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Abstract

We present the Perceptimatic English Benchmark, an open ex-
perimental benchmark for evaluating quantitative models of
speech perception in English. The benchmark consists of ABX
stimuli along with the responses of 91 American English-
speaking listeners. The stimuli test discrimination of a large
number of English and French phonemic contrasts. They are
extracted directly from corpora of read speech, making them
appropriate for evaluating statistical acoustic models (such as
those used in automatic speech recognition) trained on typical
speech data sets. We show that phone discrimination is corre-
lated with several types of models, and give recommendations
for researchers seeking easily calculated norms of acoustic dis-
tance on experimental stimuli. We show that DeepSpeech,
a standard English speech recognizer, is more specialized on
English phoneme discrimination than English listeners, and is
poorly correlated with their behaviour, even though it yields a
low error on the decision task given to humans.
Keywords: benchmarks; speech perception; acoustic dis-
tance; speech recognition

Introduction
There is no accurate computational model of human speech
perception that applies to real speech. Implemented speech
perception models exist which take artificial phonetic or per-
ceptual features as input and map them to recognized words
(McClelland & Elman, 1986; Norris & McQueen, 2008), use
speech recognizers as a front-end to derive phonetic transcrip-
tions (Scharenborg, Norris, ten Bosch, & McQueen, 2005),
or work on raw speech waveforms for extremely artificial ut-
terances only (Elman & McClelland, 2015). Yet, traditional
automatic speech recognition systems directly analyze natu-
ral, recorded, continuous speech and decode it as a sequence
of phonemes or words. We take the reverse engineering ap-
proach (Dupoux, 2018) of concluding that the signal process-
ing and machine learning tools underlying automatic speech
recognition should thus provide a starting point for a model
of human speech perception.

Little is known, however, about the exact nature of the dif-
ference between the behaviour of human beings and that of
speech processing tools developed for an applied purpose.
We propose the Perceptimatic English Benchmark (PEB),
an experimental human data set documenting English and
French phone discrimination by English speaking individu-
als, which is amenable to comparisons with a wide range of
models.1

1All stimuli, human experimental data, analysis and pro-

Our ultimate goal is to build models of human speech per-
ception. The narrower project to which this paper contributes
is to build a testing architecture, and in particular to construct
a series of different benchmarks, tapping into different as-
pects of human speech perception. Here, we construct an ex-
periment which taps into a relatively detail-oriented mode of
speech perception, constraining it to be as similar as possi-
ble to an existing data set (already used for testing statisti-
cal acoustic models) so as to be useful in applied unsuper-
vised speech recognition research as well. We focus on a
simple experiment for which typical speech recognition mod-
els could in principle give results comparable to humans, that
of phone discrimination (typical speech recognition models
are classifiers for sequences of phones). However, speech
recognition models are trained on databases of continuous,
natural speech, while typical experimental stimuli are indi-
vidual phones, syllables, or words, read or synthesized in an
effort to ensure that the phonetic properties being probed are
audible. Such word-list type pronunciations, while clear to
human listeners, are likely quite different from the training
data of standard speech recognition models. Models applied
to them would be faced with the often difficult task of gener-
alizing to a novel speech style. We thus start with a conserva-
tive test: the Perceptimatic English Benchmark is constructed
out of snippets from a French and an English corpus of read
speech—ecological for typical models—tested as phone dis-
crimination experiment items on English listeners.

To the degree made possible by the speech corpora from
which the stimuli are extracted, we make the evaluation com-
plete, in the sense that it tests discrimination of as many pairs
of phones as possible, while being controlled in several ways,
notably in never comparing phones extracted from radically
different phonetic contexts. Using French stimuli in addition
to English stimuli enables us to test English speaking individ-
uals and models trained on English recordings on unfamiliar
sounds, and study their foreign language speech perception.
Details are found in Perceptimatic English Benchmark be-
low.

In this paper, we use the PEB to evaluate seven models
that apply to real speech. We compare models’ representa-
tional space with human perceptual space by studying how

cessing scripts, and model results, are available at the follow-
ing permanent link: https://github.com/JAMJU/Cogsci2020
-Perceptimatic-English
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well distances in models’ representational space can predict
English speaking participants results for the studied task.We
find that several models are predictive of humans. Surpris-
ingly, a multilingual model—which is not trained to recog-
nize English phonemes—and a short-duration acoustic event
model—which is not trained to recognize phonemes at all—
are far more predictive than a standard speech recognizer. We
argue that the speech recognizer overfits on the language it
has been trained on—English—and organizes its representa-
tional space in a way that is different from English-speaking
listeners’ perceptual space.

Perceptimatic English Benchmark

Experimental Task We assess the perception of short
phone sequences. We use an ABX discrimination task. Hu-
man participants hear three stimuli and are asked to identify
which one of the first two stimuli (A or B) is more similar
to the third (X). The experimenter always identifies a correct
answer—in this case, by making A and B instances of two
different phonetic categories, and X another example of one
of the two. The accuracy of listeners’ responses to a given
triplet (combination of specific stimuli into an A–B–X item)
gives a measure of the discriminability of the categories to
which A and B belong.
Stimuli We construct triplets in which A, B, and X are each
sequences of three consecutive phones (triphones) extracted
from running speech, where the phonemic-level transcription
indicates that only the centre phone differs between A and B
(for example, [seIk]–[soUk]). Both English and French stim-
uli are extracted from the subset of the LibriVox audio book
collection used as evaluation stimuli in the Zero Resource
Speech Challenge (see Related work below). We control the
context in order to avoid mismatching different contextual al-
lophones. We incorporate this context into the stimuli in order
to avoid making the stimuli too short. The stimuli are not an
arbitrary subset, but are a nearly-balanced subset selected by
hand, taking the phonemic retranscription of the corpus as a
starting point, and performing a manual verification to select
clear examples (see below).

We exclude phones (or phones in certain neutralizing con-
texts) which we expected might be subject to a merger for
some listeners, or which were sufficiently marginal that the
corpus transcriptions were unlikely to be reliable. Not all
phone comparisons occur, nor do all phone comparisons oc-
cur in the same contexts, or with the same set of speakers:
we (native English and French listeners) selected the stimuli
by hand out of the very large set of constructible triplets to
maximize the phonetic similarity of the probe’s centre phone
to that of the correct answer, and to minimize phonetic dif-
ferences in the surrounding contexts. This is critical when
extracting stimuli from natural speech: transcriptions are not
always accurate, and a three-phone window is not sufficient
to guarantee which of the many possible contextual variants

each transcribed phone really corresponds to.2

For each ABX triplet, the reference stimuli, A and B, are
uttered by the same speaker, in order to avoid listeners’ re-
sponding on the basis of speaker differences, while the probe,
X, is uttered by a different speaker, to encourage listeners to
focus less on minor acoustic details. The delay between A
and B is 500 milliseconds, and between B and X 650 millisec-
onds, as pilot subjects reported having difficulty recalling the
reference stimuli when the delays were exactly equal.

In total, the stimuli consist of 5202 triplets (2214 from En-
glish), making 461 distinct centre phone contrasts (212 En-
glish, 249 French), in a total of 201 distinct contexts (118
English, 83 French), with most phone comparisons appear-
ing in three contexts each (a total of 47 English contrasts
appear in either one, two, or four contexts). The speakers
used (15 English, 18 French) have, in our assessment, stan-
dard, broadcast-type American English/Metropolitan French
pronunciations. Each set of three stimuli (triplet) appears in
four distinct items, corresponding to orders AB–A (that is, X
is another instance of the three-phone sequence A), BA–B,
AB–B, and BA–A.

We note a few things about the construction of this test.
First, while speaker variability was introduced in order to
prevent listeners from attending to acoustic details, the delay
between stimuli is still relatively short, meaning that listen-
ers need not rely heavily on memory, and will thus still have
reasonable access to detail. The stimuli are also short, and
are sometimes not cut at syllable boundaries, so that listen-
ers may not treat them as fully speech-like. The fact that the
A and B stimuli are from the same speaker may also attune
listeners to small differences between those two stimuli, po-
tentially thus attuning them to low-level differences overall.
By testing individuals on stimuli of this kind, we expect that
we will obtain a profile of low-level phonetic/auditory dis-
crimination.

In order to understand the gap between human listening
and typical speech recognition models—and, more gener-
ally, any statistical model of acoustics used in automatic
speech processing, serving either applied or fundamental sci-
ence purposes—we will require a broad spectrum of differ-
ent kinds of tests, in different listening modes. The stimuli
we use here, which are extracted from running speech, are
designed with the express purpose of putting current speech
processing models in ecological listening conditions, and thus
represent a narrow starting point for the broader testing ar-
chitecture. As a speech perception experiment, the results
are difficult to interpret, for several reasons. While the first
and last phones were, in principle, held constant across each
stimulus triplet, in reality, it is very difficult to get phoneti-
cally well-matched contexts in natural speech. Although the
stimuli were selected by hand to minimize the differences due

2The full set of English centre phones included in at least one
item is [æ A b d D eI E f g h i I k l m n N oU p ô s S t tS u U v 2w z].
The full set of French phones included is [a Ã b d e E Ẽ f g i j k l m n
ñ o ø O Õ p K s S t u v w y z Z]. For the full list of pairs and contexts
tested, see the online repository.



to surrounding context, they are far from perfectly controlled,
which means that the target (centre) phone is not the only
thing that will drive human listeners’ decisions. Thus, group-
ing the stimuli by centre phone contrast for analysis is risky.
We make our comparisons with models only on an individual
triplet stimulus level, so as not to suppose that the only source
of difference is the centre phone. We assess the global pre-
dictiveness of the relative distance or similarity produced by
each model for the pairs AX versus BX, for the probability
of an accurate response in the human listeners. The overall
predictiveness gives an indication of the similarity of mod-
els’ representational spaces to the perceptual encoding used
by human listeners in a low-level speech listening task.

Reference Data Collection The data set includes 91 partic-
ipants reporting English as the language to which they were
primarily exposed before the age of eight. They performed
the task on Amazon Mechanical Turk (US participants) with
the LMEDS software (Mahrt, 2016) and were paid for par-
ticipation.3 We asked participants to use headphones, to do
the task in a quiet environment, and to check the sound vol-
ume before the experiment began. 15 additional participants
were tested but did not meet the language background re-
quirements, and 65 were rejected for failing at least three out
of twelve catch trials or not finishing the task.4

For testing, items were counterbalanced into lists of 190
triplets per participant, such that no participant was tested
twice on the same contrast, and such that the combination
of speakers was not predictive of the right answer. Each stim-
ulus was tested three times, so that most contrasts were tested
at least 36 times. Participants responded as to which of the
two reference stimuli the probe corresponded to on a six-point
scale, ranging from first for sure to second for sure, with two
intermediate degrees of certainty in favour of each reference
stimulus. The benchmark includes both these responses and a
binarized version, taking into account the participant’s choice
but not their reported certainty. Here we report only analysis
of the binarized responses to avoid questions about how to
model participants’ use of the scale (preliminary analyses on
the scaled responses indicate that the results are qualitatively
the same).

The results we obtained are consistent with the assessment
that listeners tap into a low-level phonetic/auditory mode of
listening.While many of the difficult phone pairs seem rea-
sonable, others do not: among the more difficult English
contrasts for listeners are English [f]–[v], which should not
be particularly difficult, and French [f]–[y], which should be
trivially easy. The reason must be that the relevant set of items
did not highlight the centre phone contrast. Furthermore, the
fact that the locus of contrast was not always apparent might

3Kleinschmidt & Jaeger, 2015 made a detailed comparison of
data from an in-lab speech perception experiment with a Mechani-
cal Turk replication and found a close correspondence between the
results.

4The catch trials consisted of additional, highly distinct three-
phone ABX stimuli, including several which required participants
to distinguish cat from dog.

also have led listeners to attend to acoustic detail across the
whole experiment. Again, we use this kind of behaviour to
justify a stimulus triplet-level analysis.

In spite of the apparent fact that listeners made use of low-
level phonetic detail, the results are not driven by purely au-
ditory mechanisms completely irrelevant to speech. We argue
this on the basis of the fact that there is a native language ef-
fect, such that listeners are globally better at native-language
(English) stimuli than non-native (French) stimuli. This sug-
gests that linguistically relevant processing is still revealed by
this test.

Generating Model Predictions
For each experimental stimulus, we apply a model to the au-
dio file and extract that model’s representation of the stimu-
lus (see below for examples). We use these representations
to compute distances d(Target,X), between the probe and
the correct matching stimulus, and d(Other,X), between the
probe and the other reference stimulus, to generate a degree
of correct discriminability δ = d(Other,X)−d(Target,X). If
δ> 0, then the model treats the probe as being more similar to
the correct than to the incorrect answer. Our goal is to assess
whether humans’ perceived similarity matches the model’s
distances (δ values). Humans’ responses are stochastic, and
need not use a threshold at the point of maximal perceived
similarity. This leads us to use a binomial generalized lin-
ear model with an intercept parameter (see Section ). This
is similar to generating confusion matrices at the level of in-
dividual stimuli, and comparing those generated by acoustic
model distance with those given by human accuracies.

Using δ values is not the only possible linking hypothesis,
but it is broadly applicable, and allows for a distance function
to be selected that is appropriate to the type of representa-
tion being tested. All the models we consider in this paper
yield representations of variable length (they output vector
sequences—one vector per time frame—and the stimuli are
not all of the same duration). Thus, we use distance func-
tions based on dynamic time warping. Dynamic time warp-
ing takes two sequences C and D as input, as well as a func-
tion γ for comparing pairs of sequence elements. It aligns C
and D by matching the elements of one to the other so as to
minimize the sum of γ(c,d) for all matched elements (c,d).
Each element of C must to be matched with at least one ele-
ment of D, and alignments must respect temporal order. Here
we calculate distances between stimuli C = c1,c2, ...cp and
D = d1,d2, ...dq as:

d(C,D) =
∑ci,d j are matched γ(ci,d j)

max(p,q)
(1)

For the models analyzed here, we take γ to be either a sym-
metrised Kullblack–Leibler divergence5 (for models that out-
put probability vectors), or a cosine distance. Where x and y

5We replace zero elements with a very small constant to avoid
division by zero.
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Experiments
We apply the methods described in the previous section. Un-
less stated, we take γ to be the cosine distance (3).

Dirichlet Process Gaussian Mixture Model We evaluate
a Dirichlet process Gaussian mixture model (DPGMM) as
proposed by Chen, Leung, Xie, Ma, and Li (2015). Given
a training set of speech recordings in a language, the model
performs non-parametric Bayesian clustering on the entire
database, treated as an unordered collection of instanta-
neous acoustic feature vectors (see Mel Filterbank Cep-
stral Coefficients below). It models short-duration acoustic
events. A fitted model consists of an optimal set of Gaussian
distributions—typically several hundred. The model thus pre-
serves fine-grained temporal and acoustic detail, while still
modelling a specific language. It does not use phoneme la-
bels. Passing over a new sample at a fixed analysis rate (in
our case, analyzing 25 milliseconds of signal every 10 mil-
liseconds), each instant of signal is mapped to a vector of
posterior probabilities over the Gaussians in the model. We
take γ to be the symmetrized KL divergence (2). We apply the
English model described in Millet, Jurov, and Dunbar (2019),
trained on 34 hours of English speech taken from the Lib-
riVox dataset (no overlap with the stimuli or speakers in Per-
ceptimatic).

Bottleneck features We evaluate three models proposed
in Silnova et al. (2018). These bottleneck models are trained
to label speech with phone states. Phone states are temporal
analysis units used by certain speech recognizers: each
phone of the language is modelled as having (in the typical
three-state model) a beginning, middle, and end state, each
with different acoustic properties. The bottleneck models are
trained on speech data labeled annotated with an attribution
to phone states. They are neural networks trained to predict
the phone state associated with a given instant of speech,
on the basis of its acoustic features, accompanied by 310
ms of surrounding context. This model is thus optimized to
predict a more temporally fine-grained version of standard
phoneme labels. “Bottleneck” refers to a hidden layer that
has significantly lower dimension than the other layers. The
features we use are the contents of this layer, for each instant
of signal. We evaluate English monophone, English triphone,
and multilingual models.6 The English monophone model

6Referred to by Silnova et al. (2018) as FisherMono, FisherTri,
and BabelMulti.

is optimized to predict states for English phonemes. The
English triphone model is optimized to predict states for con-
textual allophones. The multilingual model is trained on data
from seventeen phonetically diverse languages (not including
English), optimized to label phoneme states in any of these
languages (if the same sound belongs to different inventories,
it is treated as distinct, for a total of 1032 possible phonemes).

DeepSpeech DeepSpeech (Hannun et al., 2014) is a neural
automatic speech recognition model used in the Mozilla
speech tools.The model uses bi-directional recurrent units,
which integrate information both forwards and backwards
in time, to predict text transcriptions (sequences of letters,
not phones) from speech. We can examine the state of any
of its several internal layers corresponding to any instant
of signal. After scoring each layer on its performance on
the phone discrimination metric described in Dunbar et al.
(2017) (on which the PEB is based), we found that layer five
was optimal. We thus analyze the outputs from that layer.
The model has a training objective related to that of the
English bottleneck models (predicting text), but the recurrent
units allow it to model long distance temporal dependencies,
and the units to be predicted are graphemes, which are more
similar in their temporal granularity to phonemes than to
phone/phoneme-states. We use Mozilla DeepSpeech 0.4.1 7,
which is trained on the Fisher (Cieri, Miller, & Walker, 2004)
and Switchboard (Godfrey, Holliman, & McDaniel, 1992)
telephone corpora and the LibriSpeech audio book corpus
(Panayotov, Chen, Povey, & Khudanpur, 2015). The model
achieves an 8.26% word error rate on the LibriSpeech clean
test evaluation.

Articulatory Reconstruction To explore whether similari-
ties at the level of articulation are more predictive of humans’
behaviour, we evaluate a neural articulatory reconstruction
model (Parrot, Millet, & Dunbar, 2019), trained to recon-
struct continuous electromagnetic articulography (EMA)
coil position trajectories from speech recordings (tongue
body, tongue tip, tongue dorsum, upper lip, lower lip, lower
incisor). The model is trained on the EMA-IEEE corpus
(Tiede et al., 2017), approximately six hours of read English
speech, paired with EMA recordings, from eight speakers.

Mel Filterbank Cepstral Coefficients We use Kaldi
(Povey et al., 2011) to extract 13 Mel filterbank cepstral coef-
ficients (MFCC): one vector every 10 milliseconds, each ana-
lyzing 25 milliseconds of signal. These audio representations,
used standardly as input to speech recognition, are the re-
sult of a low-resolution spectral analysis and a discrete cosine
transformation. We add the first and second derivatives, for
a total of 39 dimensions, and apply mean-variance normal-

7https://github.com/mozilla/DeepSpeech/releases/
tag/v0.4.1
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PEB GMM DS BEnM BEnT BMu Art MFCC
En 79.5 88.3 89.5 91.2 90.3 88.9 77.3 78.6
Fr 76.7 82.0 80.2 87.6 88.8 88.5 70.1 78.3

Table 1: Percent accuracies for humans (PEB) and models
(the bigger the better). GMM is for DPGMM, DS for Deep-
Speech. BEnM, BEnT and BMu are (in order) for mono-
phone English, triphone English and multilingual bottleneck
models. Art is for articulatory reconstruction.

ization over a moving three-second window. This approach,
like the multilingual bottleneck features, does not specifically
model English; unlike that model, this is a fixed transforma-
tion, not tuned to any language, or indeed to speech at all.

Results
Performance on the Experimental Task We compute the
mean accuracies8 for each of the models, scoring stimuli as
correct where δ > 0. The results in Table 1 indicate that the
models’ performance is generally better than the human lis-
teners in the PEB. This implies that, to the extent that any
of these models accurately captures listeners’ perceived dis-
criminability, listeners’ behaviour on the task, unsurprisingly,
cannot correspond to a hard decision at the optimal decision
threshold. The results also indicate a small native language
effect—a decrease in listeners’ discrimination accuracy for
the non-English stimuli. Such an effect is also captured by all
the models trained on English. We observe that some models
show native language effects numerically much larger than
human listeners, a point we return to below.

Prediction In order to see which model best predicts the
human results,9 we fit probit regression models with a coef-
ficient for the δ discriminability score corresponding to the
given model. The dependent variable is whether the trial re-
sponse was correct (1: accurate, 0: inaccurate). To correct for
effects that are not of interest, the models each also include a
coefficient for whether the correct answer was A or B, a co-
efficient for the position of the trial in the experimental list,
and a coefficient for participant.

We use differences in log likelihood for model comparison,
obtaining confidence intervals by repeatedly drawing bal-
anced subsamples (N = 43358): for each stimulus, we draw
three observations without replacement. The results, in Table
2, show that the most predictive approaches are short-term
acoustic event modelling (DPGMM) and bottleneck phone
state predictors, with the English monophone (phoneme) pre-
dictor model showing non-significantly poorer performance

8Scoring accuracy first by stimulus, then averaging by contrast,
then overall.

9Here we report results combining the English (native) and
French (non-native) stimuli. In the interest of analyzing stimuli that
are maximally ecological for the models tested, we also analyzed
the results of the native-language perception task only. The model
comparisons are qualitatively identical, so we omit the results in the
interest of space.

BMu BEngT BEngM MFCC DS Art
GMM 3 9 28 204 249 257
BMu 6 24 202 246 254
BEngT 19 196 241 248
BEngM 177 222 229
MFCC 45 52
DS 8

Table 2: Mean of resampled differences in log likelihood be-
tween models. Models are ordered by column and by row
in descending order of their performance, with better models
on the left/top. Positive numbers indicate that the model indi-
cated in the given row is better than the model indicated in the
column. Bolded results have 95% confidence intervals that
exclude zero. GMM is for DPGMM, DS for DeepSpeech.
BEnM, BEnT and BMu are (in order) for monophone En-
glish, triphone English and multilingual bottleneck models.
Art is for articulatory reconstruction.

than the allophonic and multilingual ones. This means that
these models have representational spaces that are the closest
to human perceptual space of all the tested models.

Discussion
Behaviour on our speech discrimination benchmark are best
predicted by the DPGMM’s short-duration acoustic event
modelling and the three bottleneck phone state classifica-
tion models, consistent with Millet et al. (2019) and Jurov
(2019). These do substantially better than generic audio fea-
tures. These means that their representational space is the
closest to the perceptual space used by humans in this task.
Two of the bottleneck models are trained to predict English
phoneme/allophone states, but the multilingual model is not
trained on English, which makes its performance all the more
surprising. The DPGMM model, which, although trained on
English, models 25 millisecond acoustic events into combi-
nations of hundreds of detailed acoustic categories of its own
devising, and is thus much more temporally and acoustically
fine-grained than typical phonetic annotation.

The articulatory reconstruction model is not very predic-
tive of human behaviour. The likely reasons are simple. First,
predicting articulatory parameters for novel speakers is diffi-
cult, and this model is far from having state-of-the-art perfor-
mance. Second, the model does not predict a complete set of
articulators. It is thus unsurprising that, when scored on the
experimental task, this model is worse than even the acoustic
features.

The continuous speech recognizer (DeepSpeech) is also
bad at predicting human behaviour, but, unlike the articula-
tory reconstruction, performs well on the experimental task.
This model is different from the English bottleneck mod-
els in three ways. First, it is in principle capable of tak-
ing into account longer temporal dependencies than the finite
310 ms window used by the bottleneck model. Second, it
is optimized not to predict phonemes or allophones, but or-
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Figure 1: Normalized human accuracy versus normalized δ

for (left) the DeepSpeech speech recognizer and (right) the
DPGMM short-duration acoustic model. White circles are
English stimuli and black triangles are French stimuli.

thographic (letter) transcriptions. These are not equivalent,
since English orthography is not completely transparent: dis-
tinct sequences of phones correspond to distinct sequences
of letters (thus, allow for a high score on the experimental
task), but the representation’s distances may capture similar-
ities and differences exclusively found in spelling. Finally,
the bottleneck models are optimized to predict temporally
more fine-grained sequences (distinguishing between begin-
ning, middle, and end states for each phoneme or allophone),
while transitions between English letters roughly correspond
to transitions at a level of temporal granularity similar to that
of the segment.

DeepSpeech shows the largest discrepancy between the
English and French stimuli (larger than English listeners’).
This difference is clear from Figure 1 (left), which plots
DeepSpeech’s δ discriminability scores against listeners’ av-
eraged accuracy,10 colour-coded for whether the items are
native (English) or non-native (French). We observe a clear
separation in the distributions of DeepSpeech’s predicted dis-
criminability for the English stimuli (concentrated on the
right-hand part of the graph, where the model is better) ver-
sus French stimuli. There is also a (statistically significant)
separation between native and non-native stimuli for humans,
but it is small enough as to be visually far less salient. Corre-
spondingly, the DPGMM model (right) also shows a smaller
separation between the two types of stimuli (though still
larger than English listeners’: see Table 1). Furthermore,
DeepSpeech’s δ values for the English-language stimuli are
also more homogeneous than the DPGMM’s, with a less pro-
nounced slope from difficult to easy stimuli. It would seem
that optimizing on the task of predicting English grapheme
sequences leads DeepSpeech to attend to, or ignore, very dif-
ferent acoustic information than human listeners, at least in
the context of this low-level speech discrimination task.

10Here we group by centre phone pair in order to have more res-
olution in our measure. An equivalent analysis making use of sub-
jects’ gradient responses is qualitatively similar.

Related work
Our data set is in the spirit of other cognitive benchmarks
for artificial intelligence (syntax: Warstadt et al., 2019; in-
tuitive physics: Riochet et al., 2018; question answering:
Kwiatkowski et al., 2019). In speech perception, the idea
of matching human behaviour is not new (Kleinschmidt &
Jaeger, 2015; Feldman & Griffiths, 2007; Schatz, Feldman,
Goldwater, Cao, & Dupoux, To appear; Schatz, Bach, &
Dupoux, 2017; Schatz & Feldman, 2018), and is an echo of
the literature on modelling phonetic learning, most notably
Guenther and Gjaja (1996), who qualitatively compared their
modelled distances to similarities reported in the literature for
human listeners. To our knowledge, the only previous work
providing stimuli, human responses, and recommendations
for generating predictions at the individual stimulus level
with a wide range of models is Millet et al. (2019). Those
stimuli only tested a narrow range of cross-linguistic phone
contrasts, however, and were non-words read in a word-list
style, rather than extracts of natural, running speech.

The PEB stimuli are drawn from the evaluation for the
Zero Resource Speech Challenge 2017 (Dunbar et al., 2017),
widely used in evaluating unsupervised speech models. The
PEB complements this existing measure (the existing mea-
sure is not scored against humans), and can be applied to any
model already tested on the Zero Resource Speech Challenge
2017 evaluation.

Summary of Contributions
We have presented the Perceptimatic English Benchmark,
an open benchmark for computational models of human
speech perception made up of English and French stimuli
that are ecological for typical speech models. It is the only
open data set we know of that systematically probes a wide
range of phone contrasts and that enable us to easily compare
English speaking humans with computational models for a
low-level speech discrimination task. We have shown, for the
first time, that a standard speech recognizer trained on En-
glish recordings is not predictive of English speaking human
phone classification behaviour, while models not optimized
to recognize English phonemes are (a quasi-universal phone
classifier and a model of short-duration acoustic events). The
multilingual model is easy to use off-the-shelf,11 and we rec-
ommend it to researchers needing an estimate of perceptual
distance.
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Paris Diderot, Paris, France.

Kleinschmidt, D., & Jaeger, T. F. (2015). Robust speech
perception: Recognize the familiar, generalize to the simi-
lar, and adapt to the novel. Psychological Review, 122(2),
148–203.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., . . . others (2019). Natural ques-
tions: a benchmark for question answering research. Trans-
actions of the Association for Computational Linguistics,
7, 453–466.

Mahrt, T. (2016). LMEDS: Language markup and experi-
mental design software.

McClelland, J., & Elman, J. (1986). Interactive processes
in speech perception: The TRACE model. Cognitive Psy-
chology, 18, 1–86.

Millet, J., Jurov, N., & Dunbar, E. (2019). Comparing unsu-
pervised speech learning directly to human performance in
speech perception..

Norris, D., & McQueen, J. (2008). Shortlist B: a Bayesian
model of continuous speech recognition. Psychological Re-
view, 115(2), 357–395.

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015).
Librispeech: an asr corpus based on public domain audio
books. In 2015 ieee international conference on acoustics,
speech and signal processing (icassp) (pp. 5206–5210).

Parrot, M., Millet, J., & Dunbar, E. (2019). Independent and
automatic evaluation of acoustic-to-articulatory inversion
models. arXiv, arXiv–1911.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek,
O., Goel, N., . . . others (2011). The Kaldi speech recogni-
tion toolkit. In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding (ASRU).

Riochet, R., Castro, M. Y., Bernard, M., Lerer, A., Fergus,
R., Izard, V., & Dupoux, E. (2018). Intphys: A framework
and benchmark for visual intuitive physics reasoning. arXiv
preprint arXiv:1803.07616.

Scharenborg, O., Norris, D., ten Bosch, L., & McQueen, J.
(2005). How should a speech recognizer work? Cognitive
Science, 29, 867–918.

Schatz, T., Bach, F., & Dupoux, E. (2017). ASR systems
as models of phonetic category perception in adults. In
Proceedings of the 39th Annual CogSci Meeting.

Schatz, T., & Feldman, N. (2018). Neural network vs.
HMM speech recognition systems as models of human
cross-linguistic phonetic perception. In Proceedings of the
conference on cognitive computational neuroscience (pp.
1–4).

Schatz, T., Feldman, N., Goldwater, S., Cao, X. N., &
Dupoux, E. (To appear). Early phonetic learning with-
out phonetic categories: Insights from machine learning.
Proceedings of the National Academy of Sciences.

Silnova, A., Matejka, P., Glembek, O., Plchot, O., Novotnỳ,
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