perfect -1 index material, i.e. with a frequency ω 1 at which ε(x, ω 1 ) = -ε 0 and µ(x, ω 1 ) = -µ 0 (for x in the -1 index material), is well-defined since the electromagnetic energy remains finite at all times as soon as this is the case at the initial time: hence the compatibility of the existence of perfect negative index materials with causality principle and passivity has been unambiguously established using the canonical extension of Maxwell's equations [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF].

In the case of the flat lens with perfect -1 index at the frequency ω 1 , the Green's function has a pole at the frequency ω 1 [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF][START_REF] Collin | Frequency dispersion limits resolution in veselago lens[END_REF][START_REF] Gralak | Negative index materials and time-harmonic electromagnetic field[END_REF] and the timeharmonic Maxwell's equations has no solution at the oscillating frequency ω 1 :

the time-harmonic frame fails in the case of the flat lens with perfect -1 index (or perfect negative index). However, according to the canonical frame of the auxiliary field formalism, the solution to (time-dependent) Maxwell's equations is well-defined at all time if it is the response to an external current source [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF] as in figure 3. The long-time behavior of such a solution can be consid- ered for a current source turned on at an initial time and then oscillating with the operating frequency ω 1 [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF][START_REF] Collin | Frequency dispersion limits resolution in veselago lens[END_REF][START_REF] Gralak | Negative index materials and time-harmonic electromagnetic field[END_REF]. In the case of a single plane interface separating a perfect -1 index medium and vacuum ("single interface" case), it has been shown that the evanescent components of this time-dependent solution have their amplitude increasing linearly with time [START_REF] Collin | Frequency dispersion limits resolution in veselago lens[END_REF][START_REF] Gralak | Negative index materials and time-harmonic electromagnetic field[END_REF][START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF], see figure 4. Consequently, this solution does not converge for long times to the solution to the corresponding time-harmonic problem: the limiting amplitude principle is not valid in this case [START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF]. The situation is similar in the case of the perfect flat lens (two plane interfaces delimiting a -1 index layer from vacuum, or "two interfaces" case), leading to the conclusion that the image of a point source by the perfect -1 flat lens is not a point image [START_REF] Collin | Frequency dispersion limits resolution in veselago lens[END_REF][START_REF] Gralak | Negative index materials and time-harmonic electromagnetic field[END_REF]. An analyzis based on the 270 calculation of the spectral projector [START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF] provided the complete characterization of the spectral properties in the "single interface" case. In particular the presence of essential spectrum in Maxwell's equations has been highligthed at the -1 frequency ω 1 which is an eigenvalue with infinite degeneracy [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF][START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF]. It turns out that the extraordinary property of the perfect -1 index and the induced phenomena in the perfect flat lens are related to the presence of essential spectrum in Maxwell's equations. Thus the complete characterization of the spectral properties of frequency dispersive and negative index structures appears to be an important issue. For instance, a perfect corner reflector made of two orthogonal planes delimiting positive and negative index media makes a cavity that traps light and where the density of states appears to be infinite [START_REF] Guenneau | Perfect corner reflector[END_REF][START_REF] Guenneau | Negative refraction in 2d checkerboards related by mirror anti-symmetry and 3d corner lenses[END_REF][START_REF] Guenneau | Cloaking and imaging effects in plasmonic checkerboards of negative ε and µ and dielectric photonic crystal checkerboards[END_REF][START_REF] Gralak | Transfer matrix method for point sources radiating in classes of negative refractive index materials with 2n-fold antisymmetry[END_REF]. This infinite density of states has been related to the existence of an infinite number of modes at the -1 index frequency [START_REF] Guenneau | Perfect corner reflector[END_REF][START_REF] Gralak | Transfer matrix method for point sources radiating in classes of negative refractive index materials with 2n-fold antisymmetry[END_REF], i.e. the -1 index frequency is also included in the essential spectrum as an eigenvalue with infinite degeneracy in this case of the perfect corner reflector. Next, further investigations have shown that two dimensional Maxwell's systems with corners delimiting a medium with positive permittivity (e.g. vacuum) from a medium with negative permittivity (and -or -a negative permeability) bring up essential spectrum for an interval of negative values of the permittivity around -ε 0 (or around the permittivity ratio -1) [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Radiation condition for a non-smooth interface between a dielectric and a metamaterial[END_REF][START_REF] Bonnet-Ben Dhia | Two-dimensional Maxwell's equations with sign-changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for the Maxwell problem with sign-changing coefficients[END_REF]: for example, in the case of a 90 degrees corner, there is essential spectrum for the permittivity interval

J (x, t) t y x ε(ω 1 ) = -ε 0 µ(ω 1 ) = -µ 0 ε 0 , µ 0 J (x, t) E(x, t) t ∝ t E(x, t) x ε(ω 1 ) = -ε 0 µ(ω 1 ) = -µ 0 ε 0 µ 0 ∝ t
J (x, t) t y x ε(ω 1 ) = -ε 0 µ(ω 1 ) = -µ 0 ε 0 , µ 0 J (x, t) E(x, t) t ∝ t E(x, t) x ε(ω 1 ) = -ε 0 µ(ω 1 ) = -µ 0 ε 0 µ 0 ∝ t
[-3 ε 0 , -ε 0 /3].
This essential spectrum is associated with an analog of "black hole" phenomenon occurring in the vicinity of a corner which behaves like an unbouded domain. Such unusual effect and spectral properties, originally reported in the case of the negative index perfect corner reflectors, appears to be omnipresent in Maxwell's systems with corners delimiting a frequency dispersive medium [START_REF] Hazard | Spectral analysis of polygonal cavities containing a negative-index material[END_REF]. Indeed, let the permittivity ε d (ω) of the frequency dispersive medium be given by the Drude-Lorentz model:

ε d (ω) = ε 0 -ε 0 Ω 2 ω 2 + iγω -ν 2 , (6) 
where Ω, ν and γ are positive real constants. Then, there always exists a com-

plex frequency ω 1 at which ε d (ω 1 ) = -ε 0 : ω 1 = -iγ/2 ± ν 2 + Ω 2 /2 -γ 2 /4.
And, for example, in the case of a 90 degrees corner, the permittivity interval [-3 ε 0 , -ε 0 /3] is spanned for the following range of complex frequencies

-iγ/2 ± ν 2 + Ω 2 /4 -γ 2 /4 , -iγ/2 ± ν 2 + 3Ω 2 /4 -γ 2 /4 . (7) 
If the permittivity is given by a more general expression, for instance a finite sum 275 of Drude-Lorentz contributions, then the number of segments in the complex plane of frequencies, generally curved, increases like the degree of the polynomials involved in the permittivity expression. Hence the intervals of essential spectrum appear unavoidable in frequency dispersive systems with corners.

The main arguments exhibiting the presence of essential spectrum can be the following [START_REF] Bonnet-Ben Dhia | Radiation condition for a non-smooth interface between a dielectric and a metamaterial[END_REF]: let α in ]0, 2π[ be the angle of a two-dimensional corner filled with a dispersive mediumof permittivity ε d (ω) and x = (r, φ) the considered cylindrical coordinates (see figure 5). The permittivity of the system is independent of the radial variable r: ε(x, ω) = ε(φ, ω), ε(φ, ω) = ε d (ω) for an azimuthal variable φ in [0, α] and ε(φ, ω) = ε 0 for φ in [α, 2π] . In the time-harmonic regime, the magnetic field component H(r, φ, ω) of the transverse magnetic waves is the ∂ ∂φ

ε d (ω) < 0 ε 0 ε 0 φ r r 0 α u φ α 2π -α r < r 0 r > r 0
1 ε ∂H ∂φ + ω 2 εµ 0 H = 0 , (8) 
where the dependence on (r, φ, ω) has been omitted. Then the change of variable r -→ u = ln(r/r 0 ) is performed in this Helmholtz equation (see figure 5). The magnetic field component H(u, φ, ω) = H(r 0 e u , φ, ω) is now solution to

∂ 2 H ∂ 2 u + ε ∂ ∂φ 1 ε ∂ H ∂φ = -r 2 0 e 2u ω 2 εµ 0 H , (9) 
where the dependence on (u, φ, ω) has been omitted. Assuming that the modes generated by the corner are localized in the circle of radius r 0 , i.e. H(u, φ, ω) ≈ 0 for u positive, and choosing the radius r 0 small enough, then the right hand side in the equation ( 9) can be neglected and set to zero. Next, a Fourier decomposition H(u, φ, ω) -→ Ĥ(k, φ, ω) is applied, and the resulting equation is exactly that for a periodic one-dimensional layered structure (see figure 5):

ε ∂ ∂φ 1 ε ∂ Ĥ ∂φ -k 2 Ĥ = 0 . (10) 
Hence, the existence of a mode 2π-periodic with respect to the azimuthal variable φ is subject to the following condition [START_REF] Yeh | Optical Waves in Layered Media[END_REF]:

cosh[kα] cosh[k(2π-α)]+ 1 2 ε 0 ε d (ω) + ε d (ω) ε 0 sinh[kα] sinh[k(2π-α)] = 1 . ( 11 
)
For k = 0 the equality is achieved but the solution is trivial (constant) and yields vanishing electric field. Hence the existence of a corner mode is subject to a solution for k = 0. The function on the left hand side is made of two terms: the first term with the cosh functions starts from 1 at k = 0 and then is growing to +∞; thus the second term with the sinh functions must decrease towards -∞, which requires a real negative value for ε d (ω). Since the factor in front of the sinh functions has absolute value greater than 1 [except in the case ε d (ω) = -ε 0 where it equals 1], the sum of the two terms in the left hand side tends to -∞ for large values of k. Therefore, to obtain a solution k = 0 to the equation [START_REF] Pendry | Extremely low frequency plasmons in metallic mesostructures[END_REF], it is enough that the second derivative at k = 0 of the function on the left hand side be positive. This second derivative is

α(2π -α) α 2π -α + 2π -α α + ε 0 ε d (ω) + ε d (ω) ε 0 , (12) 
which is positive if and only if

ε d (ω) ε 0 ∈ [-I α , -1/I α ] , I α = max α 2π -α , 2π -α α . (13) 
Notice that, for α = π, i.e. when the corner becomes a plane interface, the number I α = 1 and the interval reduces to the point -1. In that case, one can check that the condition [START_REF] Pendry | Extremely low frequency plasmons in metallic mesostructures[END_REF] is achieved for all k if α = π and ε d (ω) = -ε 0 .

The radial dependence of the corner modes is given by

r -→ exp[ik ln r/r 0 ] (14) 
which is oscillating with spatial frequency tending to infinity when r -→ 0. As a result, the electric field, deduced from the derivative, has a singularity like 1/r and then is not square integrable, i.e. is not finite energy. This behavior, represented on figure 6, is different from the previous results reported in the textbooks [START_REF] Van Bladel | Electromagnetic Fields, 2nd Edition, IEEE Press Series on Electromagnetic Wave Theory[END_REF] where only dielectric materials with positive permittivity and conducting materials have been considered, leading to the strongest singularity

E(r, φ) r +1/r -1/r ε d (ω) ε 0 ∈ [-I α , -1/I α ]
"black hole" to the frequencies ω such that the ratio

ε d (ω)/ε 0 is in the interval [-I α , -1/I α ] [88]
. The radial dependence of these corner modes, with oscillations with spatial period tending to zero, makes an analog of "black hole" phenomenon occuring at the corner (see figure 6). Indeed, the modes appear to propagate infinitely slowly and to accumulate energy when approaching the corner as if they were trapped by the corner which would behave like a semi-infinite open space. Finally, notice that it can be shown that there is no essential spectrum associated with the corner of angle α outside the interval [-I α , -1/I α ] using a "T-coercivity"

argument [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Radiation condition for a non-smooth interface between a dielectric and a metamaterial[END_REF][START_REF] Bonnet-Ben Dhia | Two-dimensional Maxwell's equations with sign-changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for the Maxwell problem with sign-changing coefficients[END_REF].

This new and extraordinary behavior of corner modes exhibited in systems with negative permittivity (and -or -negative permeability) raises numerous challenging questions in applied mathematics (e.g. three-dimensional corners [START_REF] Guenneau | Negative refraction in 2d checkerboards related by mirror anti-symmetry and 3d corner lenses[END_REF]), in physics with the analog of "black hole" phenomenon and in numerical modelling. In particular, it is stressed that the presence of the essential spectrum implies difficulties in the computation of modes of dispersive structures, with the lack of convergence in a frequency domain around the essential spectrum where the permittivity takes real negative values [START_REF] Brûlé | Calculation and analysis of the complex band structure of dispersive and dissipative two-dimensional photonic crystals[END_REF][START_REF] Lalanne | Quasinormal mode solvers for resonators with dispersive materials[END_REF][START_REF] Demésy | Non-linear eigenvalue problems with getdp and slepc: Eigenmode computations of frequency-dispersive photonic open structures[END_REF]. This unavoidable perturbation of numerical computation represents a challenging task in the method of quasi-normal modes expansion [START_REF] Lalanne | Quasinormal mode solvers for resonators with dispersive materials[END_REF][START_REF] Demésy | Non-linear eigenvalue problems with getdp and slepc: Eigenmode computations of frequency-dispersive photonic open structures[END_REF]. The introduction of perfectly matched layers at the corners [START_REF] Bonnet-Ben Dhia | On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients[END_REF] could be a promising way to address this task.

The perfect flat lens [START_REF] Pendry | Negative refraction makes a perfect lens[END_REF] and its generalization such as the perfect corner reflector [START_REF] Guenneau | Perfect corner reflector[END_REF][START_REF] Guenneau | Cloaking and imaging effects in plasmonic checkerboards of negative ε and µ and dielectric photonic crystal checkerboards[END_REF][START_REF] Gralak | Transfer matrix method for point sources radiating in classes of negative refractive index materials with 2n-fold antisymmetry[END_REF] highlighted situations where, at the perfect -1 index frequency ω 1 , the frame of the time-harmonic Maxwell's equations has no solutions and thus appears inappropriate to describe the behavior of electromagnetic waves. Such In addition, the presence of essential spectrum has been identified at the perfect -1 index frequency ω 1 which is an eigenvalue with infinite degeneracy for the perfect flat lens and corner reflector. Recently, it has been shown that more conventional structures like frequency dispersive corners also display essential spectrum [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Radiation condition for a non-smooth interface between a dielectric and a metamaterial[END_REF][START_REF] Bonnet-Ben Dhia | Two-dimensional Maxwell's equations with sign-changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for the Maxwell problem with sign-changing coefficients[END_REF] for a whole interval of frequencies for which there is no solution to the time-harmonic Maxwell's equations. However, it has been shown that the auxiliary field formalism introduced by A. Tip [START_REF] Tip | Linear absorptive dielectric[END_REF] provides a canonical approach for all these extraordinary situations with perfect negative index [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF], metamaterials and negative permittivity where the frequency dispersion plays a vital role. In particular, it is stressed that this auxiliary field formalism offers the possibility to analyze rigorously a negative permittivity corner which makes an analog of "black hole" phenomenon.

Spatial dispersion and the imaginary part of the effective permeability

The modelling of metamaterials and negative index materials highlighted the role of spatial dispersion (or non-locality) [START_REF] Agranovich | Spatial dispersion and negative refraction of light[END_REF][START_REF] Simovski | Local constitutive parameters of metamaterials from an effective-medium perspective[END_REF][START_REF] Silveirinha | Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters[END_REF][START_REF] Silveirinha | Generalized lorentz-lorenz formulas for microstructured materials[END_REF][START_REF] Demetriadou | Taming spatial dispersion in wire metamaterial[END_REF][START_REF] Cabuz | Spatial dispersion in negative-index composite metamaterials[END_REF][START_REF] Simovski | On electromagnetic characterization and homogenization of nanostructured metamaterials[END_REF][START_REF] Alù | First-principles homogenization theory for periodic metamaterials[END_REF] in composites displaying effective permeability. It makes sense since, in usual bulk materials, the magnetic properties can be derived from the electric permittivity tensor ε(k, ω) depending on the frequency ω and the wave vector k [START_REF] Landau | Electrodynamics of Continuous Media[END_REF][START_REF] Agranovich | Spatial dispersion and negative refraction of light[END_REF][START_REF] Veselago | Negative refractive index materials[END_REF]. Indeed, consider the Maxwell's equations in a homogeneous and isotropic magnetodielectric medium with permittivity ε(ω) and permeability µ(ω). For monochromatic plane-waves with space-time dependence in exp[i(k

• x -ωt)]
these equations become

k × E = ωµ(ω)H , k × H = -ωε(ω)E , (15) 
and, after eliminating the field H ,

k × 1 ωµ(ω) k × E + ωε(ω)E = 0 . ( 16 
)
This last equation can be written

k × 1 ωµ 0 k × E + k × 1 ωµ(ω) - 1 ωµ 0 k × E + ωε(ω)E = 0 . (17) 
Thus, defining the dielectric tensor

ωε(k, ω) = ωε(ω) - 1 ωµ(ω) - 1 ωµ 0 k 2 -kk , (18) 
where k 2 = k • k and kk is the rank-two tensor acting as kk

• E = (k • E )k, the equation 16 is equivalent to k × 1 ωµ 0 k × E + ωε(k, ω) • E = 0 (19) 
for isotropic permeability µ(ω). Hence a magnetodielectric medium can be described by only the electric permittivity tensor ε(k, ω). Conversely, the permeability µ(ω) can be derived from the permittivity tensor. Let P lg and P tr = 1 -P lg be the orthogonal projections on the subspaces parallel (or longitudinal ) and perpendicular (or transverse) to the vector k:

P lg = kk k 2 , P tr = 1 - kk k 2 . ( 20 
)
For isotropic permittivity ε(ω) and permeability µ(ω), the permittivity tensor ( 18) can be decomposed on these subspaces

ε(k, ω) = ε lg (k, ω)P lg + ε tr (k, ω)P tr , (21) 
where

ε lg (k, ω) = ε(ω) and ε tr (k, ω) = ε(ω) -[1/µ(ω) -1/µ 0 ] k 2 /ω 2 are the
longitunal and transverse components of the tensor. Hence, the permeability can be retrieved from the permittivity tensor according to the well-known relation

[3, 35] 1 ωµ(ω) = 1 ωµ 0 + lim k→0 ωε lg (k, ω) -ωε tr (k, ω) k 2 . ( 22 
)
Notice that this relation between the permeability and the permittivity tensor with spatial dispersion is established for bulk infinite media which are not delimited by boundaries.
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Although the two descriptions of magnetodielectric media seem to be equivalent, the introduction of spatial dispersion and the gathering, in the permittivity tensor, of all the magnetic and dielectric properties of the materials, break the symmetry between the fields E and H in the Maxwell's equations. However, the symmetry between these fields and between the permittivity and permeability is widely used in textbooks of classical electrodynamics [START_REF] Landau | Electrodynamics of Continuous Media[END_REF][START_REF] Jackson | Classical Electrodynamics, 3rd Edition[END_REF][START_REF] Van Bladel | Electromagnetic Fields, 2nd Edition, IEEE Press Series on Electromagnetic Wave Theory[END_REF]. In particular, the Kramers-Kronig relations and the passivity requirement for the permittivity are generally also considered as valid for the permeability: for instance, it is generally considered that the imaginary of permittivity is positive 

Nevertheless, it turns out that the behaviors of the permittivity and the permeability are different in the static regime [START_REF] Landau | Electrodynamics of Continuous Media[END_REF][START_REF] Jackson | Classical Electrodynamics, 3rd Edition[END_REF]: unlike the static permittivity ε(0) [I.e. ε(ω) at the limit ω → 0], which always takes real value greater than ε 0 , the static permeability µ(0) [i.e. µ(ω) at the limit ω → 0] can take real values either greater (paramagnetic media) or less (diamagnetic media) than µ 0 . This alternative for the static permeability seems in contradiction with the causality principle and the passivity. Indeed, the generalized Kramers-Kronig relation [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF] applied to the permeability implies

µ(0) = µ 0 + 2 π ∞ 0 dν Im µ(ν) ν , (24) 
which requires for µ(0) to be greater than µ 0 if Im µ(ω) ≥ 0 for all positive real frequency ω [START_REF] Markel | Can the imaginary part of permeability be negative?[END_REF]. In the textbook [START_REF] Landau | Electrodynamics of Continuous Media[END_REF], this contradiction is explained by the frequency range where the macroscopic magnetic permeability makes sense, which is limited to the relatively low frequencies. Consequently, it is specified in [3, section 82] that the Kramers-Kronig relations like ( 4) and ( 24)must be modified for the magnetic permeability. Hence the requirement on the imaginary part of the permeability, Im µ(ω) ≥ 0, has been confirmed in reference [START_REF] Landau | Electrodynamics of Continuous Media[END_REF].

The introduction of metamaterials and negative index materials with effective permeability led to revisit these statements. Indeed, it has been found that the effective parameters of metamaterials present anomalous dispersion: in [START_REF] Koschny | Resonant and antiresonant frequency dependence of the effective parameters of metamaterials[END_REF],

"the resonant behavior of the effective magnetic permeability is accompanied by an antiresonant behavior of the effective permittivity" and "the imaginary parts of the effective permittivity and permeability are opposite in sign". These numerical results first generated some controversy [START_REF] Depine | Comment i on "resonant and antiresonant frequency dependence of the effective parameters of metamaterials[END_REF][START_REF] Efros | Comment ii on "resonant and antiresonant frequency dependence of the effective parameters of metamaterials[END_REF], but next the anomalous dispersion and the possibility for negative imaginary part of the effective permeability have been confirmed by several studies, which generated a series of investigations. For instance, fundamental questions on the Poynting vector and the energy have been adressed [START_REF] Markel | Can the imaginary part of permeability be negative?[END_REF][START_REF] Silveirinha | Poynting vector, heating rate, and stored energy in structured materials: A first-principles derivation[END_REF], the validity of the Kramers-Kronig relations for the magnetic permeability has been examined [START_REF] Silveirinha | Examining the validity of kramers-kronig relations for the magnetic permeability[END_REF], the validity of the causality principle and the physical meanining of the metamaterials constitutive parameters has been analyzed [START_REF] Alù | Causality relations in the homogenization of metamaterials[END_REF][START_REF] Alù | Restoring the physical meaning of metamaterial constitutive parameters[END_REF].

Hereafter, the objective is to bring arguments supporting that the imaginary part of the magnetic permeability µ(ω) in passive media can take both positive and negative values, i.e. that the relation ( 23) is not valid. In contrast, these arguments support that the Kramers-Kronig relations make sense for the permeability. Since these claims are in contradiction with the electrodynamics based on the symmetry between, in one hand, the electric field E and the permittivity ε(ω) and, in the other hand, the magnetic induction field H and the permeability µ(ω), the description with the dielectric tensor ε(k, ω) and spatial dispersion is considered.

First, a simple model with spatial dispersion is considered, the hydrodynamical model [START_REF] Boardman | Electromagnetic Surface Modes[END_REF][START_REF] Fernández-Domínguez | Transformation-optics description of nonlocal effects in plasmonic nanostructures[END_REF], with the permittivity tensor expression

ε(k, ω) = ε 0 -ε 0 Ω 2 ω 2 + iωγ -ω 2 0 -v 2 k 2 P lg -ε 0 Ω 2 ω 2 + iωγ -ω 2 0 P tr . ( 25 
)
Using the relation [START_REF] Nieto-Vesperinas | Problem of image superresolution with a negativerefractive-index slab[END_REF], it is possible to define from this model the magnetic permeability

1 ωµ(ω) = 1 ωµ 0 -ωε 0 Ω 2 v 2 (ω 2 + iωγ -ω 2 0 ) 2 , ( 26 
)
and to obtain for the imaginary part at real frequency

Im 1 ωµ(ω) = ε 0 2γΩ 2 v 2 ω 2 (ω 2 -ω 2 0 ) [(ω 2 -ω 2 0 ) 2 + ω 2 γ 2 ] 2 . ( 27 
)
This result clearly shows that the imaginary part of the obtained permeability can take both positive and negative values, depending on ω 2 is smaller or larger than ω 2 . In addition, from the expression (26) of the permeability, the following identity, similar to the relation [START_REF] Simovski | Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators[END_REF], is derived

∞ 0 dν Im 1 νµ(ν) = π 2 1 µ(0) - 1 µ 0 = 0 , (28) 
where it has been used that µ(0) = µ 0 to obtain that the integral vanishes.

This last identity confirms that the imaginary part of the permeability must take positive and negative values.

The same results can be obtained starting from a general permittivity tensor ε(k, ω), provided the asymptotic behavior at large complex frequencies with positive imaginary part,

ε(k, ω) -→ |ω|→∞ ε 0 - Ω 2 ω 2 , ( 29 
)
is independent of the wave vector k [START_REF] Rukhadze | Electrodynamics of media with spatial dispersion[END_REF]. In combination with the analytic properties of the permittivity in the half plane of complex frequencies with positive imaginray parts, this asymptotic behavior implies the identity, or sum rule,

∞ 0 dν Im νε(k, ν) = πΩ 2 2 , ( 30 
)
also independent of the wave vector k [START_REF] Rukhadze | Electrodynamics of media with spatial dispersion[END_REF][START_REF] Forcella | Causality, nonlocality, and negative refraction[END_REF]. Since the permeability ( 63) is defined from the term quadratic in k in the tensor ε(k, ω), its imaginary part must be subject to [START_REF] Rukhadze | Electrodynamics of media with spatial dispersion[END_REF][START_REF] Forcella | Causality, nonlocality, and negative refraction[END_REF] ∞

0 dν Im 1 νµ(ν) = 0 . ( 31 
)
Thus, starting from a general permittivity tensor, it can be shown that the imaginary part of the permeability must take positive and negative values. It is stressed that these last arguments, implying that µ(0) = µ 0 , exclude the existence of media with magnetic properties in the static regime, i.e. with µ(0) = µ 0 . This limitation can be however overtaken considering a permittivity tensor ε(k, ω) with an essential singularity at the point (k, ω) = (0, 0) [START_REF] Rukhadze | Electrodynamics of media with spatial dispersion[END_REF]. A simple example is the hydrodynamical Drude model, i.e. the expression [START_REF] Simovski | Material parameters of metamaterials (a review)[END_REF] with ω 0 set to 0, which leads to the permeability

1 µ(ω) = 1 µ 0 -ε 0 Ω 2 v 2 (ω + iγ) 2 , ( 32 
)
corresponding to a diamagnetic medium with µ(0) < µ 0 . Notice that, in that case, the imaginary part of ω -→ ωµ(ω) is negative for all real frequency ω, i.e. its sign does not change. A paramagnetic medium could be obtained by inverting the (k, ω)-dependence of the longitudinal and transverse components of the permittivity tensor in the expression [START_REF] Simovski | Material parameters of metamaterials (a review)[END_REF]. In addition, it is stressed that another possibility to overpass the limitation (31) may be to consider an asymptotic behavior different from the one (29) considered in [START_REF] Rukhadze | Electrodynamics of media with spatial dispersion[END_REF].

The possibility for the imaginary part of the permeability to take positive and negative values is now investigated through the effective permeability of a composite medium. Here, a stack of non-magnetic homogeneous layers is considered. Indeed, the simplicity of such a structure makes it possible to define exactely, using the retrieval method, an effective permeability for all frequencies and wave vectors. In addition, it has been shown that the effective parameters of a multilayered structure present the suitable properties to ensure the causality principle and the passivity requirement [START_REF] Liu | Causality and passivity properties of effective parameters of electromagnetic multilayered structures[END_REF]. Hence, this composite medium is a good candidate to investigate the sign of the imaginary part of the effective permeability.

A stack of non-magnetic homogeneous layers of total thickness h with a plane of symmetry at mid-height is considered (see left panel in figure 7). The space variable in the stacking direction is denoted by x. The multilayered structure is located between the planes x = -h and x = 0 and is described by the frequency dispersive and isotropic permittivity ε(x, ω), the magnetic permeability being set to the permeability of vacuum µ 0 . Outside the multilayered struc-multilayered stack with symmetry plane effective medium with spatial dispersion

h x k ε eff (k , ω) , µ eff (k , ω) ε(x, ω)
Figure 7: Left: the considered multilayered structure with a plane of symmetry described by the frequency dependent and isotropic permittivity ε(x, ω). Right: the equivalent effective medium described by the effective permittivity ε eff (k , ω) and permeability µ eff (k om). ture, i.e. for x < -h and x > 0, the permittivity is set to ε 0 . In practice, ε(x, ω) is piecewise constant with respect to z and, according to the symmetry of the structure, ε(-x, ω) = ε(x -h, ω). The structure (and the permittivity) is invariant under translations in the plane parallel to the layers and thus a twodimensional Fourier decomposition is performed in these tangential directions: the two-component wave vector resulting from this Fourier decomposition is denoted by k and k = k • k is its norm. Then, the time-harmonic Maxwell's equations become a set of two independent scalar equations for the electric and magnetic fields components orthogonal to both k and the stacking direction.

Let U e (x, k , ω) and U m (x, k , ω) be these components of the electric and magnetic fields: for w = e, m, the Maxwell's equations take the form

∂ ∂x 1 ξ w (x, ω) ∂ ∂x U w (x, k , ω) + ω 2 µ 0 ε(x, ω) -k 2 ξ w (x, ω) U w (x, k , ω) = 0 , (33) 
where ξ e (x), ω = µ 0 and ξ m (x, ω) = ε(x, ω). The solutions to these equations can be determined from the 2 × 2 transfer matrices T e (k , ω) and T m (k , ω)

relating the values of the fields' tengential components parallel to the layers at the planes x = 0 and x = -h [START_REF] Pierre | Appropriate truncation for photonic crystals[END_REF][START_REF] Liu | Causality and passivity properties of effective parameters of electromagnetic multilayered structures[END_REF]. For w = e, m, the general expression of these transfer matrices is [53]

T w (k , ω) =   A w (k , ω) B w (k , ω) C w (k , ω) A w (k , ω)   , (34) 
where the coefficents are analytic functions in the half plane of complex frequen-cies ω with positive imaginary part and are related by the identity

A w (k , ω) 2 -B w (k , ω)C w (k , ω) = 1 . (35) 
Each transfer matrix T e (k , ω) and T m (k , ω) is thus determined by two independent parameters. In particular, defining, for w = e, m,

k w ⊥ (k , ω) = 1 ih ln A w (k , ω) + i 1 -A w (k , ω) 2 , X w (k , ω) = B w (k , ω) C w (k , ω) , (36) 
the transfer matrices (34) can be equivalently expressed as

T w (k , ω) =   cos k w ⊥ (k , ω)h i sin k w ⊥ (k , ω)h X w (k , ω) i sin k w ⊥ (k , ω)h /X w (k , ω) cos k w ⊥ (k , ω)h   . (37) 
It is stressed that the imaginary part of the parameter k w ⊥ (k , ω) cannot vanish for frequencies ω with postive imaginary part [START_REF] Liu | Causality and passivity properties of effective parameters of electromagnetic multilayered structures[END_REF], otherwise this would allow the existence of Bloch modes in the one-dimensional system resulting from the periodic stacking of the multilayered structure [START_REF] Tip | Band structure of absorptive photonic crystals[END_REF][START_REF] Liu | Causality and passivity properties of effective parameters of electromagnetic multilayered structures[END_REF]. The sign of the imaginary part of k w ⊥ (k , ω) can be chosen positive, i.e.

Im ω > 0 =⇒ Im k w ⊥ (k , ω) > 0 , (38) 
which fix the sign of the square root in the definition (36) of the second parameter X w (k , ω). This remarkable property [START_REF] Belov | Boundary conditions for interfaces of electromagnetic crystals and the generalized ewald-oseen extinction principle[END_REF] ensures that the definition [START_REF] Craster | High-frequency homogenization for periodic media[END_REF] preserves in the domain Im ω > 0 the analytic property of the parameters k w ⊥ (k , ω) and X w (k , ω) since A w (k , ω) cannot take the values ±1 and B w (k , ω) and C w (k , ω) cannot vanish.

The transfer matrices and thus the four independent parameters k w ⊥ (k , ω) and X w (k , ω) fully determine the solution to Maxwell's equations outside the multilayered structure. For instance, the fields reflected and transmitted by the multilayered structure can be expressed from these four parameters. Thus, these parameters can be used to define an homogeneous effective medium that will lead to the same solutions to Maxwell's equations outside the multilayered structure. Notice that this procedure corresponds to the retrieval method [START_REF] Smith | Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[END_REF][START_REF] Simovski | Local constitutive parameters of metamaterials from an effective-medium perspective[END_REF]. The homogeneous effective medium must be described by four effective parameters with the (k , ω)-dependence. According to the symmetry of the structure, let ε eff (k , ω) and µ eff (k , ω) be the effective anisotropic permittivity and permeability defined by, for w = e, m,

ξ w eff (k , ω) =      ξ w (k , ω) 0 0 0 ξ w (k , ω) 0 0 0 ξ w ⊥ (k , ω)      , ξ e = µ , ξ m = ε , (39) 
where ξ w (k , ω) are the components in the plane parallel to the layers and ξ w ⊥ (k , ω) are the components in the stacking direction. In this effective medium, the Maxwell's equations for the components U e (x, k , ω) and U m (x, k , ω) of the electric and magnetic fields become

∂ 2 ∂x 2 U w (x, k , ω) + ω 2 µ (k , ω)ε (k , ω) -k 2 ξ w (k , ω) ξ w ⊥ (k , ω) U w (x, k , ω) = 0 , (40) 
where ξ e = µ and ξ m = ε. The transfer matrices T e eff (k , ω) and T m eff (k , ω) corresponding to a layer of the effective medium with thickness h are, for w = e, m,

T w eff (k , ω) =   cos k w eff (k , ω)h i sin k w eff (k , ω)h X w eff (k , ω) i sin k w eff (k , ω)h /X w eff (k , ω) cos k w eff (k , ω)h   , (41) 
where

k w eff (k , ω) = ω 2 µ (k , ω)ε (k , ω) -k 2 ξ w (k , ω)/ξ w ⊥ (k , ω) , X w eff (k , ω) = ω ξ w (k , ω)/k w eff (k , ω) , (42) 
As a final step, the identification of the transfer matrices of the multilayered structure with the ones of the effective medium provides the four equations

k w eff (k , ω) = k w ⊥ (k , ω
) and X w eff (k , ω) = X w (k , ω), with w = e, m. These four equations define the following components of the effective permittivity and permeability:

ωε (k , ω) = k m ⊥ (k , ω)X m (k , ω) , 1 ωε ⊥ (k , ω) = k e ⊥ (k , ω)X e (k , ω) -k m ⊥ (k , ω)/X m (k , ω) k 2 , ωµ (k , ω) = k e ⊥ (k , ω)X e (k , ω) , 1 ωµ ⊥ (k , ω) = k m ⊥ (k , ω)X m (k , ω) -k e ⊥ (k , ω)/X e (k , ω) k 2 . ( 43 
)
The components µ (k , ω) and µ ⊥ (k , ω) of the effective permeability µ eff (k , ω)

have been defined for a non vanishing parallel wave vector k while the definition (63) is at the limit k -→ 0. However, it is possible to define a permeability depending upon the wave vector as [101]

1 ωµ(k, ω) = 1 ωµ 0 + ωε lg (k, ω) -ωε tr (k, ω) k 2 , (44) 
which preserves the equivalence of the descriptions of an isotropic medium by ε(ω) and µ(ω) and by the permittivity tensor ε(k, ω) with expression [START_REF] Gralak | Anomalous refractive properties of photonic crystals[END_REF].

It is stressed that the four functions ε (k , ω), 1/ε ⊥ (k , ω), µ (k , ω) and 1/µ ⊥ (k , ω) defining the effective parameters, are analytic with respect to the frequency ω in the upper half complex plane of ω with positive imaginary part. This is a consequence of the analytic properties of the parameters k w ⊥ (k , ω) and X w (k , ω) which follow from the relation [START_REF] Belov | Boundary conditions for interfaces of electromagnetic crystals and the generalized ewald-oseen extinction principle[END_REF]. Also, for the parameters 1/ε ⊥ (k , ω) and 1/µ ⊥ (k , ω) the numerators vanish when k -→ 0 since in that case the solutions of two equations for e and m waves are identical, which implies k e ⊥ (0, ω) = k m ⊥ (0, ω) and X e (0, ω) = 1/X m (0, ω). Hence the effective parameters have the analytic properties required by the causality principle and the derivation of the Kramers-Kronig relations.

The consequences of the passivity on the effective parameters should be derived from the relation Im ωε(x, ω) ≥ Im ωε 0 . Let the multilayered structure be periodically stacked so that it fills all the semi-infinite space x < 0: ε(x, ω) = ε(x -h, ω) for x < 0 and ε(x, ω) = ε 0 for x > 0. Let e ⊥ be the unit vector in the stacking direction x and ∇(k ) the differential operator (ik + e ⊥ ∂/∂x) after the Fourier decomposition in the plane parallel to the layers. After the Fourier decomposition, the Helmhotz operator H(ω) for the multilayered stack is

H(k , ω)E (x) = -∇(k ) × 1 ωµ 0 ∇(k ) × E (x) + ωε(x, ω)E (x) , (45) 
where the (k , ω)-dependence of the electric field has been omitted. Let H eff (k , ω)

be the Helmhotz operator of the effective structure which coincides with [START_REF] Tsukerman | Classical and non-classical effective medium theories: New perspectives[END_REF] except for the domain x < 0 where ε(x, ω) and µ 0 are replaced by ε eff (k , ω) and

µ eff (k , ω
). An electromagnetic source J (x) outside the composite is considered, i.e. J (x) = 0 if x < 0. The electric field generated by this source in presence of the multilayered structure is the solution to

H(k , ω)E (x) = J (x) , (46) 
and the electric field generated by this source in presence of the effective structure is the solution to

H eff (k , ω)E eff (x) = J (x) . (47) 
The two electric fields are identical outside the multilayered structure: E (x) = E eff (x) if x > 0. Thus, defining the inner product by

E , J = R dx E (x) • J (x) , (48) 
the identity E eff , J = E , J holds for all source J (x) vanishing for x < 0, and takes the form

E eff , H eff (k , ω)E eff = E , H(k , ω)E . (49) 
Notice that the integrals are well-defined as soon as the imaginary part of the frequency is strictly positive: Im ω > 0. In order to take the limit Im ω -→ 0, it is assumed that there is a material in the multilayered stack with absorption, i.e. Im ωε(x, ω) > 0 at some x < 0. Then, considering the imaginary part, the identity (49) implies for real frequencies ω

Im E eff , H eff (k , ω)E eff = E , Im ωε(ω) E > 0 . (50) 
Notice that the integrals over x in this relation [START_REF] Alù | Restoring the physical meaning of metamaterial constitutive parameters[END_REF] reduce to the domain x < 0. Let P e and P m = 1 -P e be the orthogonal projections on the electric and magnetic waves:

P e = 1 - k k k 2 -e ⊥ e ⊥ , P m = k k k 2 + e ⊥ e ⊥ , (51) 
where the rank-two tensors act as

k k • E = (k • E )k and e ⊥ e ⊥ • E = (e ⊥ •
E )e ⊥ . For x < 0 the electric field E eff (x) is the solution to H eff (k , ω)E eff (x) = 0 and thus, for w = e, m,

∇(k ) × P w • E eff (x) = ik w × E eff (x) , k w = k -k w ⊥ (k , ω)e ⊥ , (52) 
where the (k , ω)-dependence of the vectors k w (k , ω) is omitted. Notice that the minus sign in front of the component along e ⊥ has been chosen according to the condition [START_REF] Belov | Boundary conditions for interfaces of electromagnetic crystals and the generalized ewald-oseen extinction principle[END_REF] in order to ensure the exponential decrease of the transmitted field at the limit x -→ -∞. Hence, for x < 0, it is obtained

H eff (k , ω)E eff (x) = ωε eff (k , ω)E eff (x) + k e × 1 ωµ eff (k , ω) k e × P e • E eff (x) + k m × 1 ωµ eff (k , ω) k m × P m • E eff (x) . (53) 
Considering, for w = e, m, the operation k w × as a rank-two antisymmetric tensor, the relation [START_REF] Alù | Restoring the physical meaning of metamaterial constitutive parameters[END_REF] implies that the rank-two tensor

ωε eff (k , ω) + k e × 1 ωµ eff (k , ω) k e × P e + k m × 1 ωµ eff (k , ω) k m × P m (54) 
has positive imaginary part. Since P m • k m = k m and P e • k m = 0, the contraction of the tensor above by k m and its complex conjugate k m provides the relation

Im ωk m • ε eff (k , ω) • k m = k 2 Im ωε (k , ω) + |k m ⊥ | 2 Im ωε ⊥ (k , ω) > 0 . ( 55 
)
Thus a condition forcing the imaginary part of the effective permittivity components to be positive is obtained. On the other hand, there is no condition on the imaginary part of the effective permeability. Indeed, some arguments lead to 400 the conclusion that the imaginary part of the effective permeability ωµ eff (k , ω) must take positive and negative values.

As pointed out when it has been defined [START_REF] Markel | Homogenization of Maxwells equations in periodic composites: Boundary effects and dispersion relations[END_REF], the inverse effective permeability 1/µ eff (k , ω) is an analytic function in the upper half plane of complex frequencies ω with positive imaginary part (notice that ωµ (k , ω) cannot vanish as well as k e ⊥ (k , ω) and X e (k , ω)). This follows from the analytic properties of the permittivity ε(x, ω) of the multilayered structure and the contruction of the effective parameters. In addition, since the permittivity ε(x, ω) tends to that of vacuum ε 0 when |ω| → ∞, all the effective parameters tend as well to ε 0 and µ 0 . Hence the relation ( 24) deduced from the Kramers-Kronig relations is true for the inverse effective permeability at k = 0:

1 µ eff (0, 0) = 1 µ 0 + 2 π ∞ 0 dν Im 1 νµ eff (0, ν) . (56) 
And, more generally, the same relation is obtained when the wave vector k is set to k 2 = ω 2 ε 0 µ 0 u 2 with u 2 < 1, which corresponds to an excitation at a fixed angle. Next, it is used that the quasistatic limit provides µ eff (0, 0) = µ 0 since the starting multilayered structure is non-magnetic: the relation (56) becomes

∞ 0 dν Im 1 νµ eff (0, ν) = 0 . (57) 
Hence it can be concluded that the imaginary part of the effective permeability µ eff (0, ν) must take positive and negative values. Notice that, if the permittivity ε(x, ω) of the multilayered structure is well-defined for all frequency ω, then the 405 inverse effective permeability 1/µ eff (k , ω) is also exactely and well-defined for all frequency ω. Thus, in the present case, contrary to the situation described in [3, section 82], the Kramers-Kronig relations and the integrals ( 56) and ( 57) make sense.

Finally, it can be checked that the Kramers-Kronig relations and the resulting sum rules are consistent for the effective permittivity. According to the analytic properties of the inverse effective permittivity, the relation ( 56) is true for ε eff (k , ω):

1 ε eff (0, 0) = 1 µ 0 + 2 π ∞ 0 dν Im 1 νε eff (0, ν) . ( 58 
)
The value of the effective permittivity of the multilayered structure at the quasistatic limit is given by [START_REF] Liu | Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers[END_REF] ε

(0, 0) = 0 -h dx ε(x, 0) , 1 ε ⊥ (0, 0) = 0 -h dx 1 ε(x, 0) . ( 59 
)
Since the permittivity of the multilayered structure takes real values greater ε 0 410 at the static limit [START_REF] Landau | Electrodynamics of Continuous Media[END_REF], then this is also the case for the effective permittivity:

ε (0, 0) > ε 0 and ε ⊥ (0, 0) > ε 0 . These relations are consistent with the sum rule [START_REF] Gralak | Analytic properties of the electromagnetic Greens function[END_REF] and the condition (55) on the imaginary part of the effective permittivity.

These arguments confirm the lack of symmetry between the permittivity ε(ω) and the permeability µ(ω). In that case it is relevant to consider the Maxwell's equations with spatial dispersion. In this article, the exact and explicit expression of the effective parameters of a multilayered structure has been derived for all the frequencies ω and wave vector k . According to the equation ( 53), the expression of the corresponding effective permittivity tensor with spatial dispersion takes the form

ωε eff (k, ω) = ωE eff (k, ω) + k × 1 ωU eff (k, ω) - 1 ωµ 0 k× , (60) 
where the "permittivity part" E eff (k, ω) and the "permeability part" U eff (k, ω) should be expressed from ε eff (k , ω) and µ eff (k , ω). The coefficients of the tensor ε eff (k, ω) depending on (k, ω) are different from the effective parameters depending on (k , ω) in the rank-two tensor (54) because they do not take into account the dispersion laws for w = e, m: k(ω) = k ± k w ⊥ (k , ω)e ⊥ . Thus the following functions are introduced for w = e, m:

K w (k, ω) = k 2 -k w ⊥ (k , ω) 2 , (61) 
where the sign of the square root will not play a role since all the coefficients and parameters used here depend on the square of k [the starting equations ( 33) and (40) depend on k 2 ]. Defining the "permittivity part" as

E eff (k, ω) = ε eff (K e (k, ω), ω)P e + ε eff (K m (k, ω), ω)P m , (62) 
it is obtained for w = e, m that K w (k, ω) equals k and E eff (k, ω)P w equals ε eff (k , ω)P w when the dispersion law is complied at k

(ω) = k ± k w ⊥ (k , ω)e ⊥ .
Similarly, using that the rank-two antisymmetric tensor k× acting on P m gives P e acting on k×, the "permeability part" of the tensor can be defined as U eff (k, ω) = µ eff (K e (k, ω), ω)P m + µ eff (K m (k, ω), ω)P e .

Notice that the projections P e and P m , defined by ( 51), depend on the vector k and, consequently, the "permittivity part" E eff (k, ω) and the "permeability part" U eff (k, ω) depend on the vector k although the effective parameters only depend on the norm k . Finally, substituing the expressions ( 62) and ( 63) in [START_REF] Hooft | Comment on "Negative refraction makes a perfect lens[END_REF], the effective permittivity tensor is given by ωε eff (k, ω) = ωε e eff (k, ω)P e + ωε m eff (k, ω)P m ,

where, for w = e, m, ωε w eff (k, ω) = ωε eff (K w (k, ω), ω)

+ k × 1 ωµ eff (K w (k, ω), ω) - 1 ωµ 0 k × . ( 65 
)
Hence the effective permittivity tensor ε eff (k, ω) has been constructed for all frequency ω and wave vector k. This exact and explicit expression of an anisotropic permittivity tensor with spatial dispersion could be the starting point of further investigations on spatial dispersion in macroscopic electromagnetism. As a first result, it has been shown that the imaginary part of the effective permeability of a passive multilayered structure must take positive and negative values.

Conclusion

The advent of negative index materials opened questions that have tested the domain of validity of macroscopic electromagnetism. The existence of a negative index of refraction appeared as unreachable during more than 30 years until the introduction of microstructured resonant media and metamaterials.

Then, considerable progress has been made in the engineering and the design of microstructured media reporting extraordinary properties. In this article, several mechanisms leading to negative index and negative refraction have been briefly reviewed: the original ideas developed by J. Pendry and his colleagues with the design of microstructured metallic media displaying electric and magnetic resonances; the exploitation of the richness of the dispersion law in dielectric photonic crystals to obtain negative refraction; and the development of numerous non-asymptotic homogenization techniques and effective medium modellings for composite media. All these advances over the last twenty years are now particularly exploited in the design of metasurfaces [START_REF] Yu | Flat optics with designer metasurfaces[END_REF][START_REF] Lin | Dielectric gradient metasurface optical elements[END_REF] and topological insulators [START_REF] Rechtsman | Photonic floquet topological insulators[END_REF][START_REF] Fefferman | Honeycomb schrödinger operators in the strong binding regime[END_REF]. They have also been extended to other classical waves equations in acoustics, mechanics and hydrodynamics [START_REF] Craster | Elastic, Acoustic, and Seismic Metamaterials[END_REF].

Then, it has been seen how the extraordinary properties of negative index materials and metamaterials must be associated with frequency dispersion and spatial dispersion. In addition, it has been shown that the time-harmonic Maxwell's equations cannot describe properly systems like the perfect negative index flat lens or corner reflector. On the other hand, the introduction of the auxiliary field formalism provides a canonical approach to describe frequency dispersive negative index structures. It has been shown that the spectacular effects in the perfect flat lens and corner reflector are associated to the presence, at the prefect -1 index frequency, of essential spectrum in the Maxwell's equations. More generally, the presence of intervals of essential spectrum has been highligthed in corner structures at frequencies where frequency dispersive permittivity takes negative values. This essential spectrum generated by the corner is associated with an analog of "black hole" phenomenon, the corner behaving like an unbounded domain. This raises challenging and fascinating questions in applied mathematics (e.g. in the case of three-dimensional corners), in physics with the analog of "black hole" phenomenon and in numerical modelling for the computation of modes of dispersive structure (e.g. in the quasi-normal modes expansion). In particular, the canonical formalism for dissipative and frequency dispersive Maxwell's equations, the auxiliary fields formalism, offers the opportunity to analyze rigorously an analog of "black hole" phenomenon.

In the last section, it has been shown how the effective permittivity, which has been intensively analyzed for negative index materials and metamaterials, highlighted ambiguities in the passivity requirement and Kramers-Kronig rela-tions for the permeability. In this article, several arguments have been reported

to support that, in a passive medium, the imaginary part of the permeability can take positive and negative values. This statement is in contradiction with the usual presentation of macroscopic electromagnetism where the permittivity and the permeability are introduced in a symmetric way, and thus in passive media both have positive imaginary part. The approach considered here was to define the permeability from the permittivity with spatial dispersion, which breaks the symmetry between the permittivity and the permeability. The effective permeability of a passive and non-magnetic multilayered structure has been derived exactly for all frequency and wave vector: in that case, it has been shown that the effective permeability is subject to the Kramers-Kronig relations and has imaginary part taking positive and negative values. In addition, the full effective anisotropic permittivity tensor with spatial dispersion has been derived explicitely for all frequency and wave vector and could be the starting point of further investigations on spatial dispersion in macroscopic electromagnetism.
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 21 Figure 1: Refraction at an interface separating two media with positive refractive indices (left) and with positive and negative refractive indices (right).

  an interface separating a homogeneous medium from a photonic crystal, the tangential component k of the (Bloch) wave vector k, parallel to the interface, is conserved according to the invariance of the periodic structure under the discrete set of lattice translations {±a, ±2a, ±3a, . . . }. Therefore, if the group 110 velocity v g has opposite direction from the wave vector k, then this invariance of the tangential component k of the wave vector results in the sign change of the tangential component v g at the interface. Such a situation, where the group velocity v g and the Bloch wave vector k have opposite signs, can be realized thanks to the folding of the dispersion law in photonic crystals, as represented 115 on figure 2. Detailed analyses and numerical demonstrations of negative refrac-
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 3 Figure3: An external current source J (x, t) swithed on at the intial time t = 0 and then oscillating at the frequency ω 1 . This source is located at the vicinity of a plane interface separating the vacuum from a medium with perfect -1 index at the frequency ω 1 .
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 4 Figure 4: The reponse of the external current source swithed on at the intial time t = 0 and then oscillating at the frequency ω 1 . The amplitude of the evanescent waves at the plane interface separating the vacuum from the perfect -1 index medium (see right panel) is linearly increasing with time (see left panel).
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 5 Figure 5: Left: a two-dimensional corner structure of angle α delimiting a frequency dispersive medium of permittivity ε d (ω). Right: the 2π-periodic one-dimensional layered structure obtained after the change of variable r -→ u = ln(r/r 0 ) and the assumption considering that the modes are localized in the vicinity of the corner.
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 6 Figure 6: Left: the radial dependence of the electric field of a corner mode with amplitude increasing like 1/r and spatial frequency tending to infinity like ln(1/r) when r -→ 0. Right: a representation of the electric field of a corner mode at the vicinity of the corner.
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 3 section 80], Im µ(ω) ≥ 0, which becomes for all frequency ω with positive imaginary part Im ωµ(ω) ≥ Im ωµ 0 .

in 1/ √ r and to finite energy fields [90, sections 5.2, 5.3 and 9.7.5]. In the present case of negative permittivity, the corner modes have infinite energy and are then "generalized eigenvectors" associated with the essential spectrum corresponding

Acknowledgments

Sébastien Guenneau is gratefully acknowledged for his precious support.

Anne-Sophie Bonnet-BenDhia, Maxence Cassier, Lucas Chesnel, Christophe Hazard and Sandrine Paolantoni are gratefully acknowledged for the fruitful discussions.