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Abstract
In this paper, we present a data set and methods to compare
speech processing models and human behaviour on a phone dis-
crimination task. We provide Perceptimatic, an open data set
which consists of French and English speech stimuli, as well
as the results of 91 English- and 93 French-speaking listeners.
The stimuli test a wide range of French and English contrasts,
and are extracted directly from corpora of natural running read
speech, used for the 2017 Zero Resource Speech Challenge. We
provide a method to compare humans’ perceptual space with
models’ representational space, and we apply it to models pre-
viously submitted to the Challenge. We show that, unlike un-
supervised models and supervised multilingual models, a stan-
dard supervised monolingual HMM–GMM phone recognition
system, while good at discriminating phones, yields a represen-
tational space very different from that of human native listeners.
Index Terms: evaluation, unsupervised, speech recognition

1. Introduction
Not all errors are equal. If your task is to identify animals, mis-
taking a chimpanzee for a marmoset is less important than mis-
taking a chimpanzee for a hippo. This is also true when evaluat-
ing models that deal with human speech. Speech sounds differ
from each other in different ways, and mistaking one sound for
another in a given language is less important if the two sounds
are also highly confusable for human native speakers.

Several works have made detailed comparisons between
human speech perception experiments and automatic speech
recognition (ASR) and related systems. In [1], neural ASR
word transcription errors were compared qualitatively with er-
rors made by human annotators, while [2] compared HMM
phoneme confusions with the results of a human phoneme la-
belling experiment. The finer-grained study in [3] compared
Japanese speakers’ perceptual boundaries for the (allophonic)
[s]/[C] contrast with the behaviour of GMM phoneme classi-
fiers, while [4] compared phonetic adaptation by Dutch listen-
ers to artificially “accented” productions of the [r]/[l] to acous-
tic models adapted to the experimental stimuli. Several studies
also investigate whether ASR and unsupervised speech repre-
sentation learning accords with established phenomena in hu-
man speech perception at a qualitative level [5, 6, 7, 8].

All of these comparisons focus either on one language, one
model, or a handful of sounds. Most deal with models that pre-
dict phoneme labels, using methods that do not work for unsu-
pervised models. In this paper, we present a large-scale phone
discrimination task that can be performed by a wide range of
models, and make a quantitative comparison with human lis-
teners performing the same task.

Our contribution is twofold. First, we provide Percepti-
matic, a data set containing stimuli and human results for a
speech perception task in English and French (an extension of
the English-only data described in [9]). Second, we use this data
to evaluate the models submitted to the 2017 Zero Resource
Speech Challenge (ZeroSpeech: see below).

We base our data set on test data used in the evaluation of
the ZeroSpeech Challenge [10, 11, 12]. This machine learning
challenge series aims to find methods for autonomously acquir-
ing language, focusing on unsupervised learning for speech-
related tasks. We focus on the French and English unsupervised
subword modeling task in the 2017 edition. This task proposes
to build systems that autonomously learn phoneme-like repre-
sentations of speech from raw, continuous speech recordings. It
is evaluated by a global phone discriminability measure applied
to the learned representations. We provide a clean and manually
verified subset of the 2017 test stimuli, along with experimen-
tal results from French- and English- speaking listeners on the
phone discrimination task. To our knowledge, Perceptimatic is
the first freely available data set of stimuli taken from natural,
running French and English speech accompanied with human
responses in a phone discrimination task, and as such, is the first
human data comparable to the automatic phone discriminability
evaluation used for unsupervised subword modelling.1

We use two methods to apply these results to the models
submitted to ZeroSpeech 2017: we comparing models on how
well they predict human behaviour in a speech discrimination
task using the method in [13], and, in addition, we re-weight the
results of the original ZeroSpeech 2017 phone discriminability
scores to take account of native listeners’ relative discriminabil-
ity of different sounds. We show that, with this reweighting, one
of the submitted systems performs better than the challenge’s
supervised ASR reference system. We also show that this super-
vised ASR system, while performing well on the phone discrim-
inability evaluation, has a representational space that is very dif-
ferent from that of human native listeners, and very different
from the systems submitted to the ZeroSpeech challenge.

2. Human and machine discrimination
2.1. Machine ABX discrimination

A machine ABX phone discrimination test is a binary decision
task in which two speech stimuli, A and B, which only differ in
their centre phone (for example, [seIk]–[soUk] or [zfA]–[zpA]),
are presented. A third stimulus, X, must be identified as being

1All code used for the experiments, as well as
stimuli and human results are available online at:
https://github.com/JAMJU/interspeech-2020-perceptimatic, an exten-
sion of https://github.com/JAMJU/Cogsci2020-Perceptimatic-English



more similar to either A or B. This stimulus also shares the same
first and last phones, and has the same centre phone as either A
or B. RA, RB and RX , the representations of respectively A,
B, and X, are extracted from the models to be evaluated, and
distances d(RA, RX) and d(RB , RX) are computed. Machine
ABX phone discrimination tasks are often used for evaluating
unsupervised speech models. They are generic, and are also
appropriate for evaluating supervised models.

Since stimuli are not all of the same duration, distance func-
tions based on dynamic time warping are typically used (no-
tably in the ZeroSpeech Challenges). Dynamic time warping
takes two sequences C and D as input (in our case either RA
and RX or RB and RX ), as well as a function γ for compar-
ing pairs of sequence elements. It aligns C and D by matching
the elements of one to the other so as to minimize the sum of
γ(c, d) for all matched elements (c, d). Each element ofC must
be matched with at least one element ofD, and alignments must
respect temporal order. We calculate distances between stimuli
C = c1, c2, ...cp and D = d1, d2, ...dq as:

d(C,D) =

∑
ci,dj are matched γ(ci, dj)

max(p, q)
(1)

As in ZeroSpeech 2017, we take γ as either the arc cosine of
the normalized dot product or the symmetrised KL-divergence.

Once d(RA, RX) and d(RB , RX) are obtained using one
of these methods, we compute δ = d(RB , RX) − d(RA, RX)
if A and X belong to the same category, δ = d(RA, RX) −
d(RB , RX) if it matchesB. If δ > 0, then the model is consid-
ered to be correct, otherwise, it is considered to be wrong. We
perform this operation on many ABX triplets for a given pair of
phones. The percent accuracy gives a measure of the model’s
discriminability of the two phone categories.

The ZeroSpeech 2017 evaluation is an ABX phone discrim-
ination task in which the A, B, and X stimuli are extracts taken
from running speech. Models generate representations of audio
files containing stimuli plus a surrounding context, from which
their representations of the stimuli are extracted. In the cur-
rent paper, we focus on the condition in which models are given
one-second audio files, and in which X is uttered by a different
speaker than A and B (across speaker). The ZeroSpeech 2017
evaluation measure was the average accuracy over all phone
pairs.2 Instead of relying only on this accuracy, we propose
to evaluate models with respect to a human reference data set.

2.2. Human ABX discrimination

An ABX phone discrimination task for human participants is as
follows: participants hear three stimuli in sequence (a triplet)
and are asked to identify which one of the first two stimuli (A
or B) is more similar to the third (X). As in the machine ABX
task, the stimuli are such that one of the two responses is al-
ways considered correct (here, the centre phone of X matches
either that of A or of B). We use the same stimuli as for the
machine ABX task, and obtain multiple human responses for
each triplet, which we code as correct or incorrect. We take
two approaches to dealing with this data. First, we combine
data across participants to compute an item-level accuracy for

2In [11], this average was computed in several steps by averaging
accuracies the across contexts (flanking phones), then across speakers,
and then across all centre phones. In our case, the test set on which we
evaluate the models is almost exactly balanced for context, speakers,
and centre phones. Thus, when we calculate accuracies, we simply take
the global accuracy over all triplet items.

each triplet item. These item-level accuracies can the be aver-
aged into accuracies for individual phone contrasts, comparable
with those calculated in the machine ABX task. Alternatively,
we can drop the notion of category discriminability, and com-
pare models’ gradient δ values with the probability that listeners
give the correct answer, at the level of individual triplet items.

2.3. Comparing model and human performance

We relate human and model results in two ways. First, in order
to have a phone discrimination score that takes into account dif-
ferences in how “hard” each triplet item is, we weight models’
decisions by human accuracies as follows:

RewAccABX =

∑
t∈test 1δM (t)>0 ×Hum(t)∑

t∈testHum(t)
(2)

where δM (t) is the δ value for a triplet item t given by a model
M , and with Hum(t) is the percent accuracy for human lis-
teners for the triplet item t (for French items, the accuracy is
computed over French listeners, and for English items, the ac-
curacy is computed over English listeners). This score gives
more importance to triplets that are “easy” for human native
listeners, and thus more important to discriminate correctly. It
reduces the impact of triplets that are “hard” for humans, either
because A, B and X are perceived as very similar, or because X
is perceived to be more similar to the “wrong” answer.

Second, we compare models’ representational spaces with
humans’ perceptual space in a detailed way. To do this, we eval-
uate models’ ability to predict individual human responses. We
evaluate use the δ values as predictors in a binary regression,
predicting whether a human listener will have the correct re-
sponse or not on a given trial. Each model we evaluate is trained
separately on French and on English, yielding two δ values.3

For each model, we fit an overparameterized probit regression
with two zero-one language indicators as bias predictors, one
which is 1 for French observations, and another which is 1 for
English observations. We then construct French- and English-
only δ predictors by multiplying the two δ values by the two
indicator variables.4 We calculate the log-likelihood. Mod-
els with better (higher) log-likelihoods have representational
spaces more similar to humans’, in the sense that relative dis-
tances in the model predict human discriminability.

3. Perceptimatic data set construction
The stimuli are taken from the French and English ZeroSpeech
2017 test stimuli. These stimuli were originally generated us-
ing forced alignment on the LibriVox audio book collection,
and identifying all sequences of three phones. There are sev-
eral problems with these materials. First, the number of triplets
is too large to feasibly test on a large number of subjects. Sec-
ond, there are labelling errors, as well as phones which may not
be part of the language variety of certain listeners. Third, the
phonetic similarity of the centre phone between X and the cor-
rect answer is often doubtful because of contextual variability.
Fourth, the flanking phones are sometimes very different for A,
B and X, due to contextual variability. Finally, the phone bound-
aries are not precise enough. We eliminated incorrectly labelled

3For models trained on other languages, we use the same δ values
for French and English.

4We also add as a predictor a binary variable indicating whether the
correct answer was presented first or second, and the trial’s position in
the experiment, as well as predictors for participant.



phones, and then, as native English and French listeners, se-
lected and realigned a subset of triplets by hand to minimize
these issues. In total, the cleaned subset consists of 5202 triplets
(2214 from English), making 461 distinct centre phone con-
trasts (212 English, 249 French), in a total of 201 distinct con-
texts (118 English, 83 French), with most phone comparisons
appearing in three contexts each (a total of 47 English contrasts
appear in either one, two, or four contexts). The speakers used
(15 English, 18 French) have, in our assessment, pronunciations
close to standard American English/Metropolitan French.5

The data set includes 91 participants located in the United
States reporting English as the sole language to which they were
primarily exposed up to the age of eight, and 93 located in
France, attesting the same for French. They were recruited on-
line on Amazon Mechanical Turk (all English speakers, and 57
French speakers) and in person, and all performed the test on-
line with LMEDS software [14].6 They were paid for partici-
pation. All participants were tested both on English and French
stimuli. Here we only report results on English contrasts for
English listeners and on French contrasts for French listeners.

For testing, triplets were counterbalanced into lists of 190
per participant.7 Each triplet was tested three times, so that most
contrasts are tested at least 36 times. Participants respond as to
which of the two reference stimuli the probe corresponded to
on a six-point scale, ranging from first for sure to second for
sure, with two intermediate degrees of certainty for each. The
data set includes both these responses and a binarized version.
Except in Figure 2, we report only the binarized responses.

4. Experiments
We evaluate the models submitted to the 2017 ZeroSpeech chal-
lenge. We compare them with the topline representation used in
the challenge, posteriorgrams from a supervised HMM-GMM
phone recognition system with a bigram phone-level language
model, trained with a Kaldi recipe [16]. We also compare them
with the baseline representation, mel filterbank cepstral coef-
ficients (MFCCs) (thirteen first coefficients with ∆ and ∆∆,
with mean-variance normalization over a moving 300 millisec-
ond window). We add two models that have been shown to have
representational spaces similar to human perceptual space [9]:
multilingual bottleneck features (Bot: [17]) and a Dirichlet pro-
cess Gaussian mixture model (DP: [18]). Bot representations
are from a bottleneck layer of a model trained to label phoneme
states in seventeen phonetically diverse languages (107 hours
training data in total; French and English are not included).8

We use the Shennong package9 to extract these representations.

5The full set of English centre phones included in at least one item
is [æ A b d D eI E f g h i I k l m n N oU p ô s S t tS u U v 2w z]. The full set
of French phones is [a Ã b d e E Ẽ f g i j k l m n ñ o ø O Õ p K s S t u v w
y z Z]. For the full list of pairs and contexts, see the online repository.

6[15] compared data from an in-lab speech perception experiment
with a Mechanical Turk replication and found a close correspondence.
48 additional participants (15 US, 33 France) were tested but did not
meet the language background requirements, and 115 participants (65
US, 50 France) were rejected for failing at least three out of twelve catch
trials or not finishing the task. The catch trials consisted of additional,
highly distinct ABX stimuli, including several which required partici-
pants to distinguish cat from dog for English speakers or caillou from
hibou for French speakers.

7No participant is tested twice on the same phone pair, and the com-
bination of speakers is not predictive of the right answer.

8If the same sound belongs to different inventories, it is treated as
distinct, for a total of 1032 possible phonemes.

9https://github.com/bootphon/shennong

DP is a Gaussian mixture model over individual frames, from
which we draw posteriorgrams. We use pretrained models from
[13], trained on 34 hours of English speech and on 33 hours and
42 minutes of French speech, both from LibriVox.

For each ZeroSpeech 2017 model, we use the English and
French features as they were submitted to the challenge, in the
one second condition. All the models are presented in [11], and
we evaluate the systems [H] [19], [P1], [P2], [20] [A3] [21],
[Y1], [Y2] [22], [S1], [S2] [23], [C1] and [C2] [24]. Broadly
the systems follow four types of strategies. The first ([H],
[P1] and [P2]) consists in performing a bottom-up frame-level
clustering. The second ([C1], [C2] and [A3]) is to construct
language-independent embeddings by training neural networks
in an unsupervised way. The third ([Y1] and [Y2]) is to use
spoken term discovery to improve the acoustic features. [Y3]
is a supervised version of these systems, using transcribed pairs
from the Switchboard data set. Finally, [S1] and [S2] use super-
vised pre-training on out-of-domain languages (only Japanese
for [S1] and ten different languages, including French and En-
glish, for [S2]). Except for [S1], [S2] and [Y3], all the models
are trained only on the 2017 challenge data. [H] and [P1] use
only monolingual data, whereas the rest of the models, while
trained separately for each language, make use of the complete
set of languages provided with the ZeroSpeech challenge during
training. We followed the original choices of the authors con-
cerning γ (cosine distance for all, except for [H], which uses
symmetrised KL-divergence). We use the cosine distance for
all reference models, except for DP and the topline, for which
we use the symmetrised KL-divergence.

5. Results
Original ZeroSpeech 2017 ABX accuracies are given on the first
row of Table 1. The original 2017 ZeroSpeech test set con-
tains errors, partially corrected by our modifications (see Sec-
tion 3). ABX accuracies computed only on the Perceptimatic
triplets are on the row Perceptimatic. We observe that the En-
glish and French scores become more similar (French scores
increase and English scores decrease). Future submissions to
ZeroSpeech 2017 should use our data set for a better evalua-
tion of their model. We also re-weight the results of each model
by humans’ results (see row Perceptually Weighted) using (2).
We observe that re-weighting ABX accuracies by giving more
importance to contrasts that are “easy” improves all the scores
(see Table 1). This implies that globally, models already have
more trouble with “hard” contrasts than with “easy” ones.

We then evaluate models based on how well they predict
human behaviour in the experiment. Each “model” we eval-
uate is in fact two trained models (one French, one English),
which each make a gradient prediction of discriminability, δ for
each triplet item. We use these two δ values as predictors for
the response accuracy of the respective human native listeners
(the French δ predicts French stimuli/listeners, and the English
δ English stimuli/listeners) on each item. We then calculate the
overall log-likelihood of a binary-response regression with re-
spect to the experimental data. (See 2.3 above.) This yields a
measure of how well each model predicts human behaviour. To
generate confidence intervals, we resample (N=13655: for each
triplet item, we draw exactly three human responses without re-
placement) and re-fit the regressions.10

Figure 1 plots the phone discrimination accuracy

10Confidence intervals for the differences in log-likelihood between
each pair of models can be found on the online repository.



Table 1: 2017 ZeroSpeech challenge ABX % accuracies (one-second across-speaker conditions), ABX % accuracies on Perceptimatic,
and ABX % accuracy reweighted by human discriminability. Higher scores are better.

topline S2 Bot H S1 DP C2 A3 Y3 C1 Y2 Y1 P2 P1 MFCC

Zerospeech
2017

French 89.4 88.8 86.9 86.4 86.3 83.7 83 82.8 82.3 82.4 81.3 81.1 79.9 79.7 74.9
English 91.4 92.1 90.7 89.9 89.9 88.8 87.3 86.8 86.4 86.2 86 85.8 82.4 82.4 73.4

Perceptimatic
French 92.8 92.3 88.5 88.6 89.6 86.5 85.8 84.4 84.5 84.7 83.3 83.4 81.7 81.9 78.3
English 91.8 92 89.1 90.6 88.5 88.7 86.9 82.8 84.9 84.5 83.2 82.7 82.5 81.8 78.2

Perceptually
Weighted

French 93.4 94 90.1 90.3 91.3 88.5 86.5 86.6 86.3 87.4 85.1 85.2 83.2 83.2 79.9
English 92.8 94.1 91.2 93.0 91.1 91 87.6 85.7 87.1 89 85.7 85.1 84.8 84.3 80.6

Figure 1: Perceptimatic ABX accuracy (mean of French and
English: higher is better) versus log-likelihood. Higher log-
likelihood values indicate representational spaces more similar
to humans’ perceptual space. White: unsupervised; black: su-
pervised. Triangle: multilingual; circles: monolingual on eval-
uated language; diamond: monolingual on another language,
square: MFCCs.

(Perceptimatic) against the mean resampled log-likelihoods.
We observe that having a representational space similar to
humans’ perceptual space is correlated with having a good
ABX accuracy. However, we notice an obvious outlier: the
(topline) supervised ASR model provided as a reference system
for ZeroSpeech 2017. This model is unexpectedly bad at
predicting human results. This result is consistent with results
obtained for neural ASR models trained exclusively on the
native language of human listeners [9]. Unsupervised models
(such as DP) and multilingual models (such as [S1], [S2], and
Bot) seem to be more predictive of human perception. It is
therefore possible to discriminate phones well while making
phoneme confusions very different from those of human
beings. We discuss some possible explanations for this below.

Conversely, the fact that DP obtains the second-highest log-
likelihood (not significantly different from [S2]) is surprising,
given its lower discrimination accuracy. [H], for example, built
on DP to generate a more speaker-invariant representation (it
uses DPGMM clusters as the basis for supervised talker normal-
ization techniques). While these improvements improve phone
discriminability, they yield a less human-like representation.

The best model, both in terms of perceptually-reweighted
accuracy, and in terms of predicting human behaviour, is [S2].
Similarly, Bot also performs well. These two models train on
multilingual supervised phone recognition objectives. [S2] is
then further adapted to either English or French, while Bot is
fixed (and thus has the same δ for the two stimuli languages).
That these systems perform so well suggests that human be-
haviour in this task is driven mainly by universal, general speech

Figure 2: Average of French listeners’ non-binarized results
(higher: correct, and more certain of it) against average δ from
(left) supervised ASR (right) multilingual system [S2]. Each
point is a phone pair. Measures are normalized by dividing by
standard deviation over the entire data set.

perception mechanisms. With respect to this behaviour, mono-
lingual supervised ASR may be over-training to the phone iden-
tification objective. Figure 2 plots French listeners’ continuous
discriminability scores against the French δ for supervised ASR
and for [S2], normalized to be comparable. The ASR δ values
are all shifted to the right, indicating better discriminability, but
at the expense of a poorer correlation with human accuracy.

6. Overview
We have presented Perceptimatic, a data set based on the 2017
ZeroSpeech challenge evaluation data. We used it to evaluate
the models submitted to the 2017 ZeroSpeech challenge, and
showed that, surprisingly, the supervised ASR reference model
has a representational space very different from the perceptual
space of human listeners. On the other hand, unsupervised
models, and supervised models trained on other languages than
the one being tested, seem to have more human-like represen-
tations. We leave open at least two possible explanations for
this result. One is that human listening is simply not tuned to
optimize phone classification in the native language, unlike su-
pervised ASR. Another possibility rests on the observation that
extracts of phones drawn from running speech, while standard
for evaluating unsupervised speech representation learning, are
very different from the types of clean speech stimuli used in
typical human speech perception experiments. For humans,
discriminating naturalistic examples of phones may tap into a
more acoustic mode of listening; some other type of listening
test might give results more comparable to a supervised ASR.
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